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Supplementary	Note	1:	Methods	

A. Synthesis		
To	synthesize	the	MXenes	used	in	this	study,	we	Pirst	synthesized	a	graphite-based	Ti3AlC2	

MAX	phase	precursor	using	molar	ratios	of	3:2:2	of	Ti:Al:C,	by	Pirst	ball	milling	elemental	

Ti	(325	mesh,	Alfa	Aesar),	aluminum	(325	mesh,	Alfa	Aesar),	and	graphite	at	a	2:1	ball-

to-powder	 mass	 ratio	 using	 yttria-stabilized	 zirconia	 grinding	 balls	 in	 a	 high-density	

polyethylene	(HDPE)	container.		After	ball	milling	this	graphite-based	Ti3AlC2	MAX	phase,	

we	followed	the	typical	synthesis	protocol	for	Ti3C2Tx	MXene,	as	discussed	in-depth	in	a	

previous	step-by-step	article	 from	our	group1.	 In	short,	 this	mixed	powder	was	placed	

into	an	alumina	crucible	inside	an	alumina	tube	furnace	and	sintered	at	1400	°C	for	4	h	

under	100	mL/min	Ar	Plow.		After	sintering,	the	MAX	block	was	drilled	into	a	Pine	powder	

and	washed	using	3	M	hydrochloric	 acid	 (HCl)	 at	 a	 volumetric	 ratio	 of	 30	mL/g	MAX	

powder	overnight	to	remove	any	intermetallic	impurities.	After	HCl	washing,	the	powder	

was	washed	 to	a	neutral	pH	using	repeated	centrifugation	using	deionized	(DI)	water,	

Piltered,	dried	in	air,	and	sieved	using	a	71	µm	pore	size	sieve.	After	sieving,	the	powder	

was	then	placed	into	a	solution	containing	5%	HF	(3	mL	HF/g	MAX),	9.1%	HF	(6	mL/g	

MAX),	or	12.5%	HF	(9	mL/g	MAX)	with	18	mL	12	M	HCl/g	MAX	and	9	mL	DI	water	per	

gram	MAX	 and	 stirred	 at	 35	 °C	 for	 24	 h.	 After	 24	 h,	 the	 solution	was	 centrifuged	 to	

neutralize	the	pH	of	the	solution	and	placed	into	an	aqueous	solution	containing	1	g	of	

LiCl	 per	 gram	 starting	 MAX	 to	 50	 mL	 of	 DI	 water	 and	 stirred	 overnight	 at	 room	

temperature	to	delaminate	the	MXene	into	single	Plakes.	After	delamination,	the	solution	

was	washed	again	using	centrifugation	to	remove	the	excess	Li,	vortex	mixed	for	30	min		

and	 Pinally	 run	 at	 2380	 RCF	 acceleration	 for	 30	 min	 to	 yield	 the	 single-to-few	 Plake	

solution	of	Ti3C2Tx	MXenes.	These	MXenes	were	then	used	to	prepare	for	STEM	imaging.	

To	quickly	screen	the	quality	of	these	MXenes,	X-ray	diffraction	(XRD)	was	used	(Anton	

Paar	XRDynamic	500,	monochromatic	Cu	Kα	radiation,	3	–	65	°	2θ	full	range,	25	s/step).		
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B. STEM	Imaging		

STEM	samples	were	prepared	by	diluting	MXene	solutions	and	drop	casting	onto	ultrathin	

carbon	on	lacey	carbon	support	TEM	grids.	High-angle	annular	dark-Pield	(STEM-HAADF)	

images	 of	 the	 samples	 were	 acquired	 using	 a	 probe-corrected	 Thermo	 Fisher	 ScientiPic	

