
Supplementary File 1 

Practical Application of the Dementia Risk Algorithm 

We provide an accessible Excel tool (Supplementary Data 1) to allow clinicians and 

researchers to estimate individual 10-year dementia risk using four routinely available 

variables: age, cognition, glucose, and cardiovascular risk score. The algorithm applies the 

regression equation derived from our LASSO model and automatically recalibrates the 

baseline intercept when applied to individuals under 70 years of age, where dementia 

prevalence is much lower than in the training cohort (aged ≥70). For those aged 70 and 

above, the model is used without recalibration. 

To use the tool, users enter predictor values for each individual. The calculator then outputs 

the absolute 10-year probability of dementia and a classification (“At risk” if ≥0.277; “Lower 

risk” otherwise). For younger adults (40–69 years), the tool requires age-band–specific 

prevalence estimates from the target population. By default, the tool uses global prevalence 

figures, but these can be replaced with national or local estimates. This ensures that predicted 

risks remain consistent with epidemiological reality while preserving the relative 

contributions of predictors within the model. 

The algorithm is designed for transparency and ease of use: prevalence entries are validated, 

the intercept adjustment is performed automatically, and outputs are presented in both 

probability and binary classification formats. The approach mirrors best practices in 

cardiovascular risk prediction, offering a clinically interpretable tool that can be readily 

adapted to diverse populations. 

  



Supplementary File 2 

R Code 

# =========================== 

# MAS Dementia Prediction — Final Reproducible Script 

# Trains 4 models on 70% of MAS baseline data, validates on 30%, 

# evaluates with AUC, Youden & FIXED adjusted thresholds, calibration, DCA, 

# and writes publication-ready outputs to Desktop. 

# =========================== 

 

# --- Packages --- 

required_packages <- c( 

  "readxl", "pROC", "caret", "glmnet", "randomForest", "xgboost", 

  "ResourceSelection", "rmda", "dplyr", "ggplot2", "PRROC" 

) 

invisible(lapply(required_packages, function(pkg) { 

  if (!suppressWarnings(require(pkg, character.only = TRUE))) { 

    install.packages(pkg, dependencies = TRUE) 

    library(pkg, character.only = TRUE) 

  } 

})) 

 

# --- Paths & seed --- 

input_path  <- "C:/Users/olegm/OneDrive/Desktop/Study4Imputed.xlsx" 

output_path <- "C:/Users/olegm/OneDrive/Desktop/" 

stopifnot(dir.exists(output_path)) 



set.seed(123) 

 

# --- Load data --- 

data <- readxl::read_excel(input_path) 

data$Dementia <- factor(data$Dementia, levels = c(0, 1)) 

if ("Timetoevent" %in% names(data)) data$Timetoevent <- NULL 

 

# --- Train/Test split (stratified 70/30) --- 

idx <- caret::createDataPartition(data$Dementia, p = 0.7, list = FALSE) 

train_data <- data[idx, , drop = FALSE] 

test_data  <- data[-idx, , drop = FALSE] 

 

# --- Adjusted (fixed) thresholds used for the paper (override Youden) --- 

# If you prefer to revert to Youden for any model, set that entry to NA. 

fixed_thresholds <- list( 

  Logit = 0.346,   # Logistic 

  Lasso = 0.277,   # LASSO 

  RF    = 0.340,   # Random Forest 

  XGB   = 0.027    # XGBoost 

) 

 

# --- Helpers --- 

to_num <- function(x) { 

  if (is.null(x)) return(numeric(0)) 

  if (is.factor(x)) x <- as.character(x) 



  if (is.data.frame(x)) x <- x[[1]] 

  if (is.list(x)) x <- unlist(x, recursive = TRUE, use.names = FALSE) 

  as.numeric(x) 

} 

fmt_p <- function(p) { 

  if (is.na(p)) return("NA") 

  if (p < 0.001) return("< 0.001") 

  formatC(p, digits = 3, format = "f") 

} 

 

# --- Core evaluator: saves ROC, metrics .txt, DCA input, one-row CSV; returns a row --- 

evaluate_model <- function(model_name, probs, actual_factor, tag, 

                           output_path, force_threshold = NA_real_) { 

  probs  <- to_num(probs) 

  actual <- factor(actual_factor, levels = c(0, 1)) 

  actual_num <- as.numeric(as.character(actual)) 

 

  # Safety 

  stopifnot(length(probs) == length(actual)) 

  if (anyNA(probs) || anyNA(actual)) stop("Missing values in probs/actual.") 

