
Supplementary Information: A unified physics-informed

generative operator framework for general inverse problems

Gang Bao1 and Yaohua Zang2*

1Center for Interdisciplinary Applied Mathematics, Zhejiang University, Yuhangtang
Road 886, Hang Zhou, 310058, China.

2*School of Engineering and Design, Technical University of Munich,
Boltzmannstraße 15, Garching, 85748, Germany.

*Corresponding author(s). E-mail(s): yaohua.zang@tum.de;
Contributing authors: baog@zju.edu.cn;

Contents

1 Supplementary Note 1: The MultiONet Architecture 3

2 Supplementary Note 2: Normalizing Flow for Initialization 3

3 Supplementary Note 3: Training and Inversion Algorithms 4

4 Supplementary Note 4: Baseline Method Details 5

5 Supplementary Methods 6
5.1 General Implementation Details . 6
5.2 Continuous Coefficient Recovery with Solution-based Measurements 6

5.2.1 Problem Setup . 6
5.2.2 Model Setup . 7
5.2.3 Latent-space Optimization Details . 8

5.3 Piecewise-Constant Coefficient Recovery with Solution-based Measurements 8
5.3.1 Problem Setup . 8
5.3.2 Model Setup . 9
5.3.3 Latent-space Optimization Details . 10

5.4 The EIT Problem with Operator-based Measurements 10
5.4.1 Problem Setup . 10

1

5.4.2 Model Setup . 11
5.4.3 Latent-space Optimization Details . 11

6 Supplementary Tables 12
6.1 Continuous Coefficient Recovery with Solution-based Measurements 12

6.1.1 Table 1: In-distribution case . 12
6.1.2 Table 2: Out-of-distribution case . 12

6.2 Piecewise-Constant Coefficient Recovery with Solution-based Measuremen 12
6.2.1 Table 3: In-distribution case . 12
6.2.2 Table 4: Out-of-distribution case . 13

6.3 The EIT Problem with Operator-based Measurements 13
6.4 Table 5: the EIT problem . 13

7 Supplementary Figures 14
7.1 Figure 1: The MultiONet architecture . 14
7.2 Figure 2: Illustration of operator-based measurements in the EIT problem 15

2

1 Supplementary Note 1: The MultiONet Architecture

The MultiONet architecture extends the standard DeepONet by aggregating information from
multiple intermediate layers of both branch and trunk networks, enriching the learned representa-
tion without increasing trainable parameters. The architecture, illustrated in Fig. 1, comprises two
subnetworks:

• Trunk network: Encodes the spatial coordinates x ∈ Ω of the output field.
• Branch network: Encodes a latent vector β representing a compact descriptor of the input
functions.

Unlike the original DeepONet, MultiONet computes a weighted average of inner products between
layer-wise features from multiple network depths rather than relying solely on last-layer features.
Formally, the MultiONet mapping G(β)(x) is expressed as:

G(β)(x) = 1

l

l∑
k=1

w(k)
(
b(k)(β)⊙ t(k)(x)

)
+ b0, (1)

where b(k)(β) and t(k)(x) denote the outputs from the k-th layers of the branch and trunk networks,
l represents the total number of layers, w(k) indicates trainable weights, b0 is the bias term, and ⊙
represents the inner product operation.

2 Supplementary Note 2: Normalizing Flow for Initialization

In gradient-based inversion, initial guess quality for the latent variable affects both convergence
speed and optimization quality. Random initialization (e.g., from uniform or Gaussian distributions)
ignores the trained latent space structure and may lead to inefficient optimization, particularly
for highly nonlinear PDE inverse problems. We employ a normalizing flow (NF) model to learn
a bijective mapping between the latent space and a standard multivariate normal distribution,
enabling informed and probabilistically meaningful initialization. Specifically, we use the RealNVP
architecture [1], which consists of invertible coupling layers. Each coupling layer splits the input
x ∈ Rd into z1 ∈ Rd/2 and zz ∈ Rd/2, then applies:

• Forward: y1 = z1, y2 = z2 ⊙ exp(s(z1)) + t(z1)
• Inverse: z1 = y1, z2 = (y2 − t(y1))⊙ exp(−s(y1))

where s(·) and t(·) are scale and translation networks parameterized by fully connected neural
networks (FCNNs).

