Supplementary File 1

Practical Application of the Dementia Risk Algorithm

We provide an accessible Excel tool (Supplementary Data 1) to allow clinicians and
researchers to estimate individual 10-year dementia risk using four routinely available
variables: age, cognition, glucose, and cardiovascular risk score. The algorithm applies the
regression equation derived from our LASSO model and automatically recalibrates the
baseline intercept when applied to individuals under 70 years of age, where dementia
prevalence is much lower than in the training cohort (aged >70). For those aged 70 and
above, the model is used without recalibration.

To use the tool, users enter predictor values for each individual. The calculator then outputs
the absolute 10-year probability of dementia and a classification (“At risk™ if >0.277; “Lower
risk” otherwise). For younger adults (40—69 years), the tool requires age-band—specific
prevalence estimates from the target population. By default, the tool uses global prevalence
figures, but these can be replaced with national or local estimates. This ensures that predicted
risks remain consistent with epidemiological reality while preserving the relative
contributions of predictors within the model.

The algorithm is designed for transparency and ease of use: prevalence entries are validated,
the intercept adjustment is performed automatically, and outputs are presented in both
probability and binary classification formats. The approach mirrors best practices in
cardiovascular risk prediction, offering a clinically interpretable tool that can be readily

adapted to diverse populations.

Supplementary File 2

R Code

#

MAS Dementia Prediction — Final Reproducible Script
Trains 4 models on 70% of MAS baseline data, validates on 30%,
evaluates with AUC, Youden & FIXED adjusted thresholds, calibration, DCA,

and writes publication-ready outputs to Desktop.

#

--- Packages ---

required packages <- c(
"readx]", "pROC", "caret", "glmnet", "randomForest", "xgboost",
"ResourceSelection", "rmda", "dplyr", "ggplot2", "PRROC"

)

invisible(lapply(required_packages, function(pkg) {
if (!suppressWarnings(require(pkg, character.only = TRUE))) {

install.packages(pkg, dependencies = TRUE)

library(pkg, character.only = TRUE)

h
1)

--- Paths & seed ---
input_path <-"C:/Users/olegm/OneDrive/Desktop/Study4Imputed.xlsx"
output_path <- "C:/Users/olegm/OneDrive/Desktop/"

stopifnot(dir.exists(output_path))

set.seed(123)

--- Load data ---
data <- readxl::read excel(input path)
data§Dementia <- factor(data$Dementia, levels = c(0, 1))

if ("Timetoevent" %in% names(data)) data$Timetoevent <- NULL

--- Train/Test split (stratified 70/30) ---
idx <- caret::createDataPartition(data$Dementia, p = 0.7, list = FALSE)
train_data <- data[idx, , drop = FALSE]

test_data <- data[-idx, , drop = FALSE)]

--- Adjusted (fixed) thresholds used for the paper (override Youden) ---
If you prefer to revert to Youden for any model, set that entry to NA.
fixed thresholds <- list(

Logit = 0.346, # Logistic

Lasso =0.277, #LASSO

RF =0.340, # Random Forest

XGB =0.027 # XGBoost

--- Helpers ---
to_num <- function(x) {
if (is.null(x)) return(numeric(0))

if (is.factor(x)) x <- as.character(x)

if (is.data.frame(x)) x <- x[[1]]
if (is.list(x)) x <- unlist(x, recursive = TRUE, use.names = FALSE)
as.numeric(X)
}
fmt p <- function(p) {
if (is.na(p)) return("NA")
if (p <0.001) return("< 0.001")

formatC(p, digits = 3, format = "f"")

--- Core evaluator: saves ROC, metrics .txt, DCA input, one-row CSV; returns a row ---
evaluate model <- function(model name, probs, actual factor, tag,
output path, force threshold =NA real) {
probs <-to_num(probs)
actual <- factor(actual factor, levels = c(0, 1))

actual num <- as.numeric(as.character(actual))

Safety
stopifnot(length(probs) == length(actual))

if (anyNA(probs) || anyNA(actual)) stop("Missing values in probs/actual.")

