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Here, we provide details of the derivation of the Lagrangian for the continuous model in the
exchange approximation.

I. LAGRANGIAN AND RAYLEIGH DISSIPATIVE FUNCTION FOR THE DOMAIN WALL IN THE
HELIX-SHAPED GEOMETRY

In the limit case of small magnetization |m| ≪ 1, dynamics of the Néel vector can be described within the Lagrange
formalism [1, 2]. The Lagrangian L and Rayleigh dissipative function R are

L =
M2

s

γ20Λ

∞∫
−∞

[∂tn+ n× γ0H]
2
ds− E, R =

M2
s

γ20Λ

η

ζ

∞∫
−∞

(∂tn)
2
ds,

E =

∞∫
−∞

{
A (∂sn)

2
+K

[
1− (n · et)2

]}
ds,

(S.1)

where γ0 is the gyromagnetic ratio, η is a damping coefficient, Λ is the uniform exchange constant, A is the exchange
stiffness constant, K is the anisotropy constant. The model (S.1) is valid for a strong exchange field, i.e. Ha/Hx =
K/Λ = ζ2 ≪ 1.

A. Energy in the rotated ψ-frame

First, we consider a curvilinear AFM wire, which can be modelled by the 3D curved γ ⊂ R3. The easy-tangential
anisotropy is spatially dependent. To describe the Néel vector distribution in such systems, it is convenient to use a
curvilinear Frenet–Serret (TNB) parametrization of the curve γ:

et = ∂sγ, en =
∂set
|∂set|

, eb = et × en

with et being the tangent, en being the normal, and eb being the binormal to γ and s being the arc length. In this
case, we can use the TNB parametrization of the Néel vector [3],

n =
(
nt, nn, nb

)T
(S.2)

with components nα. Here and below Greek indices α, β numerate curvilinear coordinates (TNB-coordinates) and
curvilinear components of vector fields. The energy E in (S.1) can be presented as follows [4]

E =
√
AK

∫
E dξ, E = Ex + Ea,

Ex = E 0
x + E d

x + E a
x , E 0

x = n′αn
′
α,

E d
x = F̂αβ

(
nαn

′
β − n′

αnβ
)
, E a

x = K̂αβnαnβ ,

Ea = −n2t,

(S.3)
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where the Einstein notation is used for summation. Here and below, the prime denotes the derivative with respect to
the dimensionless coordinate ξ = s/ℓ with ℓ =

√
A/K being a magnetic length. The first term in the exchange energy

E 0
x describes the common inhomogeneous exchange interaction, which has formally the same form as for the straight

system. The second term E d
x in the exchange energy functional is a geometry-induced effective Dzyaloshinskii-Moriya

interaction (DMI), which is linear with respect to curvature and torsion. The term E a
x describes an effective anisotropy

interaction, where the components of the tensor K̂αβ = F̂αν F̂βν are bilinear with respect to the curvature and the

torsion. Explicit form of F̂ and K̂ is written as [4]

F̂ =

 0 κ 0
−κ 0 σ
0 −σ 0

 , K̂ =

 κ2 0 −κσ
0 κ2 + σ2 0

−κσ 0 σ2

 .
Here κ = κℓ and σ = τℓ are the dimensionless curvature and torsion, respectively, with κ being the curvature and τ
being the torsion.

The energy of effective anisotropy

E a
eff = Ean + E a

ex = K̂eff
αβnαnβ , K̂eff

αβ = K̂αβ − δα,1δβ,1

has a form typical for biaxial systems. The tensor of effective anisotropy coefficientsKeff
αβ has non-diagonal components.

This means that the homogeneous distribution of the Néel vector is not oriented along the TNB basis. One can easily
diagonalize it, by using a unitary transformation (rotation in a local rectifying plane) of the vector n (S.2)

n = Û ñ, ñ = Û−1n, ñ =
(
n1, n2, n3

)T
, Û =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 .
By choosing the rotation angle ψ as follows

ψ = arctan
2σκ

1 + σ2 − κ2 + K1
, K1 =

√
(1− κ2 + σ2)2 + 4κ2σ2, (S.4)

one can reduce the anisotropy energy E a
eff to the form

E a
eff = −K1n

2
1 + K2n

2
2, K2 =

1 + κ2 + σ2 − K1

2
. (S.5)

Here, the coefficient K1 characterizes the strength of the effective easy-axis anisotropy while K2 gives the strength of
the effective easy-surface anisotropy. The direction of effective easy axis is determined by e1 and the hard axis by e2:

e1 = et cosψ + eb sinψ, e3 = −et sinψ + eb cosψ.