3

3 Supplementary Note 3: Training and Inversion Algorithms

Algorithm 1 Training the IGNO Framework

Inputs:
Training data D = {a(n), g(n)}Nn=1; loss weights λpde, λbd, λrec.

Initialize:
Model parameters θ = (θu,θa,θβ1

,θβ2
); learning rate lr.

while Convergence or maximum number of iterations not reached do
Obtain latent representations:

β
(n)
1 ← Eβ1

(a(n)), β
(n)
2 ← Eβ2

(g(n)). n = 1, · · · , N

Obtain the predicted PDE solutions and recovered coefficients:

u
(n)
pred ← Gθu

(β(n)), a
(n)
pred ← Gθa

(β
(n)
1). n = 1, · · · , N

Compute the loss L(θ) and update model parameters with SGD:

θ ← θ − lr ⊙∇θL(θ).

if at every 2500th epoch then
Update the learning rate to lr ← lr/2.

end if
end while
Outputs:

Trained encoders Eθ∗
β1
, Eθ∗

β2
, and decoders Gθ∗

u
, Gθ∗

a
.

4

Algorithm 2 Inversion via Latent Optimization

1: Inputs:
Trained networks Eθ∗

β1
, Eθ∗

β2
, Gθ∗

u
, Gθ∗

a
; Trained normalizing flow Fθ∗

NF
;

measurementsM
2: Initialize:

Sample z ∼ N (0, I); Set β1 ← F−1
θ∗
NF

(z); learning rate lr

3: while Convergence or maximum number of iterations not reached do
4: Compute optimization objective F(β1).
5: Update β1 with gradient descent:

β1 ← β1 − lr · ∇β1F(β1)

6: if at every 250th epoch then
7: Update the learning rate to lr ← lr/2.
8: end if
9: end while

10: Outputs:
Recovered coefficient arec = Gθ∗

a
(β1).

4 Supplementary Note 4: Baseline Method Details

We compare IGNO against physics-informed deep inverse operator networks (PI-DIONs) [2], a
recent state-of-the-art method for PDE inverse problems with solution-based measurements. This
method employs the DeepONet architecture to parameterize both the unknown coefficient a and the
PDE solution u. Coordinates x are treated as inputs to the trunk networks, while solution-based
measurementsMsol are input to the branch networks. The two resulting models are denoted Gθu and
Gθa , parameterized by θu and θa, respectively. Predictions at location x are given by Gθu(Msol)(x)
for the solution and Gθa(Msol)(x) for the coefficient.

Training of PI-DIONs relies on a physics-informed composite loss that combines (i) a physics
loss, consisting of strong-form PDE residuals (Lpde) and boundary mismatches (Lbd), and (ii) a data
loss (Ldata) that penalizes deviations between predicted and observed solutions at fixed sensors.

For N training samples with solution-based measurements {M(n)
sol}Nn=1 collected on sensors Xm =

(x1, . . . ,xm) ⊂ Ω, the total loss is defined as:

L = λphysics(Lpde + Lbd) + λdataLdata

=
λphysics

N

N∑
n=1

(
∥R(n)(Gθu(M

(n)
sol),Gθa(M

(n)
sol))∥

2
2 + ∥B

(n)(Gθu(M
(n)
sol)(Ξbd))− g(n)∥22

)
+

λdata

N

N∑
n=1

∥Gθu
(M(n)

sol)(Xm)−M(n)
sol∥

2
2,

(2)

where R(n) = (r
(n)
w1 , . . . , r

(n)
wK) ∈ RK denotes the strong-form residual vector. The terms λphysics and

λdata are loss weights. Once trained, the recovered coefficient a and solution u for test measurements

5

Mtest
sol are directly obtained via Gθ∗

a
(Mtest

sol) and Gθ∗
u
(Mtest

sol), respectively. PI-DIONs is not applicable
to operator-based inverse problems and serves as a baseline only for solution-based cases.

