

Supplementary Information

Minimal Perturbation of Activation Loop Dynamics Rewires Kinase Signaling

Prashant Jain¹, Dariia Yehorova², Ririn Rahamala Febri³, Ben E. Clifton^{1†}, Andrei Demkiv⁴, Gen-ichiro Uechi¹, Michael Robinson⁴, Shina Caroline Lynn Kamerlin^{2,5,6}, Mariko Okada³, Akira Imamoto*⁷, Paola Laurino*^{1,3}

¹ Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology, Okinawa, Japan

² School of Chemistry and Biochemistry and of Chemical and Biological Engineering, Georgia Institute of Technology, Atlanta, GA, USA

³ Institute for Protein Research, Osaka University, Suita, Japan

⁴ Department of Cell and Molecular Biology, Uppsala University, Sweden

⁵ School of Chemical and Biological Engineering, Georgia Institute of Technology, Atlanta, GA

⁶ Department of Chemistry, Lund University, Lund, Sweden

⁷ The Ben May Department, The University of Chicago, Chicago, IL, USA

[†]Current address: School of Molecular Sciences, University of Western Australia, Perth, Australia

19

20

21 **Supplementary Text**

22 **Supplementary Note 1: Evolutionary Context of Autophosphorylation Sites**

23 The Y416D substitution described in the main text was designed to test how acidic residues can
24 mimic phosphorylation at key regulatory sites. To provide context for this design, comparative
25 genomic analyses suggest that some conserved autophosphorylation sites across the kinase may
26 have originated from ancestral acidic residues, such as aspartate or glutamate, that were later
27 replaced by phosphorylatable residues. This transition is thought to have enabled tighter and more
28 dynamic regulatory control of kinase activity. Ferrell and colleagues estimated that roughly 5% of
29 phosphosites may have evolved from acidic residues, both during the divergence of eukaryotes
30 from prokaryotes and in subsequent evolutionary events⁸⁸. While this trend was most evident for
31 serine sites, likely reflecting their overall abundance⁸⁹, it does not exclude the possibility that
32 tyrosine autophosphorylation sites followed a similar trajectory. Although relatively few studies
33 have examined the evolution of phosphotyrosine sites specifically, their emergence may have been
34 crucial for supporting the increasingly complex signaling functions required in multicellular
35 organisms⁹⁰.

36 **Supplementary Note 2: Structural and Functional Effects of Gatekeeper Mutations in SRC**

37 The conserved gatekeeper residue T338 lies within the ATP-binding site and has been a major
38 focus in kinase biology and drug design^{91,92}. Mutations at this site, particularly T338I and T338M,
39 are frequently observed in cancers and confer resistance to ATP-competitive kinase inhibitors^{93,94}.
40 Mechanistically, these substitutions reinforce the hydrophobic regulatory spine and destabilize the
41 inactive conformation, thereby shifting the equilibrium toward the active state and promoting both
42 autophosphorylation and catalytic activity.

43 Although the gatekeeper residue is spatially distant from the activation loop and does not directly
44 contact substrates, its mutation induces coordinated structural changes in both the regulatory spine
45 and the activation loop. This expands the conformational landscape of the kinase and can influence
46 substrate selection. We hypothesized that this enhanced flexibility might synergize with activation
47 loop alterations to refine specificity.

48 However, contrary to this hypothesis, gatekeeper mutations in the P8E2 background obscured the
49 substrate preference shifts observed in the parent variant under cellular conditions. In vitro assays
50 revealed similar substrate profiles to P8E2 but with reduced exclusivity. While the enhanced
51 activity of the WT gatekeeper mutant can be explained by increased autophosphorylation, the
52 similar effect in the deletion variant suggests that these mutations also reshape activation loop
53 conformation. Conformational landscape analysis further supported this view: both P8E2-T338I
54 and P8E2-T338M variants converged on catalytically competent states with extended loop
55 conformations.

56 Together, these findings indicate that while activation loop sequence is a primary determinant of
57 substrate specificity, fine-tuning the broader conformational dynamics of the kinase is essential to
58 fully realize this specificity.

60 **Supplementary Computational Methodology Details**

61 A two-fold computational approach was used to characterize the effects of residue deletions in the
62 A-loop and gatekeeper mutations of the SRC kinase variants. First, conventional molecular
63 dynamics (MD) simulations were utilized to assess the localized effects of the relevant amino acid
64 substitutions on the flexibility of the A-loop. Further, our MD simulation approach was combined
65 with the AlphaFold2⁹⁵ sequence clustering algorithm⁹⁶ to generate additional starting
66 conformations and compare coordinated dynamics between the A-loop and α C-helix among the
67 variants.

68 Conventional Molecular Dynamics

69 Conventional molecular dynamics (cMD) simulations were conducted for the following four
70 systems: wild-type (WT) SRC kinase, WT SRC kinase with a phosphorylated Y416 residue, the
71 SRC kinase Y416D variant, and the loop truncated SRC kinase P8E2 variant.

72 The loop deletions in the P8E2 variant were modelled using AlphaFold2⁹⁵ and Rosetta^{97,98}. 10
73 initial structures of the deletion mutants were generated using AlphaFold2 Monomer. Templates
74 were sourced from the UniRef90⁹⁹, MGnify¹⁰⁰, UniClust30¹⁰¹, PDB70¹⁰², and BFD⁹⁵ databases.
75 AlphaFold2⁹⁵ was used to perform an initial relaxation of these structures. Following this,
76 RosettaRelax¹⁰³ was used to locally relax and rank the mutant structures, and the lowest ranked
77 structure was selected for subsequent work.

78 All systems were simulated in three independent 1 μ s replicas, producing 3 μ s of analyzed data
79 per system. Simulations were performed with the GPU-accelerated version of GROMACS 2020¹⁰⁴,
80 using the CHARMM36m¹⁰⁵ force field along with the TIP3P¹⁰⁶ water model. System preparation
81 was performed using the standard protocol of the CHARMM-GUI¹⁰⁷ builder, with the
82 phosphorylated pY416 parameterized using CHARMM-GUI¹⁰⁷ solution builder tools. Each
83 system was solvated in a cubic box of 67x67x67 \AA or 10 \AA from the edge boundary of the protein
84 with 0.15 M NaCl added to the system.

