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Supplementary Methods  

Participants 

The UK biobank is one of the largest population-based biomedical cohorts that consists of more than 500,000 

participants aged 40 to 96 across the UK, who provide de-identified genomic, whole-body imaging, health 

records, body fluid biomarker and physical measurements (https://biobank.ndph.ox.ac.uk/showcase/)1,2. All 

individuals undergoing retinal OCT at baseline or participating in the imaging visit for brain MRI, heart MRI, 

abdominal MRI, and whole-body dual-energy x-ray absorptiometry (DXA) scanning were initially included 

in the present study. The UK Biobank was approved by the North West Multi-centre Research Ethics 

Committee, and written informed consent was obtained from all participants. 

Multi-organ imaging phenotypes 

The chronological age prediction for seven organs were constructed using 1,777 IDPs of the corresponding 

organs, including the brain, heart, body composition, kidney, liver, pancreas, and eye. Given the obvious 

functional difference, brain gray matter and white matter were assessed separately. Only structural and 

functional IDPs of organs were selected and sourced from UKB (Supplementary Table 1 and Supplementary 

Fig 1). A detailed description of imaging processing, artifact correction, image registration, quality control, 

and phenotype extraction of the organs is available on the UKB official website3.  

Specifically, IDPs of the brain, heart, and abdominal organs were derived from multisequence MRI. 

For the brain, the T1 weighted MRI was utilized to quantify 1,010 IDPs related to regional grey matter 

volume, cortical mean thickness, and surface area. The T1-weighted and diffusion-weighted MRI generated 

443 measurements of white matter volume and microstructure of major white matter tracts. The 

microstructure measurements were characterized using diffusion tensor imaging (DTI) fitting and Neurite 

Orientation Dispersion and Density Imaging (NODDI) modelling4, including fractional anisotropy (FA), 

mean diffusivity (MD), tensor mode (MO), L1, L2, L3, ICVF, isotropic or free water volume fraction 

(ISOVF) and orientation dispersion index (OD). For the heart, a set of cardiovascular MRI sequences was 

leveraged to assess 106 IDPs related to cardiac and aortic structure and function5, including cardiovascular 

morphology, ventricular function, and myocardial perfusion. The anatomical structures primarily included 



 

 

in these measurements were ascending aorta, descending aorta, left and right ventricle, and left and right 

atrium. Besides, the abdominal MRI of multiple sequences was applied to generate volume, fat, and iron 

measurements in the liver, kidney, pancreas, lung, spleen, and adipose tissue6,7. In contrast, the lung and 

spleen were excluded due to the lack of fat and iron data 

(biobank.ndph.ox.ac.uk/showcase/ukb/docs/body_mri_explan.pdf).  

Meanwhile, 138 IDPs of body composition were measured from the DXA instrument 

(biobank.ndph.ox.ac.uk/ukb/ukb/docs/DXA_explan_doc.pdf), with the standard operating procedure and 

real-time quality control applied. The measurements of bone area, bone mineral content, bone mineral 

density, lean mass, and fat mass were directly derived. 

Finally, 64 IDPs of the eye were derived from retinal OCT using TOPCON 3D OCT 1000 Mk2 (Topcon 

Corporation, Tokyo, Japan)8, which provides information about the thickness of retinal layers and subfields, 

along with the vertical cup-to-disc ratio and disc diameter.  

For each organ, the participants with missing data for any organ-related IDPs were excluded, resulting 

in a slightly different number of healthy participants eligible for further age modelling (Supplementary Table 

2). No obvious difference in age and sex distribution was observed among different organs in our cohort, 

except that optical coherence tomography scanning for the eye at baseline had a younger age than the other 

organs scanned at the imaging visit. 

Normative organ aging models 

LASSO models were trained in healthy participants to predict the chronological age of participants, with 

imaging-derived phenotypes of brain GM, brain WM, heart, body composition, kidney, liver, pancreas, and 

eye as potential predictors (Supplementary Table 1). The healthy status was defined as having no lifetime 

occurrence record in linked primary care, hospital inpatient, death register and self-reported medical 

condition sources (Category 1712). LASSO regression can perform automatically select features, reduce 

model complexity, and prevent overfitting by applying L1 regularization. For each organ, the LASSO 

predictive model was constructed using a nested 10-fold cross-validation. The inner loop includes a cross-

validation in selecting the best hyperparameter lambda by evaluating the model's performance on lambda 

range from 10!" to 10#, while the outer loop assessed the model’s generalization performance by training 

the model on nine of the folds with the optimal lambda and tested on the one remaining fold. This cross-



 

 

validation procedure resulted in a predicted age for each healthy individual. In each of the iterations, the 

effect of the scanning site and total intracranial volume were regressed from the IDPs before model training. 