ROC/AUC (explicit direction & levels)
roc_obj <- pROC::roc(response = actual, predictor = probs,
levels = ¢("0", "1"), direction = ">")

auc_val <- as.numeric(pROC::auc(roc_obj))

Threshold: Youden by default; override if force threshold provided
youden _thr <- as.numeric(pROC::coords(roc_obj, "best",
best.method = "youden",
ret = "threshold"))

threshold <- ifelse(is.na(force threshold), youden thr, force threshold)

Classify & confusion metrics

predicted <- factor(ifelse(probs > threshold, 1, 0), levels = ¢(0, 1))
cm <- caret::confusionMatrix(predicted, actual, positive ="1")
sensitivity <- as.numeric(cm$byClass["Sensitivity"])

specificity <- as.numeric(cm$byClass["Specificity"])

ppv <- as.numeric(cm$byClass["Pos Pred Value"])

npv <- as.numeric(cm$byClass["Neg Pred Value"])

Calibration (Brier, intercept, slope)

probs_clamped <- pmin(pmax(probs, 1e-6), 1 - 1e-6)

brier <- mean((actual num - probs)"2)

cal_fit <- glm(actual num ~ glogis(probs_clamped), family = binomial)
cal_intercept <- unname(coef(cal_fit)[1])

cal slope <-unname(coef(cal fit)[2])

PR-AUC (useful with skew)
pr_obj <- PRROC::pr.curve(scores.classO = probs[actual num == 1],

scores.classl = probs[actual num == 0],

curve = FALSE)

pr_auc <- unname(pr_obj$auc.integral)

Hosmer—Lemeshow (for logistic-type models only)

hl_stat <- "NA"

if (model name %in% c("Logistic", "LASSO")) {
hoslem <- ResourceSelection::hoslem.test(actual num, probs, g = 10)
hl_stat <- sprintf("X2 = %.2f, p = %s",

as.numeric(hoslem$statistic), fmt_p(hoslem$p.value))

Save metrics .txt (journal-friendly)
writeLines(
c(

paste(model name, "AUC:", round(auc_val, 3)),
paste("PR-AUC:", round(pr_auc, 3)),
paste("Brier:", round(brier, 4)),
paste("Cal. Intercept:", round(cal_intercept, 3)),
paste("Cal. Slope:", round(cal_slope, 3)),
paste("Sensitivity:", round(sensitivity, 3)),
paste("Specificity:", round(specificity, 3)),
paste("PPV:", round(ppv, 3)),
paste("NPV:", round(npv, 3)),
paste("Threshold (used):", round(threshold, 3),

ifelse(is.na(force threshold), "(Youden)", "(Adjusted)")),

paste("Hosmer—Lemeshow:", hl_stat)

)

file.path(output_path, pasteO(tag, " Metrics.txt"))

Save ROC plot
png(file.path(output_path, pasteO(tag, " ROC.png")), width = 800, height = 600)
plot(roc_obj, main = paste("ROC Curve:", model name), col = "blue", lwd = 2)

dev.off()

Save DCA input

write.csv(
data.frame(probs = probs, Dementia = actual num),
file.path(output_path, pasteO(tag, " DCA_Input.csv")),

row.names = FALSE

One-row CSV for comparison table
out_row <- data.frame(

Model = model name,

AUC = auc_val,

PR _AUC =pr_auc,

Brier = brier,

Cal Intercept = cal_intercept,

Cal_Slope = cal_slope,

Sensitivity = sensitivity,
Specificity = specificity,
PPV = ppv,
NPV =npv,
Threshold Used = threshold,
HL Test=hl stat,
stringsAsFactors = FALSE
)
write.csv(out_row,
file.path(output_path, pasteO(tag, " Metrics Row.csv")),
row.names = FALSE)

out row

#

Train models

#

comparison_rows <- list()