85 Each system underwent energy minimization using the steepest descent algorithm, followed by
86 equilibration in the NVT ensemble. Temperature was maintained at 303.15 K using the Nosé-
87 Hoover^{108,109} thermostat. Production MD was run using the Nosé-Hoover thermostat^{108,109} and
88 pressure was regulated at 1 atm using the Parrinello-Rahman barostat¹¹⁰ with isotropic coupling
89 and a relaxation time of 5.0 ps. All bonds involving hydrogen atoms were constrained using the
90 LINCS¹¹¹ algorithm, enabling a 2 fs integration time step. Electrostatics were treated using the
91 Particle Mesh Ewald (PME) method¹¹², with a Verlet cutoff scheme¹¹³ and a 1.2 nm cutoff for both
92 Coulomb and van der Waals interactions.

93 Root mean square fluctuation (RMSF) values were computed for the C_{α} -atoms of each residue
94 with reference to the initial structure for each simulation set using MDAnalysis 2.7.0^{114,115}. To
95 show the flexibility of the A-loop, RMSF values for this region were projected onto the first 50
96 structural clusters, derived from clustering analysis performed using the single linkage clustering
97 protocol with a cutoff of 0.8 \AA , as implemented into GROMACS¹¹⁶ 2020. Clustering was
98 performed on the concatenated trajectories across all three replicas, considering all protein atoms

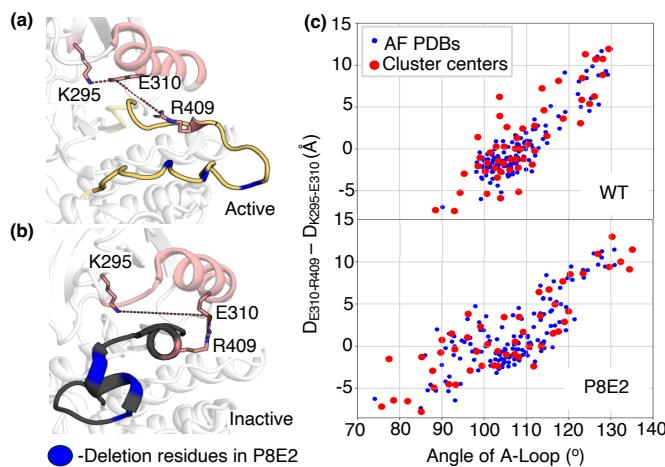
99 in the structural comparison. The resulting representative structures were visualized in PyMOL
100 Molecular Graphics System, Version 2.6.2 Schrödinger, LLC., with the A-loop colored according
101 to per-residue RMSF values.

102 The χ_1 and χ_2 dihedral angles of residue F424 (A-loop, P+1 loop region) were computed for each
103 frame of the conventional MD trajectories using MDAnalysis 2.7.0^{114,115}. Two-dimensional
104 histograms were generated with 100×100 bin resolution. Rotamer states were classified according
105 to standard χ_1 ranges: gauche- ($300^\circ \pm 30^\circ$), gauche+ ($60^\circ \pm 30^\circ$), and trans ($180^\circ \pm 30^\circ$). The
106 population of each rotamer was computed as the fraction of simulation frames falling into the
107 corresponding basin.

108 AlphaFold2-Initialized Molecular Dynamics

109 Initial conformations for enhanced sampling were generated using the AlphaFold2⁹⁵ multiple
110 sequence alignment (AF2-MSA) subsampling strategy described by Silva et al.¹¹⁷, implemented
111 from the public repository. For each variant (WT, P8E2, and selected gatekeeper mutants), 200
112 AF2 models were generated using default pipeline parameters. Each model was scored with AF2's
113 predicted local distance difference test (pLDDT) and projected into a reduced conformational
114 space defined by (i) the ΔD coordinate (difference between the distances E310-R409 and K295–
115 E310) and (ii) the activation-loop extension angle (C_α-atoms of K295–E310–Y/D416). The
116 reduced-space distribution was clustered via K-means ($k = 50$) in scikit-learn¹¹⁸, and one
117 representative conformation from each cluster was selected to seed MD simulations.

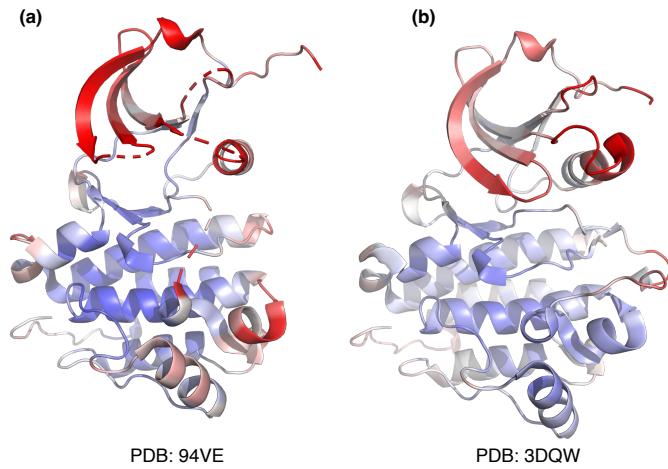
118 System preparation for each AF2-derived starting structure was performed in VMD 1.9.4a57 using
119 the psfgen plugin. The CHARMM36m force field¹¹⁹ was used for the protein, with ATP
120 parameters obtained from the CHARMM-GUI¹⁰⁷ Ligand & Solution Builder. Systems were
121 solvated in a rectangular TIP3P¹⁰⁶ water box, with at least 12 Å padding from any solute atom,
122 neutralized, and ionized to 0.15 M NaCl concentration. Energy minimization (5000 steepest
123 descent steps) was followed by NVT equilibration with backbone restraints ($250 \text{ kcal mol}^{-1} \text{ Å}^{-2}$),
124 gradually released over a series of 10 ps intervals ($250 \rightarrow 25 \rightarrow 2.5 \rightarrow 0.25 \text{ kcal mol}^{-1} \text{ Å}^{-2}$). An
125 additional 1 ns unrestrained NPT equilibration was performed prior to production. All simulations
126 were run in NAMD with a 12 Å non-bonded cutoff, switching at 10 Å, PME electrostatics¹¹², and
127 a 2 fs integration timestep. Temperature was maintained at 298 K via Langevin dynamics (damping
128 constant = 1 ps⁻¹), and pressure at 1 atm with a Langevin barostat¹²⁰ (period = 100 fs, decay = 50
129 fs). Each selected starting structure was simulated to produce a 400 ns trajectory.