5 Supplementary Methods

5.1 General Implementation Details

Unless otherwise specified, all models are trained using the ADAM optimizer with an initial learning
rate of 5× 10−4, which is halved every 400 epochs. Training is performed for 2,000 epochs to ensure
convergence. The batch sizes are set to 50, 25, and 100 for the Darcy flow problem with continuous
coefficients, the Darcy flow problem with piecewise-constant coefficients, and the EIT problem,
respectively. For the proposed IGNO framework, the loss weights are assigned as λpde = λbd =
λrec = 1 and the normalizing flow loss weight is set to 0.05. For the PI-DIONs method, loss weights
are set as λphysics = 1 and λdata = 100 for best performance. All experiments are conducted under
identical hardware conditions using a 64-core AMD Ryzen CPU paired with an NVIDIA RTX 4090
GPU.

5.2 Continuous Coefficient Recovery with Solution-based Measurements

5.2.1 Problem Setup

The governing PDE is the following Darcy’s flow equation:

−∇(k(x, y)∇p(x, y)) = f(x, y), in Ω = [0, 1]2,

p(x, y) = 0, in ∂Ω,
(3)

where k is the permeability field, p is the pressure field, and f = 10 is the source term. Measure-
ments are collected at m = 100 sensor locations Xm = (x1, . . . ,xm), with additive Gaussian noise
contamination:

Msol =
(
p̂(x1), . . . , p̂(xm)

)
, where p̂(xi) = p(xi) + ϵi, ϵi ∼ N (0, σ2). (4)

Noise levels are characterized by the signal-to-noise ratio (SNR), which is defined as:

SNR = 10 log 10

(
1
m

∑m
i=1 p

2(xi)

σ2

)
. (5)

In particular, we examine three scenarios: low noise (SNR=50), medium noise (SNR=25), and high
noise (SNR=15).

For training IGNO, N = 1000 synthetic permeability fields are generated as k(x, y) = 2.1 +
sin(ω1x) + cos(ω2y) with ω1, ω2 sampled independently from the uniform distribution U(0, 7π/4)2.
Since the boundary condition is fixed (i.e., g = 0) across all samples, only the permeability encoder
Eβ1 is required. For training PI-DIONs, pressure fields p(n) are computed by solving (3) via the finite

element method (FEM) for each permeability sample k(n). Then, training measurementsM(n)
sol are

formulated by sampling the pressure values at the same sensor locations Xm without added noise.

6

To evaluate the performance of both methods on this problem, we consider two classes of test
targets:

• In-distribution target: permeability fields k generated with (ω1, ω2) ∼ U(0, 7π/4) (with
different random seed), consistent with the training distribution.

• Out-of-distribution target: permeability fields k generated with (ω1, ω2) ∼ U(7π/4, 2π), which
lie entirely outside the training distribution.

In both cases, noisy test measurementsMtest
sol are generated by solving (3) with FEM and perturbing

the pressure values with Gaussian noise at the specified SNR levels.

5.2.2 Model Setup

To extract latent representations from the input coefficients with the encoder Eθβ1
, we set Ξa =

(ξa,1, . . . , ξa,Na
) ⊂ Ω as a 29 × 29 uniform grid, so that the encoder input is a = a(Ξa). Since

the boundary condition is fixed (g = 0) across all samples, no boundary input is needed (i.e., the
boundary encoder vanishes). Moreover, a mollifier f(x, y) = sin(πx) sin(πy) is applied to the output
of the solution decoder, i.e.,

upred(x, y) = Gθu(β)(x, y) · f(x, y), (6)

which enforces the boundary condition automatically and removes the need for an explicit boundary
loss during training. Below, we provide details of the network architectures for both methods:

The IGNO method

• Encoder Eθβ1
. It consists of a Convolutional Neural Network (CNN) followed by a Feed-Forward

Fully Connected Network (FFCN). The CNN has three hidden layers with 64 output channels
each, kernel size (3, 3), and stride 2. The FFCN has two hidden layers of 128 neurons each. The
SiLU activation is applied to all hidden layers, while the output layer uses Tanh to constrain the
latent variables to a bounded cubic region.