One has to note that for any finite ψ the effective anisotropy direction e1 deviates from the magnetic anisotropy
direction et. Note that such a deviation vanishes for wires with zero torsion (σ = 0).

In the same time, the curvature and torsion show up in the effective DMI, see Eq. (S.3). In the new rotated frame
of reference (ψ-frame) the effective DMI energy reads(S.6)

E d
ex = D1 (n2n

′
3 − n3n

′
2) + D2 (n1n

′
2 − n2n

′
1) ,

D1 = 2σ cosψ + 2κ sinψ = 2σ
K0 + κ2√
K 2

0 + σ2κ2
,

D2 = 2κ cosψ − 2σ sinψ = 2κ
K0 − σ2√
K 2

0 + σ2κ2
,

(S.6)

where K0 =
(
1 + σ2 − κ2 + K1

)
/2.

Finally we get the energy in the following form of Eq. (2) of the main text

E = n′
αn

′
α − K1n

2
1 + K2n

2
2 + D1 (n2n

′
3 − n3n

′
2) + D2 (n1n

′
2 − n2n

′
1) . (2)
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B. Lagrangian and Rayleigh dissipative function in the rotated ψ-frame

We consider domain wall dynamics in helix-shaped geometry driven by the rotating magnetic field in the xy-plane
H = H (x̂ cosωt+ ŷ sinωt) with frequency ω and field amplitude H. In the ψ-frame, this field can be presented as a
sum of three fields that rotate in different

H =H (h23 + h13 + h12) ,

h23 =− cos ξ
√

κ2 + σ2

[
e2 cosωt+ e3

κ sinψ + σ cosψ√
σ2 + κ2

sinωt

]
,

h12 =− sin ξ
√

κ2 + σ2

[
e1

κ cosψ − σ sinψ√
σ2 + κ2

cosωt+ e2 sinωt

]
,

h13 =e1
κ cosψ − σ sinψ√

σ2 + κ2
cos ξ

√
κ2 + σ2 cosωt+ e3

κ sinψ + σ cosψ√
σ2 + κ2

sin ξ
√

κ2 + σ2 sinωt.

(S.7)

Substituting the field (S.7) into the Lagrangian (S.1) one can write the Lagrangian in the form

L =
√
AK

∞∫
−∞

{
ṅ2 − 2h ṅ · [(h23 + h13 + h12)× n]− h2 [n · (h23 + h13 + h12)]

2
}
dξ − E, (S.8)

where overdot indicates the derivative with respect to dimensionles time t = ω0t with ω0 = γ0
√
ΛK/Ms being the

frequency of uniform AFM resonance, h = H/Hsf in dimensionless magnetic field amplitude with Hsf =
√
ΛK/Ms

being spin-flop field.
To get an effective Lagrangian and Rayleigh dissipative function for the domain wall, we substitute the domain wall

ansatz (3) [from the main text] into the (S.8) and integrate over the arc length coordinate ξ. The effective Lagrangian,

normalized by
√
AK, reads Ldw =

∑2
ν=0 h

νLν − Edw, where

Edw =
1 + a2∆2

∆
+ K1∆+

K2∆

2

[
1+aπ∆

cos 2Φ

sinh(aπ∆)

]
+ aD1∆+ pD2

π

2

(
1 + a2∆2

) cosΦ

cosh(aπ∆/2)
,

L0 =

∫ +∞

−∞
(ṅdw)

2
dξ, L1 = 2

∫ +∞

−∞
ṅdw · [ndw × (h23 + h13 + h12)] dξ, L2 = −

∫ +∞

−∞
[ndw · (h23 + h13 + h12)]

2
dξ,

(S.9)

where ndw is Néel vector distribution for the ansatz (3) [from the main text].
In the same way, one can obtain an effective Rayleigh dissipative function

Rdw = η̃L0 = η̃

∫ +∞

−∞
(ṅdw)

2
dξ = 2η̃∆

(
1 + a2∆2

∆2
q̇2 − 2aq̇Φ̇ + Φ̇2

)
, (S.10)

where η̃ = η/ζ is normalized damping.
The explicit form of the Lagrangian parts Li can be found in Supplemental files L0 term.m, L1 term.m, and

L2 term.m.