130 From each AF2-seeded MD trajectory, conformational space was described in terms of two
131 features: (i) the difference between the distances E310-R409 and K295–E310, and (ii) the
132 activation-loop extension angle K295–E310–Y/D416. The distance measurement was based on the
133 closest terminal sidechain oxygen and nitrogen atoms.

134

135

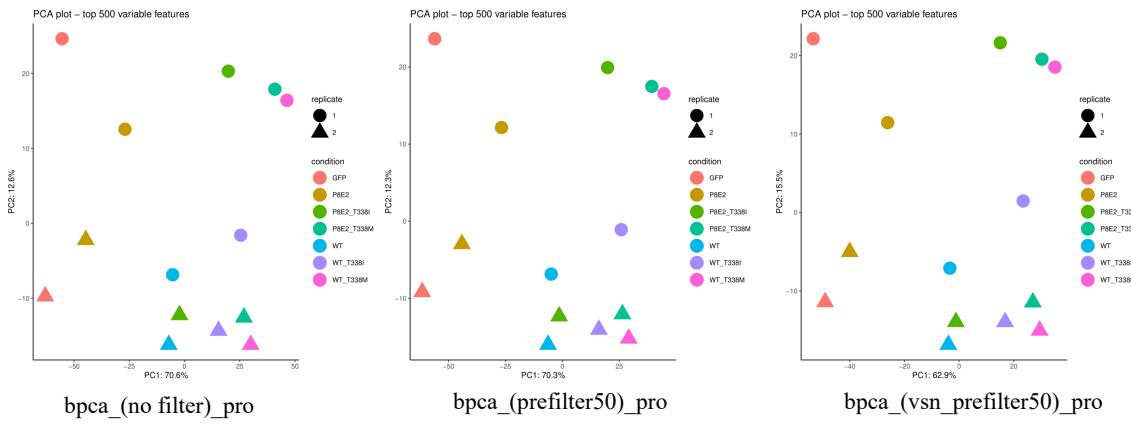
136


137 **Supplementary Figures**

138

139 **Figure S1: Structural Determinants Distinguishing Active and Inactive SRC Kinase Conformations. (a and b)**
140 Reference crystal structures that define the two variables used to distinguish active and inactive conformation of SRC
141 kinase. (a) In the active state (PDB ID: 3DQW¹²¹) the C-helix (pink) is pulled inward, allowing the catalytic E310–
142 K295 salt bridge (red dashed line) to form while R409 disengages from E310; permitting the activation loop (yellow)
143 to fully extend. (b) In the inactive kinase (PDB ID: 3U4W¹²²), R409 caps E310, the E310–K295 contact is broken,
144 and the A-loop folds back over the active site. Residues deleted in P8E2 (N414, T417, R419) are highlighted in blue.
145 (c) Distribution of 200 AlphaFold2⁹⁵ models (blue) and their K-means cluster centers (red) projected on the two
146 coordinates: A-loop angle between K295-E310-Y/D416 and the distance difference $\Delta D = D_{E310-R409} - D_{K295-}$
147 E310. Positive ΔD marks active-like conformations (E310–K295 short, R409–E310 long); negative values mark
148 inactive-like geometries.

