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Supplementary Text 21 

Supplementary Note 1: Evolutionary Context of Autophosphorylation Sites 22 

The Y416D substitution described in the main text was designed to test how acidic residues can 23 
mimic phosphorylation at key regulatory sites. To provide context for this design, comparative 24 
genomic analyses suggest that some conserved autophosphorylation sites across the kinome may 25 
have originated from ancestral acidic residues, such as aspartate or glutamate, that were later 26 
replaced by phosphorylatable residues. This transition is thought to have enabled tighter and more 27 
dynamic regulatory control of kinase activity. Ferrell and colleagues estimated that roughly 5% of 28 
phosphosites may have evolved from acidic residues, both during the divergence of eukaryotes 29 
from prokaryotes and in subsequent evolutionary events88. While this trend was most evident for 30 
serine sites, likely reflecting their overall abundance89, it does not exclude the possibility that 31 
tyrosine autophosphorylation sites followed a similar trajectory. Although relatively few studies 32 
have examined the evolution of phosphotyrosine sites specifically, their emergence may have been 33 
crucial for supporting the increasingly complex signaling functions required in multicellular 34 
organisms90. 35 

Supplementary Note 2: Structural and Functional Effects of Gatekeeper Mutations in SRC 36 

The conserved gatekeeper residue T338 lies within the ATP-binding site and has been a major 37 
focus in kinase biology and drug design91,92. Mutations at this site, particularly T338I and T338M, 38 
are frequently observed in cancers and confer resistance to ATP-competitive kinase inhibitors93,94. 39 
Mechanistically, these substitutions reinforce the hydrophobic regulatory spine and destabilize the 40 
inactive conformation, thereby shifting the equilibrium toward the active state and promoting both 41 
autophosphorylation and catalytic activity. 42 

Although the gatekeeper residue is spatially distant from the activation loop and does not directly 43 
contact substrates, its mutation induces coordinated structural changes in both the regulatory spine 44 
and the activation loop. This expands the conformational landscape of the kinase and can influence 45 
substrate selection. We hypothesized that this enhanced flexibility might synergize with activation 46 
loop alterations to refine specificity. 47 

However, contrary to this hypothesis, gatekeeper mutations in the P8E2 background obscured the 48 
substrate preference shifts observed in the parent variant under cellular conditions. In vitro assays 49 
revealed similar substrate profiles to P8E2 but with reduced exclusivity. While the enhanced 50 
activity of the WT gatekeeper mutant can be explained by increased autophosphorylation, the 51 
similar effect in the deletion variant suggests that these mutations also reshape activation loop 52 
conformation. Conformational landscape analysis further supported this view: both P8E2-T338I 53 
and P8E2-T338M variants converged on catalytically competent states with extended loop 54 
conformations. 55 

Together, these findings indicate that while activation loop sequence is a primary determinant of 56 
substrate specificity, fine-tuning the broader conformational dynamics of the kinase is essential to 57 
fully realize this specificity. 58 

59 



Supplementary Computational Methodology Details  60 

A two-fold computational approach was used to characterize the effects of residue deletions in the 61 
A-loop and gatekeeper mutations of the SRC kinase variants. First, conventional molecular 62 
dynamics (MD) simulations were utilized to assess the localized effects of the relevant amino acid 63 
substitutions on the flexibility of the A-loop. Further, our MD simulation approach was combined 64 
with the AlphaFold295 sequence clustering algorithm96 to generate additional starting 65 
conformations and compare coordinated dynamics between the A-loop and αC-helix among the 66 
variants.  67 

Conventional Molecular Dynamics 68 

Conventional molecular dynamics (cMD) simulations were conducted for the following four 69 
systems: wild-type (WT) SRC kinase, WT SRC kinase with a phosphorylated Y416 residue, the 70 
SRC kinase Y416D variant, and the loop truncated SRC kinase P8E2 variant.  71 