• Solution Decoder Gθu
. The solution decoder Gθu

adopts the MultiONet architecture. Both
branch and trunk networks are FFCNs with 6 hidden layers of 100 neurons each. A custom
activation function, Tanh Sin, is used in all hidden layers:

Tanh Sin(x) = tanh(sin(πx+ π)) + x. (7)

• Coefficient Decoder Gθa
. The coefficient decoder Gθa

adopts the same architecture as Gθu
.

• NF model FθNF
. The NF model consists of three flow steps, each parameterized by a fully

connected network with two hidden layers of 64 neurons per layer and SiLU activations.

The PI-DIONs method

• Decoder Gθu . For fair comparison, the PI-DIONs solution decoder adopts the same architecture
as in IGNO. However, the input to the branch network is the solution-based measurementMsol,
instead of the latent variable β.

• Decoder Gθa . Similarly, the coefficient decoder Gθa uses the same architecture as in IGNO, with
the branch network takingMsol as input instead of β1.

7

5.2.3 Latent-space Optimization Details

Gradients of the objective F with respect to β1 are computed via PyTorch’s automatic differentia-
tion. The weights ρdata and ρpde are set to 50 and 1, respectively. Optimization is performed using
ADAM with an initial learning rate of 0.01, decayed by a factor of 2/3 every 250 steps, for a total
of 500 updates.

5.3 Piecewise-Constant Coefficient Recovery with Solution-based
Measurements

5.3.1 Problem Setup

The governing equation remains Darcy’s law (3) but with piecewise-constant coefficient:

k(x, y) =

{
10, (x, y) ∈ Ω1

5, (x, y) ∈ Ω2

(8)

where Ω1 and Ω2 represent two disjoint phases (i.e., phase 1 and phase 2) such that Ω1 ∪ Ω2 = Ω.
Measurements Msol are collected on m = 100 fixed sensors Xm randomly sampled in Ω. The
measurements are contaminated with Gaussian noise, and three levels of noise are considered: low
(SNR=50), medium (SNR=20), and high (SNR=15). The discontinuous nature of the coefficient
field makes this problem particularly difficult for existing methods: (i) Gradient-based methods
require differentiability of k, but in this case, k is discrete-valued, so gradients with respect to k
are not well defined; (ii) Non-gradient methods such as evolutionary algorithms or MCMC may, in
principle, handle discrete parameters, but they become computationally prohibitive when k lies in
a high- or infinite-dimensional function space, restricting their applicability to only low-dimensional
problems. The proposed IGNO framework naturally overcomes these challenges by introducing a
low-dimensional and well-structured latent space representation of the original high-dimensional
and discontinuous coefficient field. This transforms the otherwise intractable inverse problem into a
tractable optimization problem in a continuous latent space, making it both efficient and robust.

To train IGNO, 10, 000 piecewise-constant permeability fields are generated by using a cutoff
Gaussian Process GP(0, (−∆+9I)−2) [3, 4]. For each GP realization, k(x, y) = 10 if the underlying
GP-value is greater than 0 and k(x, y) = 5 otherwise. Again, only the permeability encoder Eβ1 is
required as the boundary condition is fixed across all samples. For training PI-DIONs, the pressure
field p(n) corresponding to each permeability sample k(n) is obtained using FEM. Noise-free pressure

values on the fixed sensors Xm are then used as training measurementsM(n)
sol .

We evaluate both methods on two types of inverse targets:

• In-distribution target: The target permeability k is generated from the same distribution (with
different random seed) used in training, i.e., the cutoff GP(0, (−∆+ 9I)−2).

• Out-of-distribution target: The target k is generated from a different distribution, namely the
cutoff GP(0, (−∆+16I)−2). The higher-order correlation structure of k differs significantly from
the training distribution, resulting in more complex geometries of the permeability field.

In both cases, test measurements Mtest
sol are obtained by solving Darcy’s equation with FEM, and

then corrupted with Gaussian noise corresponding to the specified SNR levels.