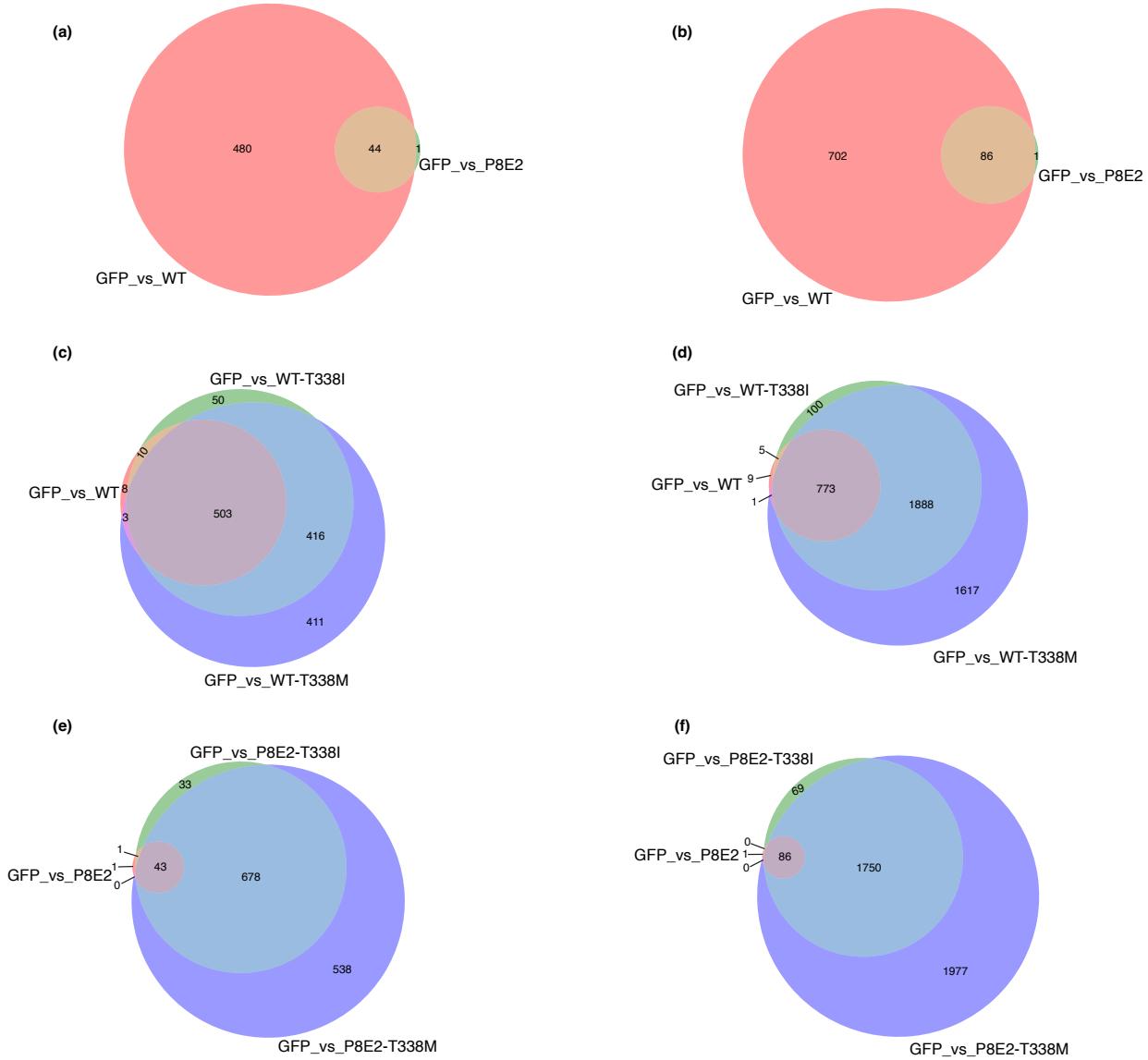
149



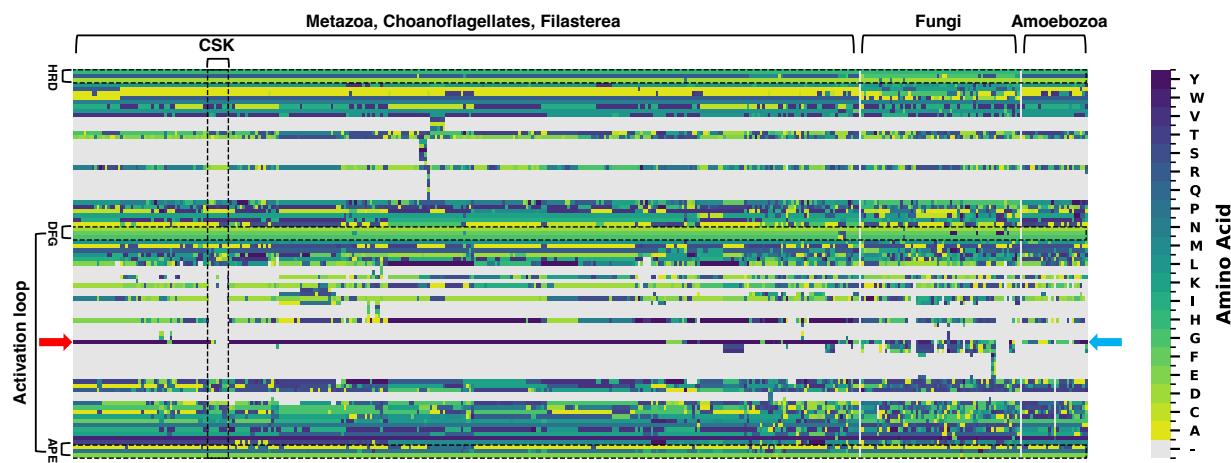
150

151 **Figure S2: Structural Comparison of P8E2 and WT SRC Kinase Colored by B-Factor.** Cartoon representation of
 152 (a) P8E2 (PDB 9V4E; this work) and (b) WT-T338I SRC kinase in the active conformation (PDB 3DQW¹²¹), colored
 153 according to B-factor (\AA^2). Low B-factors are shown in blue, intermediate B-factors in white, and high B-factors in
 154 red (range 10–50 \AA^2). P8E2 exhibits elevated B-factors at the N- and C-termini, and the activation loop is unresolved,
 155 highlighting its dynamic and flexible nature compared to the ordered active conformation of WT SRC kinase.