The residuals were centered and scaled in the training data and the same covariate regression and 

normalization parameters were applied to the test data. Following the suggestion, chronological age was also 

regressed from the predicted age in the training data, and the same regression model was applied to test 

data9,10. Model performance was evaluated by calculating Pearson’s correlation coefficient and mean 

absolute error between predicted age and chronological age in the test sets. In this way, we avoided the 

potential data leakage to the greatest extent caused by involving information from test data sets in training a 

model.  

Finally, eight optimal organ-specific biological age prediction models were created in healthy 

participants, and the models were applied to the remaining UKB participants to obtain the predicted age of 

each organ. Note that the same covariate regression, normalization parameters and the age bias correction 

derived from the training data of healthy individuals were applied to the remaining UKB participants before 

the prediction. The difference between the predicted age of each organ and chronological age was regarded 

as the organ-specific age gap, informing whether the organ exhibited an accelerated or decelerated aging 

process compared to healthy peers. Each individual was thus characterized by eight organ-specific age gaps, 

which were used for further analyses. In sensitivity analysis, separate models were trained for healthy males 

and females to examine the potential sex difference in age prediction, with the same model training strategy 

employed.  

Structural equation modeling 

SEM was employed to assess the association between the age gap of one organ and that of another. Given 

that the eye was scanned at a different visit compared to other organs, the SEM was limited to six organs 

except the eye. In determining the optimal model structure, the fast-greedy equivalence search (FGES) 

heuristic algorithm from Tetrad v7.6.511 was used to determine the causal Bayesian network with the highest 

score. FGES is a Bayesian heuristic algorithm that begins by adding edges step by step until no further 

addition improves the Bayesian Information Criterion. It then removes edges incrementally until no further 

removal increases the Bayesian Information Criterion12. The FGES heuristic was repeated for 500 

bootstrapped samples, and consensus edges in 50% of the samples resulted in a final network structure. 



 

 

Although the FGES algorithm assumes that the underlying causal structure can be represented as a directed 

acyclic graph (DAG), which may not hold due to the lack of temporal directionality in this study. FGES can 

still be useful in exploratory analyses to generate hypotheses about network structures of cross-sectional data. 

With the determined network structure, the pathway analysis was performed with R package lavaan v0.6.17 

to estimate the coefficient and significance for edges in the final network. In sensitivity analysis, age at the 

imaging visit, sex, and the imaging site were further regressed from all organ-specific age gaps, and a search 

algorithm was performed on the resulting residuals. The characterization of how one organ’s baseline age 

gap influences the follow-up age gap or rate of aging of other organs was not applicable due to limited 

participants with repeated imaging visits. 

Phenome-wise association analysis 

Taking similar UKB fields of modifiable factors as previous research13, 344 and 224 factors were available 

at the baseline visit and the imaging visit for the present study, respectively. After excluding multinomial 

phenotypes, 143 common factors were obtained for organs except the eye, and 139 common factors were 

obtained for all organs. The factors can be divided into six broad categories (Supplementary Table 16). (1) 

Sociodemographic factors: education, employment and household economic status information. (2) Lifestyle 

factors: physical activity, sleeping, smoking, alcohol intake, diet, electronic device usage, and sexual 

behaviors. (3) Early-life and family history factors: birth weight, body weight at the child, adoption, and the 

health condition of parents. (4) Mental health: self-reported symptoms related to psychiatric conditions, such 

as anxiety, depression, addiction, and trauma. (5) Physical measures: anthropometry, blood pressure, arterial 

stiffness, hand-grip strength, and self-reported medical history. (6) Cognitive functions: fluid 

intelligence/reasoning, numeric memory, prospective memory, reaction time, matrix paired associate 

learning, pattern completion, symbol digit substitution, tower rearranging, pairs matching, and trail making. 

The data were averaged across rounds for tests with multiple rounds, such as reaction time, pairs matching, 

symbol digit substitution, matrix pattern completion and trail making. 

PheWAS associations were examined with the PHESANT package in R14, which allows automated 

phenome scanning for different types of factors. In this study, the association between organ-specific age 

gap and factors was examined for each organ, with age and sex as covariates. Note that the factors and age 

at the baseline were used for the eye, and factors and age at the imaging visit were used for other organs. 