8

5.3.2 Model Setup

The coefficient k is represented by an image of size 29× 29, denoted by Ξa = (ξa,1, . . . , ξa,Na
). Each

pixel value corresponds to the permeability of the associated phase (either 10 or 5). To improve the
performance of IGNO in this problem, the coefficient decoder is not trained to predict the coefficient
values directly. Instead, it predicts the probability that a spatial location x belongs to phase 1.
Accordingly, the recovery loss Lrec is replaced by a cross-entropy loss:

Lrec =
1

N

N∑
n=1

Na∑
i=1

[
z
(n)
i log σ

(
Gθa(β

(n)
1)(ξa,i)

)
+ (1− z

(n)
i) log

(
1− σ(Gθa(β

(n)
1)(ξa,i)

)]
, (9)

where σ(·) is the sigmoid function, and zi is a binary label indicating the true phase at location
ξa,i (zi = 1 for phase 1 and zi = 0 for phase 2). At inference time, the recovered coefficient can
be obtained either by sampling from the predicted probability field or, as done in this work, by
applying a cut-off rule: values greater than 0.5 are assigned to phase 1 and others to phase 2. This
strategy is not applicable to PI-DIONs, as the method relies on strong-form PDE residuals that
require differentiability with respect to the coefficient field. Consequently, the coefficient decoder in
PI-DIONs is designed to predict permeability values directly. To obtain binary reconstructions, a
threshold of 7.5 is then applied to convert the continuous predictions into discrete phase labels. For
IGNO, the 29 × 29 coefficient image is used as the coefficient encoder input. Since the boundary
condition is fixed (g = 0) across all samples, the boundary encoder is omitted. To enforce boundary
conditions automatically, a mollifier f(x, y) = sin(πx) sin(πy) is applied to the solution decoder
output:

upred(x, y) = Gθu
(β)(x, y) · f(x, y). (10)

Below, we present the network architectures for both methods:

The IGNO method

• Encoder Eθβ1
. The encoder Eθβ1

is selected as an FFCN. The input coefficient image is first flat-
tened into a vector, then passed through two dense layers with 512 and 256 neurons, respectively.
SiLU activations are applied in all hidden layers, and a Tanh activation is applied at the output.

• Solution Decoder Gθu . The solution decoder Gθu adopts the MultiONet architecture. Both the
branch and trunk networks are FFCNs with five hidden layers of 100 neurons each. The custom
activation function Tanh Sin (Eq. (7)) is applied to all hidden layers.

• Coefficient Decoder Gθa . The coefficient decoder Gθa outputs the probability that a given
spatial point belongs to phase 1. The recovered permeability field is obtained by thresholding
the probability field at 0.5 and mapping to 10 (phase 1) or 5 (phase 2). Both branch and trunk
networks follow the MultiONet design, with five hidden layers of 256 neurons each. The trunk
employs the custom activation

SiLU Sin(x) = SiLU(sin(πx+ π)) + x, (11)

while the branch employs
SiLU Id(x) = SiLU(x) + x. (12)

A Sigmoid activation is applied at the output to ensure predictions lie in [0, 1].
• NF model FθNF

. The NF model consists of three flow steps. Each step is parameterized by an
FFCN with two hidden layers of 128 neurons and SiLU activations.

9

The PI-DIONs method

• Decoder Gθu
. The solution decoder of PI-DIONs adopts the same architecture as in IGNO.

However, its branch network takes as input the solution-based measurements Msol rather than
the latent variable β.

• Decoder Gθa
. Unlike IGNO, PI-DIONs predict the coefficient field a directly, because probability-

based cut-offs are non-differentiable and incompatible with strong-form residual training. For
fairness, the decoder Gθa

adopts the same architecture as in IGNO, except that the branch network
input isMsol, and no activation is applied at the output layer.

5.3.3 Latent-space Optimization Details

Gradients are computed via PyTorch automatic differentiation. The weights ρdata and ρpde are set
to 1 and 1, respectively. The ADAM optimizer is used with an initial learning rate of 0.1, halved
every 50 steps. Each inverse problem is solved with 500 gradient updates.