Spectra	200	STEM	operating	at	60	kV	with	a	convergence	semi-angle	of	30	mrad.	The	beam	

current	was	 limited	to	10-25	pA	to	minimize	sample	damage.	STEM-HAADF	images	were	

acquired	 as	 stacks	 of	 low	dwell	 time	 frames,	which	were	 subsequently	 rigidly	 aligned	 to	

obtain	 high	 signal-to-noise	 ratio	 (SNR)	 images.	 Rigid	 image	 registration	 was	 performed	

using	a	method	optimized	for	very	low	SNR	images,	like	those	collected	here,	to	minimize	

the	possibility	of	unit	cell	jump	errors,	which	would	inhibit	vacancy	analysis2.	To	minimize	

the	 buildup	 of	 carbon	 contamination	 during	 high-resolution	 imaging,	 the	 prepared	 grids	

were	Pirst	cleaned	with	acetone	and	methanol	and	then	dried	under	vacuum	for	at	least	12	

hours	before	loading	into	the	STEM.	During	imaging,	beam	showering	in	TEM	mode	was	used	

to	further	prevent	contamination	buildup.	All	images	are	shown	in	Supplementary	Figures	

S8-10.	

	

C. Machine	Learning	and	Statistical	Analyses		

We	used	AtomAI’s	Segmentor	class	(atomai.models.Segmentor)	as	our	framework,	which	

dePines	a	U-Net	neural	network	for	semantic	segmentation	of	microscopy	images.9.	AtomAI,	

a	Python	package	built	on	top	of	PyTorch	for	deep	learning	in	microscopy,	is	typically	used	

to	locate	the	positions	of	atoms	in	STEM	images	and	has	been	applied	to	identify	impurity	

atoms	 and	 defect	 locations	 in	 graphene9.	 Due	 to	 the	 beam	 sensitivity	 and	 surface	

contamination	of	our	MXene	samples	it	was	more	benePicial	to	train	a	network	to	pick	out	

defects	 than	atoms,	 therefore,	we	approached	 the	 training	of	our	models	differently	 than	

previous	graphene	work.	We	trained	two	models	(1)	Lattice	Capture	Neural	Network	and	(2)	

Defect	Spotter	Neural	Network.	We	used	the	Pirst	model	to	locate	the	positions	of	atoms	if	

our	image	was	pristine,	hexagonal	lattice	and	we	used	the	second	model	to	label	vacancies.	

This	two-model	approach	proved	more	robust	against	variations	in	image	contrast	and	local	

disorder	than	a	single	model	trained	to	identify	both	atoms	and	defects	simultaneously.		
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A	major	challenge	of	training	models	in	materials	science	is	the	lack	of	labeled	training	

data.	SpeciPically	 for	 this	study,	quality	STEM	images	are	of	MXenes	are	difPicult	and	time	

consuming	to	take.	Therefore,	we	did	not	have	access	to	a	large	training	dataset,	regardless	

of	whether	it	was	labeled	or	unlabeled.		Instead,	we	turned	to	a	previous	paper3,	and	used	

crops	from	one	high	resolution,	large	frame	of	view	image	to	train	our	models.	We	then	used	

2D	 Gaussian	 Pitting	 to	 label	 the	 data	 (note	 we	were	 only	 able	 to	 do	 this	 because	 of	 the	

sharpness	of	the	large	image	and	2D	Gaussian	Pitting	was	unreliable	for	our	own	data),	giving	

us	binary	masks	of	 atomic	positions	 in	 the	 cropped	 images.	The	 crops	were	 square	with	

length	randomly	chosen	between	150	and	300	pixels,	allowing	the	model	to	be	applicable	

across	a	range	of	resolutions.	Crops	were	then	resized	to	256	×	256	pixels	(2n	being	an	ideal	

size	for	a	neural	network).	Data	augmentation,	including	rotation	and	gaussian	noise,	was	

incorporated	as	part	of	the	neural	network’s	training	process.	This	step	was	imperative	to	

the	success	of	the	model	outside	of	the	training	dataset.		It	was	necessary	for	the	model	to	be	

successful	on	MXene	images	taken	on	a	completely	different	STEM	instrument,	allowing	for	

a	range	of	lattice	directions,	resolutions	and	sharpness.				