 

 

The significance was determined by FDR-corrected P < 0.05 across 143×7 factor-organ pairs. The linear 

and logistic regression were performed according to the type of factors. In sensitivity analysis, we performed 

PheWAS with the 139 modifiable factors available at both the baseline and imaging visit for all eight organs, 

with significance determined by FDR-corrected P < 0.05 across 139×8 factor-organ pairs. 

Survival analysis of disease and mortality risk  

A total of 13 categories of incident outcomes (Supplementary Table 3) were selected from UKB, including 

12 broad categories of diseases (36 specific diseases) and all-cause mortality (four cause-specific mortality). 

In UKB, incident diagnoses for the selected diseases and mortality were confirmed using linked hospital 

inpatient, primary care, and death register data15. For organs except the eye, the follow-up of participants 

began from the date of their third visit, i.e., imaging visits, and the end of follow-up was defined as the date 

when a disease diagnosis occurs or when a participant is censored due to death or loss to follow-up, 

whichever occurred first. The endpoints defined as the diagnosis obtained from self-reported records or 

incidents that occurred before the date of the imaging visit of the corresponding disease were excluded. 

Meanwhile, for the eye, the follow-up began from the date of their first visit to the assessment centers, i.e., 

baseline visit, and the end of follow-up was defined using the same criteria as other organs. The endpoints 

that defined as the diagnosis obtained from self-reported records or incidents occurred before the date of 

baseline visit of the corresponding disease were excluded.  

The associations between the organ-specific age gaps and incident outcomes were tested with Cox 

proportional hazards models using R package survival v3.5.5. The follow-up time to endpoints defined above 

and binary incident event indicator were used. For all incident outcomes of 13 categories, the survival model 

included organ-specific age gap, chronological age, sex, years of education, body mass index (BMI), 

smoking, and drinking status as predictors. Note that the covariates of all organs except the eye were sourced 

from the imaging visit, while the covariates of the eye were obtained from the baseline visit. The significance 

of the effect of the age gaps was determined by FDR-corrected P < 0.05 across all pairs of organs and 

outcomes. The averaged age gap across organs was obtained to demonstrate the association between the 

overall age gap and the risk of incident outcomes, and a similar survival model was constructed. To eliminate 

the potential bias in the age gaps caused by the scanning site, a sensitivity analysis was conducted by 

regressing the effect of chronological age, sex, and scanning site prior to survival analysis. To enhance the 

reliability of the results, we also constructed the survival model by grouping organ-specific age gaps into 



 

 

quartiles from lowest to highest and assessed the ability of the age gaps for the risk stratification of diseases 

and mortality. 

Association with proteins and blood biomarkers 

The baseline plasma samples were processed using a NovaSeq 6000 Sequencing Systems (Illumina Inc., San 

Diego, USA), and the Olink Explore 3072 (Olink Proteomics AB, Uppsala, Sweden) was utilized to quantify 

the concentration of 2,923 unique proteins. After that, quality control, outlier detection, and normalization 

were performed to calculate Normalized Protein eXpression (NPX) measures in relative units on the log2 

scale16,17. Three proteins (GLIPR1, NPM1, and PCOLCE) with a 50% or higher missing rate were discarded, 

and the median imputation was applied to the remaining missing values. The concentration of each protein 

was first inverse-rank normalized, and then the effects of chronological age and sex were regressed out. 

Finally, the NPX values of 2,920 proteins were eligible for the following analyses. For different organs, 530 

to 5,525 participants with all 2,920 proteins available were included in the present study (Supplementary 

Table 11). 

The plasma samples collected at baseline were also prepared and processed to quantify blood 

biochemistry, blood count, and metabolic biomarkers. In particular, blood biochemistry data consisting of 

30 biochemical markers was quantified by Beckman Coulter AU5800 for approximately 480,000 

participants. Blood count data containing 31 haematological markers related to red and white blood cells 

was produced using Beckman Coulter LH750 for almost all 500,000 UKB participants. Meanwhile, 

approximately 285,000 UKB participants were also prepared and processed by Nightingale Health 

laboratories in Finland to perform metabolic biomarker profiling. Six 500 MHz Nuclear Magnetic Resonance 

(NMR) spectrometers and Nightingale Health’s proprietary software were utilized to quantify 249 metabolic 

measures per plasma sample, including 168 absolute and 81 ratio measures. A detailed description of sample 

preparation, NMR spectroscopy, metabolism quantification, and quality control was available elsewhere18. 