5.4 The EIT Problem with Operator-based Measurements

5.4.1 Problem Setup

The EIT is governed by the elliptic PDE with Dirichlet boundary conditions:

−∇(γ(x, y)∇u(x, y)) = 0, in Ω = [0, 1]2,

u(x, y) = g(x, y), in ∂Ω,
(13)

where γ > 0 denotes the unknown conductivity field, assumed to be smooth, and g is the prescribed
Dirichlet voltage. The goal is to recover γ from the DtN map Λγ , defined as:

Λγ [g] : g −→ γ
∂u

∂n⃗
|∂Ω, (14)

which maps the input voltage g into the current γ ∂u
∂n⃗ = γ∇u · n⃗ at boundary with n⃗ being the unit

outward normal vector. In practice, the DtN map is approximated using a finite set of pre-defined

voltage–current pair, defined as Mop =
{(

gl(Xm),Λγ [gl](Xm)
)}L

l=1
, where Xm = (x1, · · · ,xm)

denotes sensors on the boundary. In our experiments, we use m = 128 equally spaced sensors along
the four boundaries, as illustrated on the right of Fig. 2(a). To approximate the DtN map, we set
L = 20, with the l-th input voltage defined as cos(2π(x cos(θl)+y sin(θl))) with θl = 2πl/20. Fig. 2(b)
shows examples of three input voltages (l = 1, 10, 20), their corresponding boundary currents, and
the PDE solutions, with the conductivity field displayed on the left of Fig. 2(a).

Since the EIT problem involves operator-based measurements, the PI-DIONs method is
not applicable. Therefore, we only evaluate the proposed IGNO in this problem. For training,
N = 1000 conductivity fields are generated from trigonometric functions of the form γ(x, y) =∑K

k=1 exp(ck sin(kπx) sin(kπy)) with K = mod(K̄), where K̄ ∼ U[1, 5] and ck ∼ U[−1, 1]. An exam-
ple of a sampled conductivity is shown on the left of Fig. 2(a). For each conductivity, the L = 20
input voltages gl are used as Dirichlet conditions in (13), leading to NL = 20000 total data samples
{(γ(n), g(n))}NL

n=1. Importantly, the training of IGNO does not require computing the corresponding
currents, avoiding expensive PDE simulations.

10

For the inverse problem, we consider two target scenarios:

• In-distribution target: γ is drawn from the same distribution used for training (with different
random seed).

• Out-of-distribution target: γ is sampled from a shifted distribution with K̄ ∼ U[1, 5] and
ck ∼ U[1, 1.5].

In both cases, operator-based measurements Mop are generated by solving (13) with FEM and
adding Gaussian noise. We consider three noise levels: SNR= 50 (low), SNR= 25 (medium), and
SNR= 15 (high).

5.4.2 Model Setup

To extract latent representations from input coefficients, a uniform grid Ξa with size 32×32 is used,
which leads to the coefficient encoder input being a = a(Ξa). Since this problem involves multiple
boundary conditions, a boundary encoder Eθβ2

is needed to encode boundary inputs. Given that
only L = 20 boundary conditions are used, this encoder is implemented as a one-hot encoding rather
than a trainable network. To enforce boundary conditions automatically, we define a mollifier for
the solution decoder output. Specifically, for solution prediction with boundary condition gl:

upred = Gθu(β) · f + gl, (15)

where f(x, y) = sin(πx) sin(πy). This ensures that the predicted solution satisfies the boundary
conditions without introducing an explicit boundary loss term.

Below, we provide details of the network architectures:

• Coefficient Encoder Eθβ1
. The coefficient encoder Eθβ1

consists of a CNN followed by an
FFCN. The CNN has four hidden layers with 64 output channels per layer, kernel size (3, 3), and
a stride of 2. The subsequent FFCN has two hidden layers of 64 neurons each. SiLU activations
are applied to all hidden layers, and Tanh is used at the output.

• Boundary Encoder Eθβ2
. To encode the boundary conditions {gl}Ll=1, we use a one-hot encod-

ing: for boundary gl, the latent vector β2 = el ∈ R20, where el is the l-th unit vector. This enables
IGNO to handle operator-based measurements with multiple boundary conditions efficiently.