 

  # ROC/AUC (explicit direction & levels) 

  roc_obj <- pROC::roc(response = actual, predictor = probs, 

                       levels = c("0", "1"), direction = ">") 

  auc_val <- as.numeric(pROC::auc(roc_obj)) 



 

  # Threshold: Youden by default; override if force_threshold provided 

  youden_thr <- as.numeric(pROC::coords(roc_obj, "best", 

                                        best.method = "youden", 

                                        ret = "threshold")) 

  threshold <- ifelse(is.na(force_threshold), youden_thr, force_threshold) 

 

  # Classify & confusion metrics 

  predicted <- factor(ifelse(probs > threshold, 1, 0), levels = c(0, 1)) 

  cm <- caret::confusionMatrix(predicted, actual, positive = "1") 

  sensitivity <- as.numeric(cm$byClass["Sensitivity"]) 

  specificity <- as.numeric(cm$byClass["Specificity"]) 

  ppv <- as.numeric(cm$byClass["Pos Pred Value"]) 

  npv <- as.numeric(cm$byClass["Neg Pred Value"]) 

 

  # Calibration (Brier, intercept, slope) 

  probs_clamped <- pmin(pmax(probs, 1e-6), 1 - 1e-6) 

  brier <- mean((actual_num - probs)^2) 

  cal_fit <- glm(actual_num ~ qlogis(probs_clamped), family = binomial) 

  cal_intercept <- unname(coef(cal_fit)[1]) 

  cal_slope     <- unname(coef(cal_fit)[2]) 

 

  # PR-AUC (useful with skew) 

  pr_obj <- PRROC::pr.curve(scores.class0 = probs[actual_num == 1], 

                            scores.class1 = probs[actual_num == 0], 



                            curve = FALSE) 

  pr_auc <- unname(pr_obj$auc.integral) 

 

  # Hosmer–Lemeshow (for logistic-type models only) 

  hl_stat <- "NA" 

  if (model_name %in% c("Logistic", "LASSO")) { 

    hoslem <- ResourceSelection::hoslem.test(actual_num, probs, g = 10) 

    hl_stat <- sprintf("X2 = %.2f, p = %s", 

                       as.numeric(hoslem$statistic), fmt_p(hoslem$p.value)) 

  } 

 

  # Save metrics .txt (journal-friendly) 

  writeLines( 

    c( 

      paste(model_name, "AUC:", round(auc_val, 3)), 

      paste("PR-AUC:", round(pr_auc, 3)), 

      paste("Brier:", round(brier, 4)), 

      paste("Cal. Intercept:", round(cal_intercept, 3)), 

      paste("Cal. Slope:", round(cal_slope, 3)), 

      paste("Sensitivity:", round(sensitivity, 3)), 

      paste("Specificity:", round(specificity, 3)), 

      paste("PPV:", round(ppv, 3)), 

      paste("NPV:", round(npv, 3)), 

      paste("Threshold (used):", round(threshold, 3), 

            ifelse(is.na(force_threshold), "(Youden)", "(Adjusted)")), 



      paste("Hosmer–Lemeshow:", hl_stat) 

    ), 

    file.path(output_path, paste0(tag, "_Metrics.txt")) 

  ) 

 

  # Save ROC plot 

  png(file.path(output_path, paste0(tag, "_ROC.png")), width = 800, height = 600) 

  plot(roc_obj, main = paste("ROC Curve:", model_name), col = "blue", lwd = 2) 

  dev.off() 

 

  # Save DCA input 

  write.csv( 

    data.frame(probs = probs, Dementia = actual_num), 

    file.path(output_path, paste0(tag, "_DCA_Input.csv")), 

    row.names = FALSE 

  ) 

 

  # One-row CSV for comparison table 

  out_row <- data.frame( 

    Model = model_name, 

    AUC = auc_val, 

    PR_AUC = pr_auc, 

    Brier = brier, 

    Cal_Intercept = cal_intercept, 

    Cal_Slope = cal_slope, 



    Sensitivity = sensitivity, 

    Specificity = specificity, 

    PPV = ppv, 

    NPV = npv, 

    Threshold_Used = threshold, 

    HL_Test = hl_stat, 

    stringsAsFactors = FALSE 

  ) 

  write.csv(out_row, 

            file.path(output_path, paste0(tag, "_Metrics_Row.csv")), 

            row.names = FALSE) 

  out_row 

} 

 