The loop deletions in the P8E2 variant were modelled using AlphaFold295 and Rosetta97,98. 10 72 
initial structures of the deletion mutants were generated using AlphaFold2 Monomer. Templates 73 
were sourced from the UniRef9099, MGnify100, Uniclust30101, PDB70102, and BFD95 databases. 74 
AlphaFold295 was used to perform an initial relaxation of these structures. Following this, 75 
RosettaRelax103 was used to locally relax and rank the mutant structures, and the lowest ranked 76 
structure was selected for subsequent work.  77 

All systems were simulated in three independent 1 µs replicas, producing 3 µs of analyzed data 78 
per system. Simulations were performed with the GPU-accelerated version of GROMACS 2020104, 79 
using the CHARMM36m105 force field along with the TIP3P106 water model. System preparation 80 
was performed using the standard protocol of the CHARMM-GUI107 builder, with the 81 
phosphorylated pY416 parameterized using CHARMM-GUI107 solution builder tools. Each 82 
system was solvated in a cubic box of 67x67x67 Å or 10 Å from the edge boundary of the protein 83 
with 0.15 M NaCl added to the system. 84 

Each system underwent energy minimization using the steepest descent algorithm, followed by 85 
equilibration in the NVT ensemble. Temperature was maintained at 303.15 K using the Nosé-86 
Hoover108,109 thermostat. Production MD was run using the Nosé-Hoover thermostat108,109 and 87 
pressure was regulated at 1 atm using the Parrinello-Rahman barostat110 with isotropic coupling 88 
and a relaxation time of 5.0 ps. All bonds involving hydrogen atoms were constrained using the 89 
LINCS111 algorithm, enabling a 2 fs integration time step. Electrostatics were treated using the 90 
Particle Mesh Ewald (PME) method112, with a Verlet cutoff scheme113 and a 1.2 nm cutoff for both 91 
Coulomb and van der Waals interactions. 92 

Root mean square fluctuation (RMSF) values were computed for the Cα-atoms of each residue 93 
with reference to the initial structure for each simulation set using MDAnalysis 2.7.0114,115.  To 94 
show the flexibility of the A-loop, RMSF values for this region were projected onto the first 50 95 
structural clusters, derived from clustering analysis performed using the single linkage clustering 96 
protocol with a cutoff of 0.8 Å, as implemented into GROMACS116 2020. Clustering was 97 
performed on the concatenated trajectories across all three replicas, considering all protein atoms 98 



in the structural comparison. The resulting representative structures were visualized in PyMOL 99 
Molecular Graphics System, Version 2.6.2 Schrödinger, LLC., with the A-loop colored according 100 
to per-residue RMSF values.  101 

 The χ1 and χ2 dihedral angles of residue F424 (A-loop, P+1 loop region) were computed for each 102 
frame of the conventional MD trajectories using MDAnalysis 2.7.0114,115. Two-dimensional 103 
histograms were generated with 100 × 100 bin resolution. Rotamer states were classified according 104 
to standard χ1 ranges: gauche- (300° ± 30°), gauche+ (60° ± 30°), and trans (180° ± 30°). The 105 
population of each rotamer was computed as the fraction of simulation frames falling into the 106 
corresponding basin. 107 

AlphaFold2-Initialized Molecular Dynamics 108 

Initial conformations for enhanced sampling were generated using the AlphaFold295 multiple 109 
sequence alignment (AF2-MSA) subsampling strategy described by Silva et al.117, implemented 110 
from the public repository. For each variant (WT, P8E2, and selected gatekeeper mutants), 200 111 
AF2 models were generated using default pipeline parameters. Each model was scored with AF2’s 112 
predicted local distance difference test (pLDDT) and projected into a reduced conformational 113 
space defined by (i) the ΔD coordinate (difference between the distances E310-R409 and K295–114 
E310) and (ii) the activation-loop extension angle (Cα-atoms of K295–E310–Y/D416). The 115 
reduced-space distribution was clustered via K-means (k = 50) in scikit-learn118, and one 116 
representative conformation from each cluster was selected to seed MD simulations. 117 