1) Logistic regression

logit model <- glm(Dementia ~ ., data = train_data, family = binomial)
logit probs <- predict(logit model, newdata = test data, type = "response")
comparison_rows|[["Logistic"]] <-

evaluate_model("Logistic", logit probs, test data§Dementia, "Logit",

output path, force threshold = fixed thresholds$Logit)

saveRDS(logit model, file.path(output path, "Logit Model.rds"))

#2) LASSO (glmnet) — CV on train, predict test
X train <- model.matrix(Dementia ~ . - 1, data = train_data)
X test <- model.matrix(Dementia ~ . - 1, data = test data)
y_train_num <- as.numeric(as.character(train_data$Dementia))
cv_fit <- glmnet::cv.glmnet(X train, y train num, alpha = 1, family = "binomial")
lasso_probs <- as.numeric(predict(cv_fit, newx = X _test, s = "lambda.min", type =
"response"))
comparison_rows[["LASSO"]] <-
evaluate_ model("LASSQO", lasso_probs, test_data$Dementia, "Lasso",
output_path, force threshold = fixed thresholds$Lasso)

saveRDS(cv_fit, file.path(output_path, "Lasso Model.rds"))

Save non-zero LASSO coefficients (for reporting)

coefs <- coef(cv_fit, s = "lambda.min")

coef df <- data.frame(Feature = rownames(coefs), Coefficient = as.numeric(coefs),
row.names = NULL)

nz_coefs <- subset(coef df, Coefficient !=0)

write.csv(nz_coefs, file.path(output path, "Lasso Coefficients.csv"), row.names = FALSE)

3) Random Forest
set.seed(123)

rf model <- randomForest::randomForest(Dementia ~ ., data = train_data,

ntree = 1000, importance = TRUE)
rf probs <- predict(rf model, newdata = test data, type = "prob")[, 2]
comparison_rows[["Random Forest"]] <-
evaluate_model("Random Forest", rf_probs, test data§Dementia, "RF",
output path, force threshold = fixed thresholds$RF)

saveRDS(rf_model, file.path(output path, "RF Model.rds"))

RF variable importance
png(file.path(output_path, "RF Importance.png"), width = 800, height = 600)
varlmpPlot(rf _model, main = "Variable Importance: Random Forest")

dev.off()

4) XGBoost
y_train_xgb <- as.numeric(as.character(train_data$Dementia))
dtrain <- xgboost::xgb.DMatrix(data = X _train, label =y train_xgb)
dtest <- xgboost::xgb.DMatrix(data = X _test)
set.seed(123)
xgb_model <- xgboost::xgboost(

data = dtrain, objective = "binary:logistic",

eval metric = "auc", nrounds = 300, verbose = 0
)
xgb_probs <- predict(xgb_model, newdata = dtest)
comparison_rows[["XGBoost"]] <-

evaluate_model("XGBoost", xgb_probs, test _data$Dementia, "XGB",

output_path, force threshold = fixed thresholds$XGB)

saveRDS(xgb _model, file.path(output path, "XGB Model.rds"))

#

Comparison table, Calibration, DCA

#

Model comparison CSV
comparison_df <- dplyr::bind_rows(comparison_rows)
write.csv(comparison_df, file.path(output path, "Model Comparison.csv"), row.names =

FALSE)

Calibration plot (Logistic, deciles)
cal_data <- data.frame(

predicted = logit_probs,

actual = as.numeric(as.character(test data§Dementia))
)
gs <- unique(quantile(cal _data$predicted, probs = seq(0, 1, 0.1)))
if (length(qs) <3L) gs <- seq(0, 1, length.out = 11)
cal_data$bin <- cut(cal_data$predicted, breaks = gs, include.lowest = TRUE)
cal_plot data <- cal data %>%

group_by(bin) %>%

summarise(Predicted = mean(predicted), Observed = mean(actual), .groups = "drop")
png(file.path(output path, "Logit Calibration_Plot.png"), width = 800, height = 600)
ggplot(cal plot data, aes(x = Predicted, y = Observed)) +

geom_point(size = 3, color = "blue") +

geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") +
xlim(0, 1) + ylim(0, 1) +
labs(title = "Calibration Plot: Logistic Regression",
x = "Predicted Probability", y = "Observed Proportion") +
theme minimal()

dev.off()