II. RIGID MOTION MODE

The effective equations of motion for the domain wall are the Euler–Lagrange–Rayleigh equations

∂Ldw

∂Xi
− d

dt

∂Ldw

∂Ẋi

=
∂Rdw

∂Ẋi

, Xi = {q, Φ}. (5)

Substituting Lagrangian Ldw and Rayleigh dissipative function Rdw into the (5) results in set (7) of main text

M̂ ·
[
q̈

Φ̈

]
+
(
R̂+ η̃M̂

)
·
[
q̇

Φ̇

]
= F , F =

[
Fq

FΦ

]
,

M̂ = 4∆

[
− 1+a2∆2

∆2 a
a −1

]
, R̂ =

[
Rq RqΦ

−RqΦ 0

]
,

(7)
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where Ri and Fi are functions of domain wall position, phase, geometrical parameters, and external field parameters.
Here, we are interested in the description of rigid motion mode. So, we consider the curvature and torsion as small

parameters within a low-frequency regime with q̇ = v and Φ = Φ0 + φ, where φ ≪ 1 is a small deviation from the
equilibrium state. We expand in series set (7), and save terms which are quadratic with respect to small parameters
(i.e. κ, σ, φ, and ϖ) and integrate it with respect to time t ∈ [0, 2π/ϖ]. As a result, we obtain equations of motion
in the form

−η̃v
(
1 + σ2

)
+ h2

[
σφ+ v

π

ϖ

(
2κ2 + σ2

)]
+

h√
κ2 + σ2

[
σϖ

(
κ + pC

π

2

)
− πh

(
2κ2 + σ2

)]
= 0,

η̃vσ − κφpC
π

2
+h

[
vκ − vpC

π

2

(
3− 2π2

3
+ κ2 8− π2

8

)
− κϖ√

κ2 + σ2

(
1− κpC

π

2

)]
+h2

(
1− κpC

π

2

)(
πσ√

κ2 + σ2
− vσ

π

ϖ
− φ

)
= 0,

(S.11)

where C = cosΦ0. The solution of set (S.11) results in

v = v0 + δv, v0 = ϖ/
√
κ2 + σ2, δv ≈ η̃ϖ2

[πh2 (2κ2 + σ)− η̃ϖ]
√
κ2 + σ2

,

φ = φ0 + δφ, φ0 = 2hϖκ
(
π2 − 1

)√
κ2 + σ2

(2κ2 + σ2)
2 , δφ ≈ −pC 2η̃2ω2

π2h2κ
√
κ2 + σ2 (2κ2 + σ2)

2 .

(S.12)

III. DW WIDTH AND SLOPE DURING FIELD-INDUCED MOTION

DW driven by rotating magnetic field experience width and slope alterations from the equilibrium values (10)
defined in main text. Amplitudes of deviations from ∆0, a0 in the rigid motion mode are curvature-dependent, see
Fig S1(a). In the simulations we got deviation up to 12% for DW slope and up to 3% for DW width. In the rigid
motion mode, ∆ and a reach their new equilibrium values during motion and afterwards are constant in time, see
Fig. S1(b). While in oscillating motion mode their values oscillate near the equilibrium values, see Fig. S1(c).

FIG. S1. (a) Average DW slope and width as functions of helix curvature for σ = 0.1 , ϖ = 0.001, h = 0.2. (b) and (c) are
time evolution of the DW slope and width for rigid (ϖ = 0.004) and oscillating (ϖ = 0.008) motion modes, respectively, for
the helix with κ = 0.12, σ = 0.1 and external magnetic field amplitude h = 0.2. All symbols are extracted from spin-lattice
simulations; lines in (b) and (c) are guides to the eye.
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