System preparation for each AF2-derived starting structure was performed in VMD 1.9.4a57 using 118 
the psfgen plugin. The CHARMM36m force field119 was used for the protein, with ATP 119 
parameters obtained from the CHARMM-GUI107 Ligand & Solution Builder. Systems were 120 
solvated in a rectangular TIP3P106 water box, with at least 12 Å padding from any solute atom, 121 
neutralized, and ionized to 0.15 M NaCl concentration. Energy minimization (5000 steepest 122 
descent steps) was followed by NVT equilibration with backbone restraints (250 kcal mol⁻¹ Å⁻²), 123 
gradually released over a series of 10 ps intervals (250 → 25 → 2.5 → 0.25 kcal mol⁻¹ Å⁻²). An 124 
additional 1 ns unrestrained NPT equilibration was performed prior to production. All simulations 125 
were run in NAMD with a 12 Å non-bonded cutoff, switching at 10 Å, PME electrostatics112, and 126 
a 2 fs integration timestep. Temperature was maintained at 298 K via Langevin dynamics (damping 127 
constant = 1 ps⁻¹), and pressure at 1 atm with a Langevin barostat120 (period = 100 fs, decay = 50 128 
fs). Each selected starting structure was simulated to produce a 400 ns trajectory. 129 

From each AF2-seeded MD trajectory, conformational space was described in terms of two 130 
features: (i) the difference between the distances E310-R409 and K295-E310, and (ii) the 131 
activation-loop extension angle K295-E310-Y/D416. The distance measurement was based on the 132 
closest terminal sidechain oxygen and nitrogen atoms.  133 

 134 
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Supplementary Figures 137 

 138 

Figure S1: Structural Determinants Distinguishing Active and Inactive SRC Kinase Conformations. (a and b) 139 
Reference crystal structures that define the two variables used to distinguish active and inactive conformation of SRC 140 
kinase. (a) In the active state (PDB ID: 3DQW121) the C‑helix (pink) is pulled inward, allowing the catalytic E310–141 
K295 salt bridge (red dashed line) to form while R409 disengages from E310; permitting the activation loop (yellow) 142 
to fully extend. (b) In the inactive kinase (PDB ID: 3U4W122), R409 caps E310, the E310–K295 contact is broken, 143 
and the A‑loop folds back over the active site. Residues deleted in P8E2 (N414, T417, R419) are highlighted in blue. 144 
(c) Distribution of 200 AlphaFold295 models (blue) and their K‑means cluster centers (red) projected on the two 145 
coordinates: A‑loop angle between K295-E310-Y/D416 and the distance difference ΔD = DE310-R409 – DK295-146 
E310. Positive ΔD marks active‑like conformations (E310–K295 short, R409–E310 long); negative values mark 147 
inactive‑like geometries. 148 

  149 

Active

-Deletion residues in P8E2 

D
E3

10
-R

40
9 
– 

D
K2

95
-E

31
0 
(Å

)
WT

P8E2-5

0

5

10

15
-5

0

5

10

15

70 80 90 100 110 120 130 140

AF PDBs
Cluster centers

Angle of A-Loop (o)

E310

K295

R409

K295
R409

(a)

(b)

(c)

E310

Inactive



 150 

Figure S2: Structural Comparison of P8E2 and WT SRC Kinase Colored by B-Factor. Cartoon representation of 151 
(a) P8E2 (PDB 9V4E; this work) and (b) WT-T338I SRC kinase in the active conformation (PDB 3DQW121), colored 152 
according to B-factor (Å²). Low B-factors are shown in blue, intermediate B-factors in white, and high B-factors in 153 
red (range 10–50 Å²). P8E2 exhibits elevated B-factors at the N- and C-termini, and the activation loop is unresolved, 154 
highlighting its dynamic and flexible nature compared to the ordered active conformation of WT SRC kinase. 155 
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Figure S3: Principal Component Analysis (PCA) of Proteomics Data with Different Imputation Strategies. PCA 159 
was performed to check the proteome data and to compare the data processing workflow of ‘bpca_(no filter)_pro’, 160 
‘bpca_prefilter50_pro’, or ‘bpca_vsn_prefilter50_pro’ indicated in Table S2. PC2 scaled mainly between the two 161 
replicates of each experimental group, while PC1 spread over the experimental groups. Choices of processing 162 
workflow did not visibly affect PCA. 163 