156

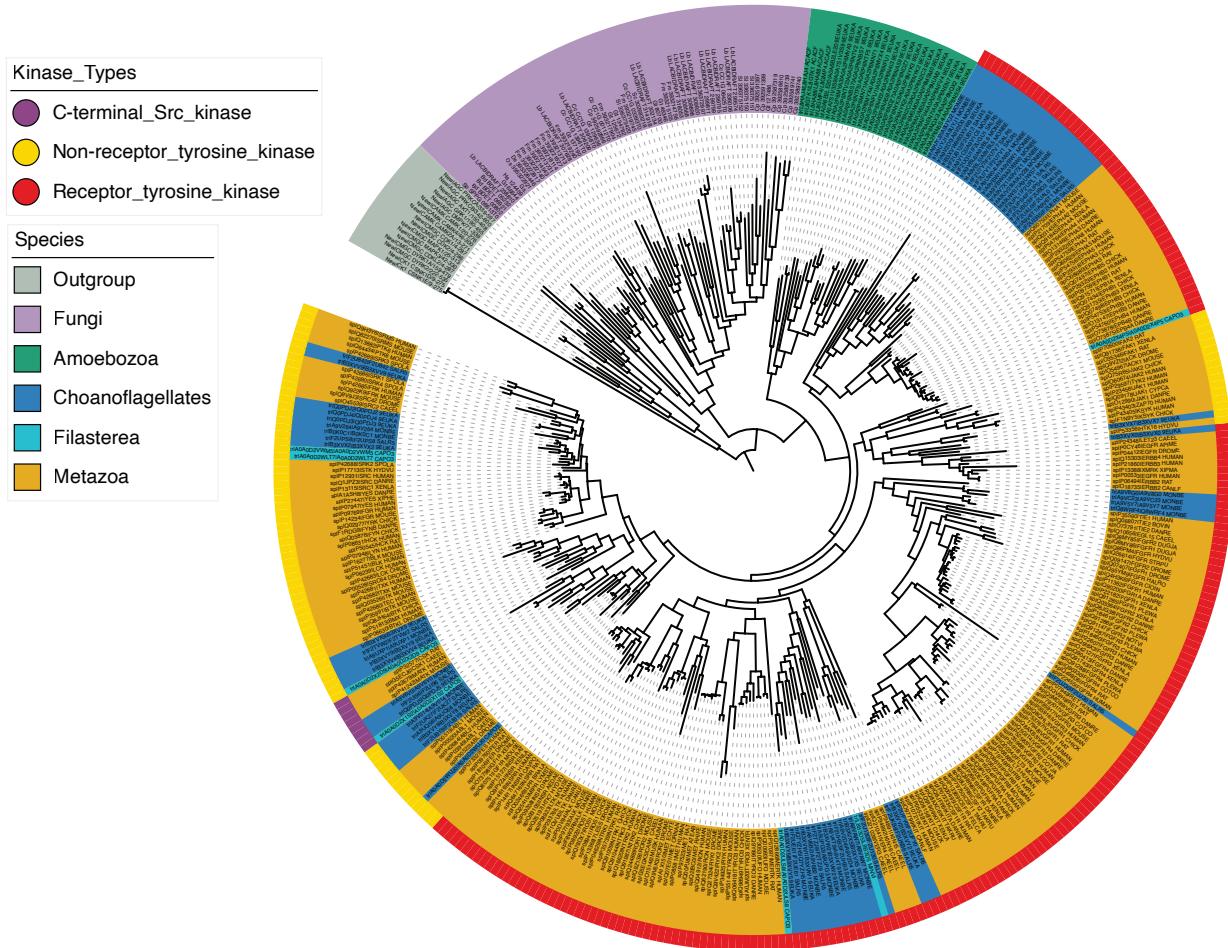

157

158


159 **Figure S3: Principal Component Analysis (PCA) of Proteomics Data with Different Imputation Strategies.** PCA
 160 was performed to check the proteome data and to compare the data processing workflow of 'bpcache_no filter_pro',
 161 'bpcache_prefilter50_pro', or 'bpcache_vsn_prefilter50_pro' indicated in Table S2. PC2 scaled mainly between the two
 162 replicates of each experimental group, while PC1 spread over the experimental groups. Choices of processing
 163 workflow did not visibly affect PCA.

164

165


166 **Figure S4: Venn Diagrams of Differentially Expressed Proteins and Peptides Across Kinase Variants.** Left panel
167 (a,c,e) DE proteins; Right panel (b,d,f): DE peptides. (a and b) Comparison of WT and P8E2. (c and d) Comparison
168 of WT, WT-T338I, and WT-T338M. (e and f) Comparison of P8E2, P8E2-T338I, and P8E2-T338M.

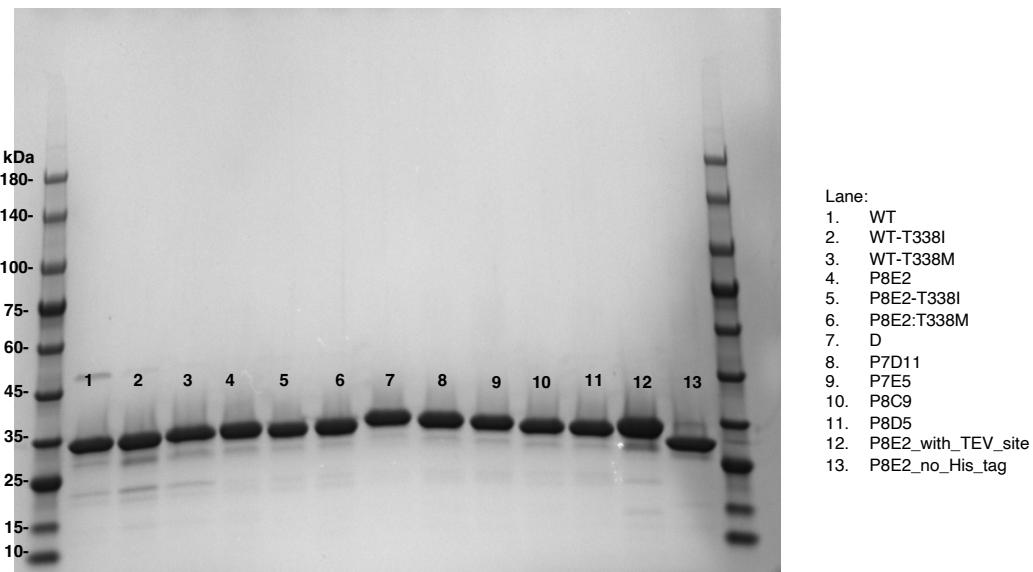
169

170 **Figure S5: Multiple Sequence Alignment of Eukaryotic Kinase Domains.** Heatmap of the multiple sequence
 171 alignment focused on the activation loop region. Sequences are arranged horizontally. A conserved motif is observed
 172 across all sequences. Canonical autophosphorylation sites are marked with red and blue arrows. CSK sequences,
 173 characterized by shorter activation loops, are outlined with black dotted lines.