• Solution Decoder Gθu . The solution decoder adopts the MultiONet architecture. Both branch
and trunk networks are FFCNs with five hidden layers of 100 neurons per layer. The custom
Tanh Sin activation is applied to all hidden layers.

• Coefficient Decoder Gθa . The coefficient decoder Gθa shares the same architecture as Gθu .
• The NF model FθNF

. The NF model consists of three flow steps, each parameterized by an
FFCN with two hidden layers of 128 neurons and SiLU activations.

5.4.3 Latent-space Optimization Details

For In-distribution targets, gradients of the objective F with respect to β1 are computed via PyTorch
automatic differentiation. Weights are set as ρdata = 100 and ρpde = 1. The ADAM optimizer is used
with an initial learning rate of 0.01, reduced by half every 25 steps, for a total of 200 updates. For
Out-of-distribution targets, weights are set to ρdata = 100 and ρpde = 0.001. The ADAM optimizer
is used with an initial learning rate of 0.01, decreased by a factor of 2/3 every 100 steps, with a
total of 200 updates.

11

6 Supplementary Tables

6.1 Continuous Coefficient Recovery with Solution-based Measurements

6.1.1 Table 1: In-distribution case

IGNO achieves 3 to 7 times lower reconstruction errors than the PI-DIONs method across all noise
levels for in-distribution continuous coefficient recovery. Even under severe noise (SNR=15 dB),
IGNO maintains RMSE below 1.2%, while the PI-DIONs method exceeds 4%.

Table 1: RMSEs obtained by different methods
under different noise levels in recovery of con-
tinuous coefficients with solution-based mea-
surements. (In-distribution case)

SNR = 50 SNR = 25 SNR = 15

IGNO 0.0056 0.0061 0.0115
PI-DIONs 0.0366 0.0360 0.0469

6.1.2 Table 2: Out-of-distribution case

For out-of-distribution targets with frequency parameters entirely outside training range, IGNO
maintains strong generalization with only modest performance degradation compared to in-
distribution cases. The PI-DIONs method shows substantial error increases (4.8-5.8%), while IGNO
remains 3 to 5 times more accurate.

Table 2: RMSEs obtained by different methods
under different noise levels in recovery of contin-
uous coefficients with solution-based measure-
ments. (Out-of-distribution case)

SNR = 50 SNR = 25 SNR = 15

Inv-GenNO 0.0064 0.0113 0.0194
PI-DIONs 0.0476 0.0496 0.0583

6.2 Piecewise-Constant Coefficient Recovery with Solution-based
Measuremen

6.2.1 Table 3: In-distribution case

The cross-correlation indicator Icorr measures morphological similarity, with values near 1 indicating
strong agreement between reconstructed and true phase topologies. IGNO achieves Icorr > 0.95
across all noise levels, indicating accurate phase topology recovery. The PI-DIONs method fails with
Icorr ∼ 0.72, indicating essentially random reconstructions due to the inability to handle undefined
gradients at discontinuities.

12

Table 3: Cross-correlations Icorr obtained by
different methods under different noise lev-
els in recovery of piecewise-constant coeffi-
cients with solution-based measurements. (In-
distribution case)

SNR = 50 SNR = 25 SNR = 15

IGNO 0.968 0.960 0.952
PI-DIONs 0.718 0.714 0.730

6.2.2 Table 4: Out-of-distribution case

For out-of-distribution piecewise-constant targets with different Gaussian process correlation struc-
tures producing more complex phase geometries, IGNOmaintains Icorr > 0.91 even under high noise.
The PI-DIONs method continues to fail (Icorr ∼ 0.78), demonstrating an inability to generalize for
discontinuous inverse problems.

Table 4: Cross-correlations Icorr obtained by
different methods under different noise lev-
els in recovery of piecewise-constant coeffi-
cients with solution-based measurements. (Out-
of-distribution case)

SNR = 50 SNR = 25 SNR = 15

IGNO 0.961 0.954 0.912
PI-DIONs 0.779 0.779 0.777

6.3 The EIT Problem with Operator-based Measurements

6.4 Table 5: the EIT problem

For the operator-based EIT problem, IGNO demonstrates robust performance across both distribu-
tion types. In-distribution reconstruction achieves sub-0.5% error even under low noise, degrading
gracefully to 2.8% at SNR=15 dB. Out-of-distribution targets show only modest error increases
(2.2-2.9%), indicating strong extrapolation capabilities. The PI-DIONs method cannot handle
operator-based measurements and does not apply to this problem.