The	Lattice	Capture	Neural	Network	was	trained	as	3	ensembled	models	each	with	1000	

training	cycles	of	batch	size	15,	trained	on	1000	crops	of	our	parent	image.		Gaussian	noise	

in	 range	 [40,60]	 and	 rotation	 were	 incorporated	 in	 the	 data	 augmentation.	 The	 Defect	

Spotter	Neural	Network	was	one	model,	trained	with	350	training	cycles	and	300	crops	of	

our	parent	image.		Gaussian	noise	in	range	[40,100],	rotation,	and	jitter	was	incorporated	in	

the	data	augmentation.	All	training	data	and	model	weights	are	included	in	the	Piles	and	code	

to	run	the	models	is	included	in	Jupyter	Notebooks	in	our	Github	repository.			

Once	we	obtained	all	atomic/defect	locations,	we	(1)	differentiated	the	middle	(M”)	from	

outer	(M’)	layers	and	(2)	combined	this	with	a	Delaunay	triangulation	to	dePine	3D	defect	

motifs.	For	(1),	we	enforced	a	hexagonal	structure	in	our	dots	using	their	lattice	directions	

(when	Pinding	the	dots	using	ML,	the	structure	was	not	perfectly	hexagonal	and	sometimes	

morphed	 a	 little,	 future	 work	 could	 investigate	 the	mechanisms	 causing	 this).	 Then,	 we	

separated	each	dot	into	its	relative	layer	(i.e.	we	noted	that	dot	1	and	dot	2	must	be	in	the	

same	layer	due	to	the	projection	pattern	of	the	layers,	but	we	could	not	yet	say	which	layer	

that	was).	For	each	image	we	now	had	three	groups	of	relative	layers,	and	we	counted	the	

number	of	 defects	 in	 each	of	 these.	We	 consistently	 saw	one	 layer	with	 signiPicantly	 less	
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defects	than	the	other	two	and	were	able	to	label	this	layer	as	the	middle	layer	(M”),	since	

previous	theoretical	studies4	have	shown	defects	are	more	likely	in	outer	layers.		The	other	

two	layers	were	both	classiPied	as	outer	layers	(M’).		We	could	not	differentiate	between	the	

upper	or	lower	layers,	instead,	we	categorized	the	one	with	more	defects	as	M’max	and	the	

one	with	less	as	M’min.	For	(2),	we	took	these	layer	classiPications	and	conducted	Delaunay	

triangulations	 on	 each	 layer,	 as	 well	 as	 the	 projection	 of	 all	 three.	 	 This	 allowed	 us	 to	

understand	the	connectivity	between	defects	within	layers	as	well	as	between	layers,	which	

led	to	the	motifs	we	dePined	in	Figure	2	of	the	main	text.			

	

D. Modeling		

Using	 the	 Large-Scale	 Atomic/Molecular	 Massively	 Parallel	 Simulator	 (LAMMPS)5	we	

conducted	hybrid	Monte	Carlo	(MC)	Molecular	dynamics	(MD)	calculations.	The	bond-order	

potential	 (BOP)	 developed	 by	 Plummer	 et	 al.6	simulated	 all	 interatomic	 interactions.	We	

started	with	 a	 large	 (30nmx30nm)	 supercell	 of	 pristine	MXene	 (Ti3C2)	 to	minimize	 edge	

effects	 and	 establish	 statistical	 signiPicance.	 The	 nanosheet	 was	 seeded	 with	 a	 random	

distribution	of	Ti	 vacancies,	C	vacancies,	 and	 surface	 terminations	 (O	and	F).	Cases	were	

populated	 with	 1.5%	 and	 3.5%	 Ti	 vacancies	 to	 recreate	 the	 experimentally	 observed	

conditions.	Since	carbon	is	difPicult	to	resolve	experimentally,	C	vacancies	were	seeded	with	