174

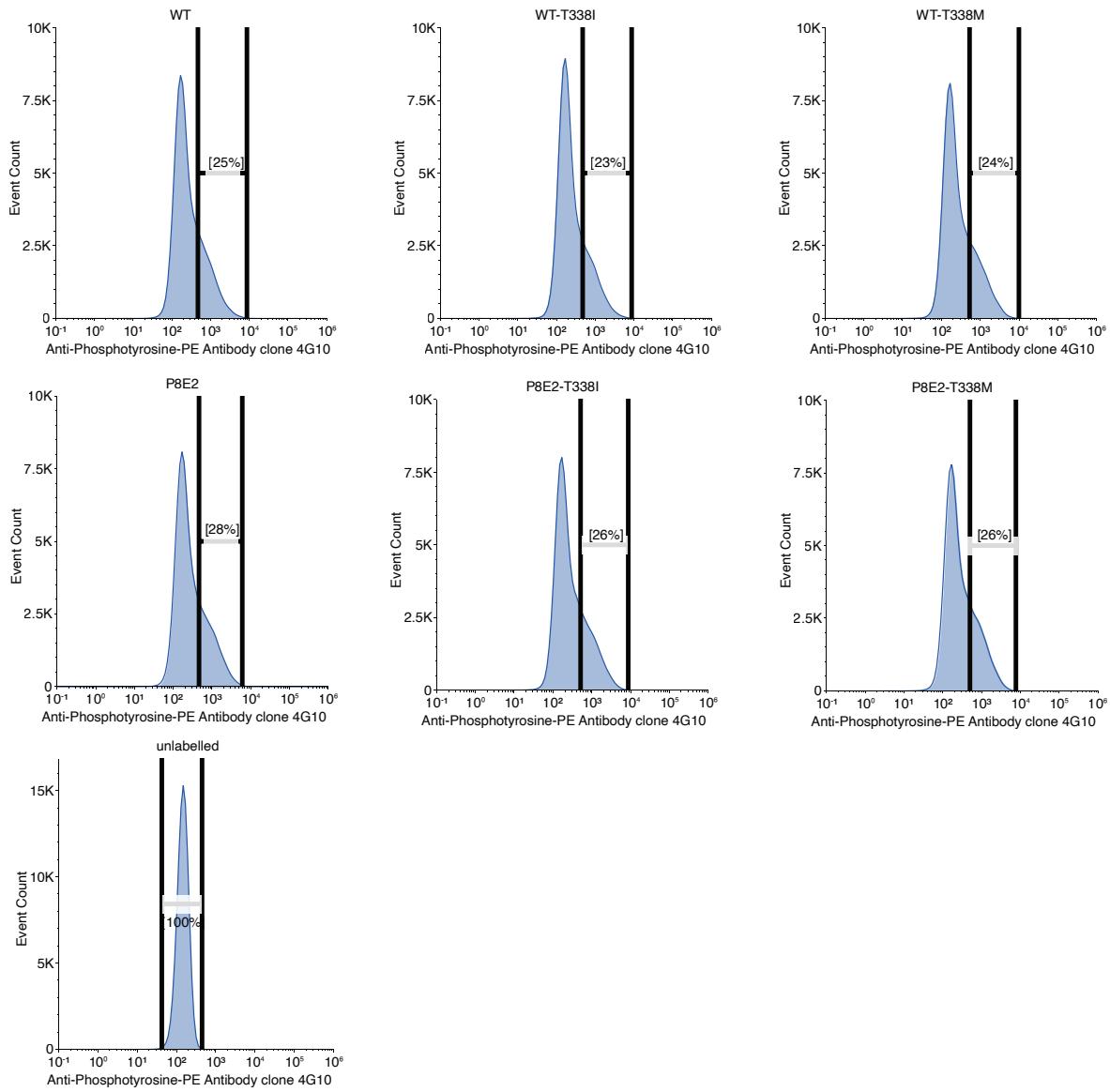
175

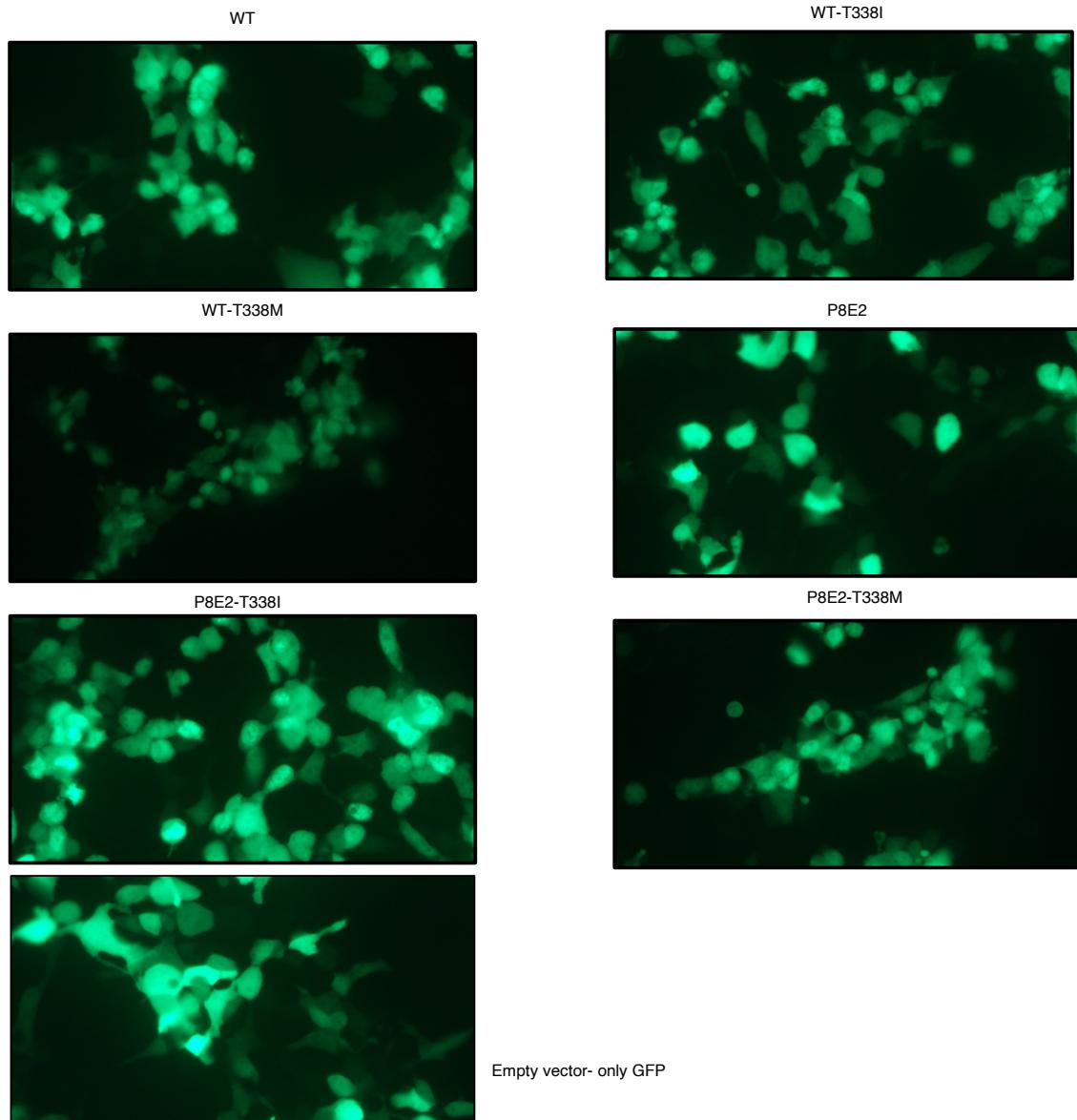
176 **Figure S6: Phylogenetic Tree of Tyrosine Kinase Domains Across Eukaryotic Lineages.** Phylogenetic tree of the
 177 kinase domain across diverse species. Metazoa, Choanoflagellates, and Filasterea form distinct clades that correspond
 178 to Receptor Tyrosine Kinases, Non-Receptor Tyrosine Kinases, and C-terminal Src Kinase (CSK). Tyrosine kinase
 179 subtypes are not clearly distinguishable in Amoebozoa and Fungi, where no canonical TK clades emerge, although
 180 amoebozoan kinases cluster relatively close to those of premetazoa and metazoan.


