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Here, we provide details of the derivation of the Lagrangian for the continuous model in the
exchange approximation.

I. LAGRANGIAN AND RAYLEIGH DISSIPATIVE FUNCTION FOR THE DOMAIN WALL IN THE
HELIX-SHAPED GEOMETRY

In the limit case of small magnetization |m| < 1, dynamics of the Néel vector can be described within the Lagrange
formalism [1, 2]. The Lagrangian L and Rayleigh dissipative function R are
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where 7y is the gyromagnetic ratio, 7 is a damping coefficient, A is the uniform exchange constant, A is the exchange
stiffness constant, K is the anisotropy constant. The model (S.1) is valid for a strong exchange field, i.e. H,/Hx =
K/A= < 1.

A. Energy in the rotated y-frame

First, we consider a curvilinear AFM wire, which can be modelled by the 3D curved v C R3. The easy-tangential
anisotropy is spatially dependent. To describe the Néel vector distribution in such systems, it is convenient to use a
curvilinear Frenet—Serret (TNB) parametrization of the curve ~:
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with e; being the tangent, ey being the normal, and ey being the binormal to v and s being the arc length. In this
case, we can use the TNB parametrization of the Néel vector [3],

n= (nT,nN,nB)T (S.2)

with components n,. Here and below Greek indices «, 8 numerate curvilinear coordinates (TNB-coordinates) and
curvilinear components of vector fields. The energy F in (S.1) can be presented as follows [4]
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where the Einstein notation is used for summation. Here and below, the prime denotes the derivative with respect to
the dimensionless coordinate & = s/¢ with £ = y/A/K being a magnetic length. The first term in the exchange energy
&Y describes the common inhomogeneous exchange interaction, which has formally the same form as for the straight
system. The second term & in the exchange energy functional is a geometry-induced effective Dzyaloshinskii-Moriya
interaction (DMI), which is hnear with respect to curvature and torsion. The term &2 describes an effective anisotropy
interaction, where the components of the tensor Kag = Fa,,IE‘g,, are bilinear with respect to the curvature and the

torsion. Explicit form of F and K is written as [4]
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Here » = k¢ and o = 7¢ are the dimensionless curvature and torsion, respectively, with x being the curvature and 7
being the torsion.
The energy of effective anisotropy
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has a form typical for biaxial systems. The tensor of effective anisotropy coefficients K% has non-diagonal components.

This means that the homogeneous distribution of the Néel vector is not oriented along the TNB basis. One can easily
diagonalize it, by using a unitary transformation (rotation in a local rectifying plane) of the vector n (S.2)
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By choosing the rotation angle 1 as follows
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one can reduce the anisotropy energy &% to the form
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Here, the coefficient .#] characterizes the strength of the effective easy-axis anisotropy while %5 gives the strength of
the effective easy-surface anisotropy. The direction of effective easy axis is determined by e; and the hard axis by es:

e =epcosy +egsiny, ez = —ersiny + ez cos.

One has to note that for any finite ¥ the effective anisotropy direction e; deviates from the magnetic anisotropy
direction e;. Note that such a deviation vanishes for wires with zero torsion (o = 0).

In the same time, the curvature and torsion show up in the effective DMI, see Eq. (S.3). In the new rotated frame
of reference (i-frame) the effective DMI energy reads(S.6)
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where £ = (1+ 02 — 32 +.87) /2.
Finally we get the energy in the following form of Eq. (2) of the main text
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B. Lagrangian and Rayleigh dissipative function in the rotated y-frame

We consider domain wall dynamics in helix-shaped geometry driven by the rotating magnetic field in the zy-plane
H = H (& coswt + g sinwt) with frequency w and field amplitude H. In the ¢-frame, this field can be presented as a
sum of three fields that rotate in different
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Substituting the field (S.7) into the Lagrangian (S.1) one can write the Lagrangian in the form

L=VAK / {n2 —2h 7+ [(hog + b1z + hi2) X n] — h? [n - (hoz + hig + h12)]2} d¢ - E, (S.8)

where overdot indicates the derivative with respect to dimensionles time ¢ = wot with wy = 79V AK /M, being the
frequency of uniform AFM resonance, h = H/Hg in dimensionless magnetic field amplitude with Hy = vVAK /M,
being spin-flop field.

To get an effective Lagrangian and Rayleigh dissipative function for the domain wall, we substitute the domain wall
ansatz (3) [from the main text] into the (S.8) and integrate over the arc length coordinate . The effective Lagrangian,
normalized by VAK, reads LPY = S2_ h*.%, — €”V, where
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where n”V is Néel vector distribution for the ansatz (3) [from the main text].
In the same way, one can obtain an effective Rayleigh dissipative function
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where 7 = /¢ is normalized damping.
The explicit form of the Lagrangian parts £; can be found in Supplemental files LO_term.m, L1 term.m, and
L2_term.m.

II. RIGID MOTION MODE

The effective equations of motion for the domain wall are the Euler-Lagrange—Rayleigh equations
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Substituting Lagrangian £V and Rayleigh dissipative function RV into the (5) results in set (7) of main text
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where R; and F; are functions of domain wall position, phase, geometrical parameters, and external field parameters.

Here, we are interested in the description of rigid motion mode. So, we consider the curvature and torsion as small
parameters within a low-frequency regime with ¢ = v and ® = &y + ¢, where ¢ < 1 is a small deviation from the
equilibrium state. We expand in series set (7), and save terms which are quadratic with respect to small parameters
(i.e. 3, 0, ¢, and @) and integrate it with respect to time t € [0,27/w]. As a result, we obtain equations of motion
in the form
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where @ = cos ®g. The solution of set (S.11) results in
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III. DW WIDTH AND SLOPE DURING FIELD-INDUCED MOTION

DW driven by rotating magnetic field experience width and slope alterations from the equilibrium values (10)
defined in main text. Amplitudes of deviations from Ag, ag in the rigid motion mode are curvature-dependent, see
Fig S1(a). In the simulations we got deviation up to 12% for DW slope and up to 3% for DW width. In the rigid
motion mode, A and a reach their new equilibrium values during motion and afterwards are constant in time, see
Fig. S1(b). While in oscillating motion mode their values oscillate near the equilibrium values, see Fig. S1(c).
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FIG. S1. (a) Average DW slope and width as functions of helix curvature for 0 = 0.1 , @ = 0.001, h = 0.2. (b) and (c) are
time evolution of the DW slope and width for rigid (tw = 0.004) and oscillating (cw = 0.008) motion modes, respectively, for
the helix with s = 0.12, 0 = 0.1 and external magnetic field amplitude A = 0.2. All symbols are extracted from spin-lattice
simulations; lines in (b) and (c) are guides to the eye.
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