Table 5: RMSEs obtained by the proposed IGNO in
solving the EIT problem in both In-distribution and Out-
of-distribution cases under different noise levels.

SNR = 50 SNR = 25 SNR = 15

In-distribution 0.0044 0.0128 0.0277
Out-of-distribution 0.0219 0.0246 0.0293

13

7 Supplementary Figures

7.1 Figure 1: The MultiONet architecture

The MultiONet architecture in Fig. 1 shows branch and trunk networks with multi-layer feature
aggregation.

𝛽

𝑥

Branch
layer

Trunk layer

𝒃(𝟏)

𝒕(𝟏)

Branch
layer

Trunk layer

×

…
Branch
layer

… Trunk layer

𝒃(𝟐)

𝒕(𝟐)

×

𝒃(𝒍)

×

𝒕(𝒍)

!𝒙 𝒢(𝛽)(𝑥)…

Fig. 1: The MultiONet architecture.

14

7.2 Figure 2: Illustration of operator-based measurements in the EIT
problem

In the EIT problem, the unknown conductivity field γ is inferred from the DtN operator Λγ , which
maps imposed boundary voltages g to the corresponding boundary currents γ ∂u

∂n⃗ |∂Ω. This operator
is approximated using L = 20 distinct boundary voltage patterns and measurements collected
from m = 128 equally spaced boundary sensors. Figure 2(a) illustrates an example conductivity
field γ (left) and the corresponding boundary sensor configuration (right). Figure 2(b) shows three
representative boundary conditions gl, the resulting current responses Λγ [gl], and the corresponding
PDE solutions u for l = 1, 10, 20.

a

b

Fig. 2: Illustration of operator-based measurements in the EIT problem: (a) An example of con-
ductivity γ (left) and the boundary sensors Xm (right); (b) Examples of boundary conditions gl
(left), corresponding current measurements Λγ [gl] (middle), and PDE solutions u (right), when
l = 1, 10, 20.

15

References

[1] Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. arXiv preprint
arXiv:1605.08803 (2016)

[2] Cho, S.W., Son, H.: Physics-informed deep inverse operator networks for solving pde inverse
problems. arXiv preprint arXiv:2412.03161 (2024)

[3] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandku-
mar, A.: Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895 (2020)

[4] Zang, Y., Koutsourelakis, P.-S.: Dgenno: a novel physics-aware neural operator for solving for-
ward and inverse pde problems based on deep, generative probabilistic modeling. Journal of
Computational Physics 538, 114137 (2025)

16

	Supplementary Note 1: The MultiONet Architecture
	Supplementary Note 2: Normalizing Flow for Initialization
	Supplementary Note 3: Training and Inversion Algorithms
	Supplementary Note 4: Baseline Method Details
	Supplementary Methods
	General Implementation Details
	Continuous Coefficient Recovery with Solution-based Measurements
	Problem Setup
	Model Setup
	The IGNO method
	The PI-DIONs method

	Latent-space Optimization Details

	Piecewise-Constant Coefficient Recovery with Solution-based Measurements
	Problem Setup
	Model Setup
	The IGNO method
	The PI-DIONs method

	Latent-space Optimization Details

	The EIT Problem with Operator-based Measurements
	Problem Setup
	Model Setup
	Latent-space Optimization Details

	Supplementary Tables
	Continuous Coefficient Recovery with Solution-based Measurements
	Table 1: In-distribution case
	Table 2: Out-of-distribution case

	Piecewise-Constant Coefficient Recovery with Solution-based Measuremen
	Table 3: In-distribution case
	Table 4: Out-of-distribution case

	The EIT Problem with Operator-based Measurements
	Table 5: the EIT problem

	Supplementary Figures
	Figure 1: The MultiONet architecture
	Figure 2: Illustration of operator-based measurements in the EIT problem

