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Supplementary Fig. 1 The possible decomposition products of urea precursors.
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Supplementary Fig. 2 The relevant reaction processes involved in the pyrolysis of boric acid and urea precursors.
According to the reported reactions1, 2, the possible pyrolysis processes of boric acid and urea are described as follows.
First, the three molecules of urea undergo condensation to form a triazine analogue upon heating, which could be further ammoniated with additional urea before the dehydration of boric acid. Thus, when the mass ratio is 1:1 (M(boric acid)= 61.83 g mol-1, and M(urea)= 60.06 g mol-1, means the mass ratio is approximately equal to the molar ratio), the relatively high concentration of boric acid in the precursor prefers dehydration, condensation, and followed by reaction on the edge with triazine analogue. As the mass ratio increases to 1:5, the residual urea after self-polymerization continues to react with boric acid to give borazine. Triazine and borazine analogue then were randomly linked by free boric acid or urea and results in highly disordered polymerization. With further increase in the mass ratio to 1:10 and 1:20, a large amount of triazine rings undergo self-polymerization to form nC3N4 structures, with only a small amount of disorder-induced polymerization caused by boric acid doping. At this stage, most of the structural units are composed of rigid C3N4 units.






















[image: ]Supplementary Fig. 3 SEM images of of the as-prepared samples (the inset in the yellow box is an enlarged view).















[image: ]Supplementary Fig. 4 TEM images of (a) B2O3 and (b) C3N4. The insets show the corresponding HRTEM and FFT patterns, respectively.
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Supplementary Fig. 5 Dark-field TEM image of BTCP-2 sample.
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Supplementary Fig. 6 XRD patterns of (a) B2O3 and (b) C3N4.
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Supplementary Fig. 7 BET analysis. (a) N2 adsorption/desorption isotherms, (b) Pore size distribution.





















[image: ]
Supplementary Fig. 8 XPS spectra of the four samples were obtained.
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Supplementary Fig. 9 FT-IR spectra of the B2O3, C3N4, and BTCP samples.
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Supplementary Fig. 10 (a) UV-Vis-NIR DRS spectra of the BTCP samples, (b) Corresponding band gap values.
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Supplementary Fig. 11 UPS spectra of the BTCP samples.











[image: ]
Supplementary Fig. 12 Band positions of the BTCP samples.














[image: ]Supplementary Fig. 13 Mott-Schottky plots of the BTCP sample.
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Supplementary Fig. 14 (a) PL spectra and (b)TRPL spectra of the BTCP samples.
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Supplementary Fig. 15 (a) I-t curves and (b) EIS plots of the BTCP samples.
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Supplementary Fig. 16 In situ photoirradiation N 1s XPS spectra.
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Supplementary Fig. 17 Photostability of material against time.
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Supplementary Fig. 18 Continuous measurement of PL spectra for the C3N4 sample over a duration of 30 min.
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Supplementary Fig. 19 Discharged and charged curves of C3N4 photocathode at 100 μA cm-2.
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Supplementary Fig. 20 (a) Comparative column chart of the discharged and charged voltage of BTCP and C3N4 photoelectrodes, (b) Corresponding overpotential and round-trip efficiency.
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Supplementary Fig. 21 LSV curves of the BTCP-2 sample under light and dark testing conditions.
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Supplementary Fig. 22 (a) Discharge and charge profiles of the BTCP-2 photocathode at a current density of 100 μA cm-2 under light and (b) Impedance test results corresponding to different discharge/charge states.









[image: ]
Supplementary Fig. 23 EIS curve before starting discharge.
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Supplementary Fig. 24 XRD patterns of products during discharge and charging processes.
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Supplementary Fig. 25 C 1s and Li 1s XPS spectra of the BTCP-2 photoelectrode corresponding to different test states.
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Supplementary Fig. 26 SEM image before starting discharge.
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Supplementary Fig. 27 SEM images corresponding to different stages of the discharging and charging process.
























Table 1 Comparison of the previously reported photocathode materials
	Cathode catalysts
	Current density (μA cm-2)
	voltage gap
	Round-trip efficiency
	Cycling stability
(cycles)
	Discharge capacity
(μAh cm-2)
	Reference

	Photo-assisted Li-CO2 Battery

	BTCP-2
	100
	0.13
	95.5%
	323
	32300
	This work

	B@BA2
	100
	0.25
	91.3%
	125
	12500
	3

	Mixed-PhaseTiO2
	25
	0.78
	74%
	52 (60.1%)
	3001
	4

	CNT@C3N4
	100
	0.36
	89%
	100 (67.5%)
	15770
	5

	TNAs@AgNPs
	100
	0.37
	87.1%
	100 (87%)
	10000
	6

	Electrochemical Li-CO2 Battery

	CFB@NCNT-Mo2N
	10
	1.08
	71.6%
	77 (60%)
	5586
	7

	Co3O4
	20
	1.0
	75%
	55 (57%)
	2407
	8

	CoS-Vs-1.0
	100
	1.08
	72.5%
	90
	4637.6
	9

	NSv-ReS2/CP
	40
	0.86
	76.0%
	175 (70.3%)
	1811
	10
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