0,	 1,	 5,	 and	 10	%.	 This	 is	 in	 line	 with	 experimental	 suggestion6-8	and	 extends	 to	 higher	

concentrations	 observed	 in	 aged	 MXenes9.	 Surface	 termination	 distributions	 were	 also	

randomly	 seeded.	 Preliminary	 calculations	 showed	 that	 the	 different	 species	 (O,	 F,	 and	

vacancy)	orient	randomly.	Additionally,	 the	O	and	F	 termination	bonds	 in	 the	 interatomic	

potential	are	similar	enough	that	there	is	not	a	signiPicant	energy	difference,	so	we	simpliPied	

to	a	single	species	(O).	We	chose	three	surface	termination	coverages	0,	50,	and	80%	in	order	

to	be	in	line	with	literature9-11		and	examine	the	impacts	of	varying	levels	of	coverage	on	Ti	

vacancy	clustering.	

The	 vacancies	 are	 represented	 by	 non-interacting	 ghost	 atoms.	 These	 atoms	 are	

placeholders	in	the	lattice	that	have	no	velocity	or	forces	to	contribute	to	the	energy	of	the	

system.	Placeholders	are	needed	to	perform	Monte	Carlo	(MC)	swaps	to	rapidly	sample	and	

compare	energy	conPigurations.	Previous	works	have	used	MC	methods	 to	examine	point	
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defects12-15,	 and	 some	 MD	 codes	 use	 ghost	 atoms,	 but	 their	 use	 to	 track	 vacancy	

conPigurations	is	a	nuance	of	our	approach.	Each	MC	calculation	included	100,000	attempted	

swaps.	Every	step,	one	candidate	atom	is	randomly	selected	from	each	eligible	group.	The	

candidate	groups	are	paired	and	 include	Ti	and	ghost-VTi,	C	and	ghost-VC,	O	and	ghost-VT	

(surface	termination).	For	each	grouped	pair	of	atoms,	their	positions	are	reversed	and	the	

potential	 energy	 calculated	 according	 to	 the	 interatomic	 potential.	 Simply,	 the	 potential	

describes	the	energy	between	any	two	atoms	at	a	given	distance	under	the	inPluence	of	an	

outside	atom.	The	sum	of	these	energies	is	the	system	potential	energy.	After	the	swap,	if	the	

potential	energy	is	lower,	the	swap	is	accepted.	If	it	is	not,	then	there	is	a	chance	of	acceptance	

based	on	the	Metropolis	criterion	at	300K,	which	is	summarized	by	Equation	1.	

 	 (1)	

Where	R	is	a	randomly	generated	number	between	0	and	1,	∆Eswap	is	the	change	in	energy	

from	the	swap,	kB	is	 the	Boltzmann	constant	and	T	 is	 the	temperature12,16.	 If	 it	 is	still	not	

accepted,	then	the	two	candidates	are	returned	to	their	starting	location	and	another	pair	is	

tested.	After	an	accepted	swap,	that	is	the	new	starting	conPiguration	for	the	next	step.	In	this	

way	 the	 distribution	 progression	 follows	 a	 path	 of	 swaps	 governed	 by	 the	 random	 seed	

candidate	atom	selection	and	entropic	acceptance.	

Cases	included	100,000	attempted	swaps	because	convergence	the	potential	energy	was	

converged	 at	 this	 point	 for	 the	 30×30	 nm	 samples.	 Fig.	 S4	 shows	 this	 convergence.	 The	

number	of	 swaps	needed	 to	 show	convergence	 is	 directly	proportional	 to	 the	number	of	

candidate	atoms.	Additional	studies	were	conducted	with	fewer	atoms	and	relatively	more	

swaps,	these	showed	similar	potential	energy	behavior	but	were	not	as	statistically	robust.	
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Supplementary	Note	2:	ConBiguration	and	Validation	of	ML	Models	