# =========================== 

# Train models 

# =========================== 

 

comparison_rows <- list() 

 

# 1) Logistic regression 

logit_model <- glm(Dementia ~ ., data = train_data, family = binomial) 

logit_probs <- predict(logit_model, newdata = test_data, type = "response") 

comparison_rows[["Logistic"]] <- 

  evaluate_model("Logistic", logit_probs, test_data$Dementia, "Logit", 



                 output_path, force_threshold = fixed_thresholds$Logit) 

saveRDS(logit_model, file.path(output_path, "Logit_Model.rds")) 

 

# 2) LASSO (glmnet) — CV on train, predict test 

X_train <- model.matrix(Dementia ~ . - 1, data = train_data) 

X_test  <- model.matrix(Dementia ~ . - 1, data = test_data) 

y_train_num <- as.numeric(as.character(train_data$Dementia)) 

cv_fit <- glmnet::cv.glmnet(X_train, y_train_num, alpha = 1, family = "binomial") 

lasso_probs <- as.numeric(predict(cv_fit, newx = X_test, s = "lambda.min", type = 

"response")) 

comparison_rows[["LASSO"]] <- 

  evaluate_model("LASSO", lasso_probs, test_data$Dementia, "Lasso", 

                 output_path, force_threshold = fixed_thresholds$Lasso) 

saveRDS(cv_fit, file.path(output_path, "Lasso_Model.rds")) 

 

# Save non-zero LASSO coefficients (for reporting) 

coefs <- coef(cv_fit, s = "lambda.min") 

coef_df <- data.frame(Feature = rownames(coefs), Coefficient = as.numeric(coefs), 

row.names = NULL) 

nz_coefs <- subset(coef_df, Coefficient != 0) 

write.csv(nz_coefs, file.path(output_path, "Lasso_Coefficients.csv"), row.names = FALSE) 

 

# 3) Random Forest 

set.seed(123) 

rf_model <- randomForest::randomForest(Dementia ~ ., data = train_data, 



                                       ntree = 1000, importance = TRUE) 

rf_probs <- predict(rf_model, newdata = test_data, type = "prob")[, 2] 

comparison_rows[["Random Forest"]] <- 

  evaluate_model("Random Forest", rf_probs, test_data$Dementia, "RF", 

                 output_path, force_threshold = fixed_thresholds$RF) 

saveRDS(rf_model, file.path(output_path, "RF_Model.rds")) 

 

# RF variable importance 

png(file.path(output_path, "RF_Importance.png"), width = 800, height = 600) 

varImpPlot(rf_model, main = "Variable Importance: Random Forest") 

dev.off() 

 

# 4) XGBoost 

y_train_xgb <- as.numeric(as.character(train_data$Dementia)) 

dtrain <- xgboost::xgb.DMatrix(data = X_train, label = y_train_xgb) 

dtest  <- xgboost::xgb.DMatrix(data = X_test) 

set.seed(123) 

xgb_model <- xgboost::xgboost( 

  data = dtrain, objective = "binary:logistic", 

  eval_metric = "auc", nrounds = 300, verbose = 0 

) 

xgb_probs <- predict(xgb_model, newdata = dtest) 

comparison_rows[["XGBoost"]] <- 

  evaluate_model("XGBoost", xgb_probs, test_data$Dementia, "XGB", 

                 output_path, force_threshold = fixed_thresholds$XGB) 



saveRDS(xgb_model, file.path(output_path, "XGB_Model.rds")) 

 

# =========================== 

# Comparison table, Calibration, DCA 

# =========================== 

 

# Model comparison CSV 

comparison_df <- dplyr::bind_rows(comparison_rows) 

write.csv(comparison_df, file.path(output_path, "Model_Comparison.csv"), row.names = 

FALSE) 

 

# Calibration plot (Logistic, deciles) 

cal_data <- data.frame( 

  predicted = logit_probs, 

  actual = as.numeric(as.character(test_data$Dementia)) 