181

182

183 **Figure S7: Size Exclusion Chromatography (SEC) Profiles of SRC Variants.** SEC profiles of SRC variants
 184 obtained using a Superdex 200 10/300 column. The elution range for all variants is between 14–16 mL. The P8E2
 185 variant with the His-tag cleaved was run on a HiLoad 26/600 Superdex 75 pg column and eluted between 210–230
 186 mL. Shaded regions indicate the fractions that were analyzed by SDS-PAGE.


187


188

189 **Figure S8: SDS-PAGE Analysis of SRC Kinase Variants.** Approximately 5 μ g of each purified protein was loaded
190 per well and electrophoresed at 220 V for 30 minutes to assess protein purity and relative molecular weight.

191

194 **Figure S9. Flow Cytometry Histograms of WT SRC, P8E2, and Gatekeeper Variants.** Representative histogram
 195 (1 of 3 biological replicates) for WT SRC, P8E2, and gatekeeper variants. Approximately 100,000 events were
 196 recorded to generate the histogram, and 2–3 million cells were collected from a region offset by 25% from the gated
 197 population for next-generation sequencing. Raw flow cytometry data were processed and plots were generated using
 198 Floreada.io (<https://floreada.io>). The X-axis indicates fluorescence detected using the anti-phosphotyrosine antibody
 199 4G10 (PE-conjugated), and the Y-axis shows event count per fluorescence bin.

200

201 **Figure S10: Fluorescence Images of HEK293T Cells Expressing GFP-Tagged WT SRC, P8E2, and Gatekeeper**
202 **Mutants.** Representative Fluorescence images (1 of 2 biological replicates) of HEK293T cells transiently expressing
203 WT SRC, P8E2, and their respective gatekeeper mutants with N-terminal GFP tags. Images were captured at 40 \times
204 magnification and correspond to the samples used in the proteomics experiment.

205

206 **Supplementary Tables**207 **Table S1: Activation Loop Variants of SRC Kinase.** Positions in the activation loop where residues were either
208 substituted or deleted. Each of the six WT residues (L410, N414, T417, A418, R419, Q420) was subjected to one or
209 more amino acid substitutions or complete deletion (Δ) in various combinations to evaluate their effects on catalytic
210 activity. A full list of all designed variants is provided in the Supplementary Data 2

Position (WT)	Substituted Residue(s)
L410	V, I, M, Δ
N414	D, S, T, Δ
T417	N, L, V, M, E, S, Δ
A418	P, Δ
R419	Q, H, Δ
Q420	E, V, Δ

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226 **Table S2: Effects of Prefilter, Normalization, and Missing Value Imputation (VMI) on the Number of DE**
 227 **Peptides and Proteins.** A custom filter, ‘prefilter50’, removes the peptide if NA is found as a missing value in more
 228 than 50% of the 14 samples (7 groups, each with 2 replicates). The prefilter removes approximately by 39% or 17%
 229 of total peptides or proteins (the suffix ‘pep’ or ‘pro’), respectively. *Vsn* is “variance stabilization normalization”^{123,124}.
 230 *Bpca* is “Bayesian PCA missing value estimation”¹²⁵. *FragPipeAnalystR* evaluates differential expression with *limma*
 231 “Linear Models for Microarray and Omics Data”¹²⁶. Significance is based on FDR/BH (*p_adj*) < 0.05 and |log2FC|
 232 > 1.0. The percentage in parentheses are percent total. The processing name was given in the chronological order that
 233 a filter or normalization was applied. For our analysis of DE peptides or proteins, we chose ‘*bpcapca_vsn_prefilter50*’ in
 234 the workflow unless otherwise indicated.

Processing Name	Significant Peptides or Proteins	Total
bpcapca_(no filter)_pep	8,687 (28%)	31,105
bpcapca_(no filter)_pro	2,295 (36%)	6,334
bpcapca_prefilter50_pep	5,811 (31%)	18,916
bpcapca_prefilter50_pro	1,860 (35%)	5,272
vsn_bpcapca_prefilter50_pep	5,640 (30%)	18,916
vsn_bpcapca_prefilter50_pro	1,837 (35%)	5,272
bpcapca_vsn_prefilter50_pep	5,787 (31%)	18,916
bpcapca_vsn_prefilter50_pro	1,682 (32%)	5,272

235

236

237 **Table S3: Phosphopeptides Identified in SRC Family Proteins.** *The letter Y in bold typeface indicates the
238 phosphorylated tyrosine residue in the peptide sequence. The red Y indicates the autophosphorylated tyrosine residue
239 in the A-loop. The peptide sequence is not unique to the protein identified in the proteomics software FragPipe as
240 NCBI BLASTP identifies other SRC members share the peptide sequence.

Peptide Sequence*	IDed by FragPipe	BLASTP ClusteredNR_100%	Significant in comparisons of GFP vs:
LIEDNE Y TAR	SRC	FYN, YES, LCK	WT, T338I, T338M
VP Y PGMVNR	SRC	YES	P8E2-T338I, P8E2-T338M, WT, WT-T338I, WT-T338M
WTAPEAAL Y GR	SRC	FYN, YES	P8E2, P8E2-T338I, P8E2-T338M, WT, WT-T338I, WT-T338M
VIEDNE Y TAR	LYN	HCK	P8E2-T338I, P8E2-T338M, WT-T338I, WT-T338M

241

242

243

244

245

246

247

248

249

250

251 **Table S4: X-Ray Data Collection and Refinement Statistics**

Structure	P8E2
PDB code	9V4E
Data collection	
Space group	$P2_12_12_1$
Cell dimensions	
a, b, c (Å)	41.5, 62.9, 105.4
α, β, γ (°)	90.0, 90.0, 90.0
Resolution (Å)	41.46 – 1.78 (1.89 – 1.78)*
R_{merge} (%)	8.4 (73.1)
$CC_{1/2}$ (%)	99.9 (85.2)
$I/\sigma I$	19.52 (2.79)
Completeness (%)	99.8 (99.3)
Redundancy	8.1 (8.4)
Refinement	
Resolution (Å)	40.87 – 1.78
No. unique reflections	27179
$R_{\text{work}} / R_{\text{free}}$	
No. atoms	
Protein	1925
Ligand/ion	32
Water	94
B -factors (Å ²)	
Protein	32.7
Ligand/ion	61.7
Water	34.0
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	1.72

252 *Values in parentheses are for highest resolution shell.