Decision-curve analysis (load per-model DCA inputs saved above)
dca_logit <- read.csv(file.path(output_path, "Logit DCA_Input.csv"))
dca_lasso <- read.csv(file.path(output_path, "Lasso DCA_Input.csv"))
dca rf <-read.csv(file.path(output path, "RF DCA _Input.csv"))

dca xgb <-read.csv(file.path(output path, "XGB_ DCA Input.csv"))

thresh_seq <- seq(0.01, 0.99, by = 0.01)

dc_logit <- rmda::decision_curve(Dementia ~ probs, data = dca_logit, family = binomial,
thresholds = thresh_seq)

dc lasso <- rmda::decision_curve(Dementia ~ probs, data = dca_lasso, family = binomial,
thresholds = thresh_seq)

dc rf <-rmda::decision_curve(Dementia ~ probs, data = dca rf, family = binomial,
thresholds = thresh_seq)

dc xgb <-rmda::decision_curve(Dementia ~ probs, data = dca_xgb, family = binomial,

thresholds = thresh_seq)

Save Net Benefit tables

write.csv(as.data.frame(dc_logit$derived.data), file.path(output_path,
"Logit DCA NetBenefit.csv"), row.names = FALSE)
write.csv(as.data.frame(dc_lasso$derived.data), file.path(output path,
"Lasso DCA NetBenefit.csv"), row.names = FALSE)
write.csv(as.data.frame(dc_rf$derived.data), file.path(output path,
"RF DCA NetBenefit.csv"), row.names = FALSE)
write.csv(as.data.frame(dc_xgbS$derived.data), file.path(output path,

"XGB DCA NetBenefit.csv"), row.names = FALSE)

Combined DCA plot
png(file.path(output_path, "Decision_Curve Comparison.png"), width = 800, height = 600)
rmda::plot_decision curve(
list(dc_logit, dc_lasso, dc_rf, dc_xgb),
curve.names = c("Logistic", "LASSO", "Random Forest", "XGBoost"),
cost.benefit.axis = FALSE,
confidence.intervals = FALSE,
standardize = TRUE,
col = ¢("blue", "green", "orange", "red"),
Ity=1,lwd=2
)
dev.off()

Supplementary File 1

Practical Application of the Dementia Risk Algorithm

We provide an accessible Excel tool (Supplementary Data 1) to allow clinicians and
researchers to estimate individual 10-year dementia risk using four routinely available
variables: age, cognition, glucose, and cardiovascular risk score. The algorithm applies the
regression equation derived from our LASSO model and automatically recalibrates the
baseline intercept when applied to individuals under 70 years of age, where dementia
prevalence is much lower than in the training cohort (aged >70). For those aged 70 and
above, the model is used without recalibration.

To use the tool, users enter predictor values for each individual. The calculator then outputs
the absolute 10-year probability of dementia and a classification (“At risk™ if >0.277; “Lower
risk” otherwise). For younger adults (40—69 years), the tool requires age-band—specific
prevalence estimates from the target population. By default, the tool uses global prevalence
figures, but these can be replaced with national or local estimates. This ensures that predicted
risks remain consistent with epidemiological reality while preserving the relative
contributions of predictors within the model.

The algorithm is designed for transparency and ease of use: prevalence entries are validated,
the intercept adjustment is performed automatically, and outputs are presented in both
probability and binary classification formats. The approach mirrors best practices in
cardiovascular risk prediction, offering a clinically interpretable tool that can be readily

adapted to diverse populations.