) 

qs <- unique(quantile(cal_data$predicted, probs = seq(0, 1, 0.1))) 

if (length(qs) < 3L) qs <- seq(0, 1, length.out = 11) 

cal_data$bin <- cut(cal_data$predicted, breaks = qs, include.lowest = TRUE) 

cal_plot_data <- cal_data %>% 

  group_by(bin) %>% 

  summarise(Predicted = mean(predicted), Observed = mean(actual), .groups = "drop") 

png(file.path(output_path, "Logit_Calibration_Plot.png"), width = 800, height = 600) 

ggplot(cal_plot_data, aes(x = Predicted, y = Observed)) + 

  geom_point(size = 3, color = "blue") + 



  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") + 

  xlim(0, 1) + ylim(0, 1) + 

  labs(title = "Calibration Plot: Logistic Regression", 

       x = "Predicted Probability", y = "Observed Proportion") + 

  theme_minimal() 

dev.off() 

 

# Decision-curve analysis (load per-model DCA inputs saved above) 

dca_logit <- read.csv(file.path(output_path, "Logit_DCA_Input.csv")) 

dca_lasso <- read.csv(file.path(output_path, "Lasso_DCA_Input.csv")) 

dca_rf    <- read.csv(file.path(output_path, "RF_DCA_Input.csv")) 

dca_xgb   <- read.csv(file.path(output_path, "XGB_DCA_Input.csv")) 

 

thresh_seq <- seq(0.01, 0.99, by = 0.01) 

dc_logit <- rmda::decision_curve(Dementia ~ probs, data = dca_logit, family = binomial, 

thresholds = thresh_seq) 

dc_lasso <- rmda::decision_curve(Dementia ~ probs, data = dca_lasso, family = binomial, 

thresholds = thresh_seq) 

dc_rf    <- rmda::decision_curve(Dementia ~ probs, data = dca_rf,    family = binomial, 

thresholds = thresh_seq) 

dc_xgb   <- rmda::decision_curve(Dementia ~ probs, data = dca_xgb,   family = binomial, 

thresholds = thresh_seq) 

 

# Save Net Benefit tables 



write.csv(as.data.frame(dc_logit$derived.data), file.path(output_path, 

"Logit_DCA_NetBenefit.csv"), row.names = FALSE) 

write.csv(as.data.frame(dc_lasso$derived.data), file.path(output_path, 

"Lasso_DCA_NetBenefit.csv"), row.names = FALSE) 

write.csv(as.data.frame(dc_rf$derived.data),    file.path(output_path, 

"RF_DCA_NetBenefit.csv"),    row.names = FALSE) 

write.csv(as.data.frame(dc_xgb$derived.data),   file.path(output_path, 

"XGB_DCA_NetBenefit.csv"),   row.names = FALSE) 

 

# Combined DCA plot 

png(file.path(output_path, "Decision_Curve_Comparison.png"), width = 800, height = 600) 

rmda::plot_decision_curve( 

  list(dc_logit, dc_lasso, dc_rf, dc_xgb), 

  curve.names = c("Logistic", "LASSO", "Random Forest", "XGBoost"), 

  cost.benefit.axis = FALSE, 

  confidence.intervals = FALSE, 

  standardize = TRUE, 

  col = c("blue", "green", "orange", "red"), 

  lty = 1, lwd = 2 

) 

dev.off() 

 

  



Supplementary File 1 

Practical Application of the Dementia Risk Algorithm 

We provide an accessible Excel tool (Supplementary Data 1) to allow clinicians and 

researchers to estimate individual 10-year dementia risk using four routinely available 

variables: age, cognition, glucose, and cardiovascular risk score. The algorithm applies the 

regression equation derived from our LASSO model and automatically recalibrates the 

baseline intercept when applied to individuals under 70 years of age, where dementia 

prevalence is much lower than in the training cohort (aged ≥70). For those aged 70 and 

above, the model is used without recalibration. 

To use the tool, users enter predictor values for each individual. The calculator then outputs 

the absolute 10-year probability of dementia and a classification (“At risk” if ≥0.277; “Lower 

risk” otherwise). For younger adults (40–69 years), the tool requires age-band–specific 

prevalence estimates from the target population. By default, the tool uses global prevalence 

figures, but these can be replaced with national or local estimates. This ensures that predicted 

risks remain consistent with epidemiological reality while preserving the relative 

contributions of predictors within the model. 

The algorithm is designed for transparency and ease of use: prevalence entries are validated, 

the intercept adjustment is performed automatically, and outputs are presented in both 

probability and binary classification formats. The approach mirrors best practices in 

cardiovascular risk prediction, offering a clinically interpretable tool that can be readily 

adapted to diverse populations. 

 

 

 