164 
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 165 

Figure S4: Venn Diagrams of Differentially Expressed Proteins and Peptides Across Kinase Variants. Left panel 166 
(a,c,e) DE proteins; Right panel (b,d,f): DE peptides. (a and b) Comparison of WT and P8E2. (c and d) Comparison 167 
of WT, WT-T338I, and WT-T338M. (e and f) Comparison of P8E2, P8E2-T338I, and P8E2-T338M.  168 
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 169 

Figure S5: Multiple Sequence Alignment of Eukaryotic Kinase Domains. Heatmap of the multiple sequence 170 
alignment focused on the activation loop region. Sequences are arranged horizontally. A conserved motif is observed 171 
across all sequences. Canonical autophosphorylation sites are marked with red and blue arrows. CSK sequences, 172 
characterized by shorter activation loops, are outlined with black dotted lines. 173 
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Figure S6: Phylogenetic Tree of Tyrosine Kinase Domains Across Eukaryotic Lineages. Phylogenetic tree of the 176 
kinase domain across diverse species. Metazoa, Choanoflagellates, and Filasterea form distinct clades that correspond 177 
to Receptor Tyrosine Kinases, Non-Receptor Tyrosine Kinases, and C-terminal Src Kinase (CSK). Tyrosine kinase 178 
subtypes are not clearly distinguishable in Amoebozoa and Fungi, where no canonical TK clades emerge, although 179 
amoebozoan kinases cluster relatively close to those of premetazoa and metazoan. 180 
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 182 

Figure S7: Size Exclusion Chromatography (SEC) Profiles of SRC Variants. SEC profiles of SRC variants 183 
obtained using a Superdex 200 10/300 column. The elution range for all variants is between 14–16 mL. The P8E2 184 
variant with the His-tag cleaved was run on a HiLoad 26/600 Superdex 75 pg column and eluted between 210–230 185 
mL. Shaded regions indicate the fractions that were analyzed by SDS-PAGE. 186 
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 188 

Figure S8: SDS-PAGE Analysis of SRC Kinase Variants. Approximately 5 µg of each purified protein was loaded 189 
per well and electrophoresed at 220 V for 30 minutes to assess protein purity and relative molecular weight. 190 
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 193 

Figure S9. Flow Cytometry Histograms of WT SRC, P8E2, and Gatekeeper Variants. Representative histogram 194 
(1 of 3 biological replicates) for WT SRC, P8E2, and gatekeeper variants. Approximately 100,000 events were 195 
recorded to generate the histogram, and 2–3 million cells were collected from a region offset by 25% from the gated 196 
population for next-generation sequencing. Raw flow cytometry data were processed and plots were generated using 197 
Floreada.io (https://floreada.io). The X-axis indicates fluorescence detected using the anti-phosphotyrosine antibody 198 
4G10 (PE-conjugated), and the Y-axis shows event count per fluorescence bin.  199 
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 200 

Figure S10: Fluorescence Images ff HEK293T Cells Expressing GFP-Tagged WT SRC, P8E2, and Gatekeeper 201 
Mutants. Representative Fluorescence images (1 of 2 biological replicates) of HEK293T cells transiently expressing 202 
WT SRC, P8E2, and their respective gatekeeper mutants with N-terminal GFP tags. Images were captured at 40× 203 
magnification and correspond to the samples used in the proteomics experiment. 204 
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Supplementary Tables 206 

Table S1: Activation Loop Variants of SRC Kinase. Positions in the activation loop where residues were either 207 
substituted or deleted. Each of the six WT residues (L410, N414, T417, A418, R419, Q420) was subjected to one or 208 
more amino acid substitutions or complete deletion (Δ) in various combinations to evaluate their effects on catalytic 209 
activity. A full list of all designed variants is provided in the Supplementary Data 2 210 

Position (WT) Substituted Residue(s) 