Here,	we	provide	a	visual	of	our	model	training	and	validation	process.		Absent	ground	

truth	data,	it	is	challenging	to	validate	model	performance.		It	is	possible	to	create	simulated	

data;	 however,	making	 simulated	 data	 resemble	 experimental	 data	 is	 imprecise	 and	 can	

introduce	signiPicant	bias.	We	chose	to	conduct	expert	comparison	of	the	performance	of	our	

model	 to	 2D	 Gaussian	 Fitting	 (the	 method	 we	 used	 to	 train	 the	 model).	 As	 shown	 in	

Supplementary	 Figure	 1b,	 2D	 Gaussian	 Fitting	 does	 not	 provide	 informative	 or	 regular	

atomic	 positions	 (and	 cannot	 Pind	 defects).	 In	 comparison,	 our	 NN	 enforces	 a	 regular,	

hexagonal	lattice,	can	capture	the	locations	of	defects	(even	for	a	large	cluster	of	defects,	as	

in	the	12.5%	HF	sample),	and	is	more	robust	to	noise	in	low-dose	images.	
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Supplementary	Figure	1:	ML	Pipeline	

	

FIG.	 S1:	 Model	 training	 and	 performance.	 (a)	 Model	 pipeline.	 STEM-HAADF	 images	 are	 run	

through	 two	different	neural	networks,	 one	 to	 Aind	all	 atomic	positions	by	enforcing	a	hexagonal	

lattice	structure	(Lattice	Capture)	and	another	speciAically	to	detect	defect	positions	(Defect	Spotter).		

Models	are	combined	to	Aind	Ainal	atomic	and	defect	positions.	(b)	Performance	of	our	model	for	three	

sample	images	in	comparison	to	2D	Gaussian	Fitting.		Atomic	(blue)	and	defect	(red)	positions	are	

visually	more	regular	in	comparison	to	atomic	positions	found	using	Atomap’s17	2D	Gaussian	Fitting	

Model	(yellow).		Scale	bars	1	nm.		
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Supplementary	Figure	2:	Layer	Deconvolution	

	

FIG.	S2.	Layer	deconvolution	method.	(a)	Steps	to	identify	outer	(M’)	vs.	inner	(M”)	layers,	given	

atomic	(blue)	and	defect	(red)	positions.	Dots	are	grouped	by	relative	layer	and	histogram	of	defect	

groups	reveals	outer	vs.	inner	layers.	Scale	bar	1	nm.	(b)	Close	up	of	relative	layer	labeling.		When	

looking	at	Ti3C2Tx	MXene	in	top-down	projection	view,	colored	by	layer,	same-layer	angles	are	30	

degrees	off	from	hexagonal	lattice	angles.	These	three	layers	can	be	discriminated	in	the	3D-Layered	

View	with	outer	layers	M’	(light/dark	blue)	and	middle	layer	M”	(orange).	
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Supplementary	Figure	3:	Delaunay	Triangulation	

	
FIG.	S3.	Delaunay	triangulation	to	identify	motifs.	(a)	Delaunay	triangulation	on	all	atomic	and	

defect	 positions.	 Red	 lines	 indicate	 adjacent	 defects	 (across	 layers).	 (b)	 Visualizing	 Delaunay	

triangulation	in	3D.	(c).	Separating	out	the	three	layers.	Now	red	lines	indicate	adjacent	defects	within	

layers.	 By	 applying	 the	Delaunay	 triangulation,	we	 can	 understand	 how	defects	 form	within	 and	

between	layers.		Scale	bars	1	nm.	
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Supplementary	Figure	4:	Bootstrapping	Analysis	

	

FIG.	S4.	Bootstrapping	across	number	of	images.	Bootstrapped	vacancy	percentage	calculations,	

showing	95%	conAidence	interval	across	HF	concentrations.	By	adding	images,	we	can	tighten	95%	

conAidence	bars	around	all	three	samples	and	differentiate	the	vacancy	concentration	in	the	12.5%	

HF	sample	from	5%	and	9%	HF	samples.	However,	the	error	bars	of	the	5%	and	9.1%	HF	samples	are	

still	overlapping.			
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Supplementary	Figure	5:	XRD	Measurements	

FIG.	S5.	X-ray	diffraction	(XRD)	of	Ti3C2Tx	MXenes	from	the	Ti3AlC2	used	in	this	study.	