253

254

255

256

257

258

259

260

261

262 **References**

263 88 Pearlman, S. M., Serber, Z. & Ferrell, J. E., Jr. A mechanism for the evolution of
264 phosphorylation sites. *Cell* **147**, 934-946 (2011).

265 89 Olsen, J. V. *et al.* Global, *in vivo*, and site-specific phosphorylation dynamics in signaling
266 networks. *Cell* **127**, 635-648 (2006).

267 90 Lim, W. A. & Pawson, T. Phosphotyrosine signaling: evolving a new cellular
268 communication system. *Cell* **142**, 661-667 (2010).

269 91 Noble, M. E., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug
270 design from structure. *Science* **303**, 1800-1805 (2004).

271 92 Emrick, M. A. *et al.* The gatekeeper residue controls autoactivation of ERK2 via a pathway
272 of intramolecular connectivity. *Proc. Natl. Acad. Sci. USA* **103**, 18101-18106 (2006).

273 93 Rotow, J. & Bivona, T. G. Understanding and targeting resistance mechanisms in NSCLC.
274 *Nat. Rev. Cancer* **17**, 637-658 (2017).

275 94 Zhou, Y., Xiang, S., Yang, F. & Lu, X. Targeting Gatekeeper Mutations for Kinase Drug
276 Discovery. *J. Med. Chem.* **65**, 15540-15558 (2022).

277 95 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
278 583-589 (2021).

279 96 Wayment-Steele, H. K. *et al.* Predicting multiple conformations via sequence clustering
280 and AlphaFold2. *Nature* **625**, 832-839 (2024).

281 97 Nivon, L. G., Moretti, R. & Baker, D. A Pareto-optimal refinement method for protein
282 design scaffolds. *PLoS One* **8**, e59004 (2013).

283 98 Woods, H. *et al.* Computational modeling and prediction of deletion mutants. *Structure* **31**,
284 713-723 e713 (2023).

285 99 Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive
286 and non-redundant UniProt reference clusters. *Bioinformatics* **23**, 1282-1288 (2007).

287 100 Richardson, L. *et al.* MGnify: the microbiome sequence data analysis resource in 2023.
288 *Nucleic Acids Res.* **51**, D753-D759 (2023).

289 101 Mirdita, M. *et al.* UniClust databases of clustered and deeply annotated protein sequences
290 and alignments. *Nucleic Acids Res.* **45**, D170-D176 (2017).

291 102 Steinegger, M. *et al.* HH-suite3 for fast remote homology detection and deep protein
292 annotation. *BMC Bioinformatics* **20**, 473 (2019).

293 103 Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of backbone
294 bond geometry improves protein energy landscape modeling. *Protein Sci.* **23**, 47-55 (2014).

295 104 Lindahl, Abraham, Hess & Spoel, v. d. GROMACS 2020.7 Manual. *zenodo* (2022).

296 105 Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically
297 disordered proteins. *Nat. Methods* **14**, 71-73 (2017).

298 106 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L.
299 Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **79**,
300 926-935 (1983).

301 107 Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface
302 for CHARMM. *J. Comput. Chem.* **29**, 1859-1865 (2008).

303 108 Nose, S. A unified formulation of the constant temperature molecular dynamics methods.
304 *J. Chem. Phys.* **81**, 511-519 (1984).

305 109 Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. *Phys. Rev. A Gen. Phys.* **31**, 1695-1697 (1985).

307 110 Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular
308 dynamics method. *J. Appl. Phys.* **52**, 7182-7190 (1981).

309 111 Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: A linear constraint
310 solver for molecular simulations. *J. Comput. Chem.* **18**, 1463-1472 (1997).

311 112 Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An $N \cdot \log(N)$ method for Ewald
312 sums in large systems. *J. Chem. Phys.* **98**, 10089-10092 (1993).

313 113 Páll, S. & Hess, B. A flexible algorithm for calculating pair interactions on SIMD
314 architectures. *Comput. Phys. Commun.* **184**, 2641-2650 (2013).

315 114 Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit
316 for the analysis of molecular dynamics simulations. *J. Comput. Chem.* **32**, 2319-2327
317 (2011).

318 115 Gowers, R. J. *et al.* MDAnalysis: A Python Package for the Rapid Analysis of Molecular
319 Dynamics Simulations. *PROC. OF THE 15th PYTHON IN SCIENCE CONF. (SCIPY)*, 98-
320 105 (2016).

321 116 Van Der Spoel, D. *et al.* GROMACS: fast, flexible, and free. *J. Comput. Chem.* **26**, 1701-
322 1718 (2005).

323 117 Monteiro da Silva, G., Cui, J. Y., Dalgarno, D. C., Lisi, G. P. & Rubenstein, B. M. High-
324 throughput prediction of protein conformational distributions with subsampled AlphaFold2.
325 *Nat. Commun.* **15**, 2464 (2024).

326 118 Buitinck, L. *et al.* API design for machine learning software: experiences from the scikit-
327 learn project. *arxiv* **1309.0238** (2013).

328 119 Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically
329 disordered proteins. *Nat Methods* **14**, 71-73 (2017).

330 120 Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular
331 dynamics simulation: The Langevin piston method. *J. Chem. Phys.* **103**, 4613-4621 (1995).

332 121 Azam, M., Seeliger, M. A., Gray, N. S., Kuriyan, J. & Daley, G. Q. Activation of tyrosine
333 kinases by mutation of the gatekeeper threonine. *Nat. Struct. Mol. Biol.* **15**, 1109-1118
334 (2008).

335 122 Georghiou, G., Kleiner, R. E., Pulkoski-Gross, M., Liu, D. R. & Seeliger, M. A. Highly
336 specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. *Nat.*
337 *Chem. Biol.* **8**, 366-374 (2012).

338 123 Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M. Variance
339 stabilization applied to microarray data calibration and to the quantification of differential
340 expression. *Bioinformatics* **18 Suppl 1**, S96-104 (2002).

341 124 Valikangas, T., Suomi, T. & Elo, L. L. A systematic evaluation of normalization methods
342 in quantitative label-free proteomics. *Brief Bioinform.* **19**, 1-11 (2018).

343 125 Oba, S. *et al.* A Bayesian missing value estimation method for gene expression profile data.
344 *Bioinformatics* **19**, 2088-2096 (2003).

345 126 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
346 and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

347