L410 V, I, M, ∆ 

N414 D, S, T, ∆ 

T417 N, L, V, M, E, S, ∆ 

A418 P, ∆ 

R419 Q, H, ∆ 

Q420 E, V, ∆ 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 



Table S2: Effects of Prefilter, Normalization, and Missing Value Imputation (MVI) on the Number of DE 226 
Peptides and Proteins. A custom filter, ‘prefilter50’, removes the peptide if NA is found as a missing value in more 227 
than 50% of the 14 samples (7 groups, each with 2 replicates). The prefilter removes approximately by 39% or 17% 228 
of total peptides or proteins (the suffix ‘pep’ or ‘pro’), respectively . Vsn is “variance stabilization normalization”123,124. 229 
Bpca is “Bayesian PCA missing value estimation”125. FragPipeAnalystR evaluates differential expression with limma 230 
“Linear Models for Microarray and Omics Data”126. Significance is based on FDR/BH (p_adj) < 0.05 and | log2FC | 231 
> 1.0. The percentage in parentheses are percent total. The processing name was given in the chronological order that 232 
a filter or normalization was applied. For our analysis of DE peptides or proteins, we chose ‘bpca_vsn_prefilter50’ in 233 
the workflow unless otherwise indicated. 234 

Processing Name  Significant  
Peptides or Proteins  Total  

bpca_(no filter)_pep 8,687 (28%) 31,105 

bpca_(no filter)_pro 2,295 (36%) 6,334 

bpca_prefilter50_pep 5,811 (31%) 18,916 

bpca_prefilter50_pro 1,860 (35%) 5,272 

vsn_bpca_prefilter50_pep 5,640 (30%) 18,916 

vsn_bpca_prefilter50_pro 1,837 (35%) 5,272 

bpca_vsn_prefilter50_pep 5,787 (31%) 18,916 

bpca_vsn_prefilter50_pro 1,682 (32%) 5,272 

 235 

  236 



Table S3: Phosphopeptides Identified in SRC Family Proteins. *The letter Y in bold typeface indicates the 237 
phosphorylated tyrosine residue in the peptide sequence. The red Y indicates the autophosphorylated tyrosine residue 238 
in the A-loop. The peptide sequence is not unique to the protein identified in the proteomics software FragPipe as 239 
NCBI BLASTP identifies other SRC members share the peptide sequence. 240 

Peptide Sequence*  IDed by 
FragPipe  

BLASTP 
ClusteredNR_100% Significant in comparisons of GFP vs:  

LIEDNEYTAR SRC FYN, YES, LCK WT, T338I, T338M 

VPYPGMVNR SRC YES P8E2-T338I, P8E2-T338M, WT, WT-
T338I, WT-T338M 

WTAPEAALYGR SRC FYN, YES P8E2, P8E2-T338I, P8E2-T338M, WT, 
WT-T338I, WT-T338M 

VIEDNEYTAR LYN HCK P8E2-T338I, P8E2-T338M, WT-T338I, 
WT-T338M 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

  250 



Table S4: X-Ray Data Collection and Refinement Statistics 251 

Structure P8E2 
PDB code 9V4E 
Data collection  
Space group P212121 
Cell dimensions    
    a, b, c (Å) 41.5, 62.9, 105.4 
    a, b, g  (°)  90.0, 90.0, 90.0 
Resolution (Å) 41.46 – 1.78 (1.89 – 1.78)* 
Rmerge (%) 8.4 (73.1) 
CC1/2 (%) 99.9 (85.2) 
I / sI 19.52 (2.79) 
Completeness (%) 99.8 (99.3) 
Redundancy 8.1 (8.4) 
  
Refinement  
Resolution (Å) 40.87 – 1.78 
No. unique reflections 27179 
Rwork / Rfree  
No. atoms  
    Protein 1925 
    Ligand/ion 32 
    Water 94 
B-factors (Å2)  

    Protein 32.7 
    Ligand/ion 61.7 
    Water 34.0 
R.m.s. deviations  
    Bond lengths (Å) 0.009 
    Bond angles (°) 1.72 

*Values in parentheses are for highest resolution shell. 252 

 253 
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