(a-b)	The	Ti3C2Tx	MXenes	synthesized	using	5%	HF	demonstrate	partial	etching,	as	shown	

by	the	presence	of	both	MAX	and	MXene	peaks,	while	the	9.1	and	12.5%	HF	show	only	MXene	

after	 etching.	 As	 the	 MXenes	 undergo	 a	 delamination	 process,	 the	 (c)	 Pinal	 fully	 etched	

Ti3C2Tx	MXenes	used	in	this	study	for	imaging	were	separated	from	both	remaining	MAX	and	

impurity	phases.		
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Supplementary	Figures	6-7:	Additional	Modeling	Figures	

	
FIG.	 S6.	 1.5	VTi	 MCMD	 results.	 (a)	WorkAlow	 for	 Monte	 Carlo	 (MC)–Molecular	 Dynamics	 (MD)	

simulations.	 A	 Ti	 vacancy	 concentration	 of	 1.5%	 (from	 5	 and	 9.1%	 HF	 experiments)	 was	 used.	

Candidate	Ti3C2Tx	grids	were	seeded	with	varying	C	vacancy	(0,	1,	5,	10%)	and	surface	termination	

(0,	50,	80%)	levels,	example	shown	in	random	and	Ainal	MC	step	conAigurations	(scale	bars:	10	nm).		

(b)	Vacancy	clustering	in	relaxed	conAigurations	compared	with	experiment	and	random.	Line	plots	

show	the	Total	Variation	Distance	(TVD)	between	clustering	distributions	from	the	12.5%	HF	sample	

and	MC–MD	runs,	with	the	random	TVD	score	(dotted	line)	as	reference.	Yellow	star	indicates	run	

with	the	best	TVD	score	(50%	Tx,	5%	VC).			
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FIG.	S7.	Energy	curve	across	MC-MD	swaps.	The	MC-MD	algorithm	attempts	to	lower	the	overall	

energy	in	the	system	through	random	swaps	of	atoms	and	“ghost”	vacancies.		Here,	we	choose	to	run	

the	MC-MD	until	the	overall	energy	in	the	system	Alattens	out,	around	1000	attempted	swaps.	
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Supplementary	Figures	8-10:	MXene	STEM	Images	

	

FIG.	S8.	5%	HF	MXene	images.	(a)	Stacked	STEM	images	of	MXenes	etched	with	5%	HF.	(b).		Neural	

network-outputted	masks	from	the	defect	Ainder	NN.	(c)	All	located	atoms	(blue)	and	defects	(red).	

(d)	Atoms	and	defects	colored	by	layer.		Scale	bars	1	nm.	

	 	

a b

c d
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FIG.	 S9.	 9.1%	HF	MXene	 images.	 (a)	 Stacked	 STEM	 images	 of	MXenes	 etched	with	 5%	HF.	 (b).		

Neural	network-outputted	masks	from	the	defect	Ainder	NN.	(c)	All	located	atoms	(blue)	and	defects	

(red).	(d)	Atoms	and	defects	colored	by	layer.		Scale	bars	1	nm.	

	 	

a b

c d
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FIG.	S10.	12.5%	HF	MXene	images.	(a)	Stacked	STEM	images	of	MXenes	etched	with	5%	HF.	(b).		

Neural	network-outputted	masks	from	the	defect	Ainder	NN.	(c)	All	located	atoms	(blue)	and	defects	

(red).	(d)	Atoms	and	defects	colored	by	layer.		Scale	bars	1	nm.	

	 	

a b

c d
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