Finally, for different organs, 2,569 to 25,241 participants with all 310 blood biomarkers available were 

included in the present study (Supplementary Table 7). To enhance the interpretability, we adapted the 

original UKB categorical definition of blood biomarkers to 17 groups (Supplementary Table 8). Similar to 

that of the proteome, the concentration of blood biomarkers was inverse-rank normalized, and then the 

effects of chronological age and sex were removed through regression.  



 

 

For each organ, a generalized linear model was employed to examine the association between plasma 

proteins, and organ-specific age gaps characterized by imaging. The protein concentration was modeled as 

the predictor and the chronological age at imaging, sex, years of education, Townsend index, smoking status 

at imaging, drinking status at imaging, ethnicity, and the interval between baseline and imaging were 

included as covariates. The association analysis was not performed for the eye due to limited participants 

with both OCT imaging and proteomic data. The significance was determined by FDR-corrected P < 0.05 

across all 2,920×7 protein-organ pairs. For each organ, separate enrichment analysis was performed for 

proteins with significant positive and negative associations with age gaps, using the protein-coding genes of 

2,920 proteins as the background gene set. GO biological processes enrichment was performed with an over-

representation analysis from ToppGene (https://toppgene.cchmc.org/enrichment.jsp). Tissue enrichment 

analysis was conducted with a hypergeometric test from GENE2FUNC module of FUMA v1.5.2 

(https://fuma.ctglab.nl/), using gene expression from GTEx v8. In particular, by comparing the gene 

expression of each tissue to all the others, genes with Bonferroni-corrected p < 0.05 and absolute log fold 

change greater than 0.58 were defined as differential expression gene sets of a given tissue. To eliminate the 

potential bias in the age gap caused by the scanning site, a sensitivity analysis that constructed linear models 

with the scanning site as an additional covariate was performed. Similar generalized linear models to that of 

proteins were performed to examine the association between organ-specific age gaps and blood biochemistry, 

blood count, and metabolic biomarkers. The significance was determined by FDR-corrected P < 0.05 across 

all 310×7 blood biomarker-organ pairs.  

Disease and mortality risk prediction 

In further illustrating the clinical relevance of the organ-specific age gap, we developed the prediction model 

with the IDPs contributing most to the organ-specific age gap. Specifically, the outcomes were defined as 

the lifelong incidents of diseases and mortality in UKB, with the events treated as binary indicators. Besides, 

any participants with indexed events before or at the baseline (for eye) or imaging visit (for other organs) 

were excluded. For each organ, the top 50% IDPs with the highest absolute non-zero weights in the biological 

age prediction LASSO, which contains information about biological age, were selected as predictors in 

further analysis. For each organ and each disease, the LightGBM predictive model was constructed using a 

10-fold cross-validation framework to avoid potential overfitting. In each iteration, the model was trained 

on nine of the folds with the specified hyperparameters (max_depth=15, learning_rate=0.01, num_leaves=10, 



 

 

n_estimators=100, subsample=0.7, colsample_bytree=0.7) and tested on the one remaining fold, resulting in 

an area under a ROC curve metric. Overall model performance was evaluated by averaging AUC across 10 

folds. Using the same framework, an overall prediction model including the selected predictors of all organs 

was also conducted. By comparing the performance of the established models to the baseline model that 

included only chronological age and sex, we evaluate whether the models that incorporated information 

about organ-specific biological age could more accurately predict further risk of diseases and mortality than 

traditional chronological age.  

To assess the robustness of the predictive ability, the prediction was also repeated with a time incident 

window of within 10 years, that is, the outcome was defined as the incident of the diseases and mortality 

within 10 years after baseline (for eye) or imaging visit (for other organs), with any event incident after 10 

years treated as no incident. Also, any participants with indexed events before or at the baseline (for eye) or 

imaging visit (for other organs) were excluded.  

Supplementary Figures 
 

 

Figure S1 Interrelationships between age gap across organs in sensitivity analysis. The organ age 

gap was calculated as the difference between predicted age and chronological age. after which 

chronological age, sex and scanning site were regressed out from age gaps. The residuals were used for 

following analysis. (A) The Pearson’s coefficients of associations between the age gap of different 

organs are shown, with darker represent higher relationships. * < 0.05, ** < 0.01. (B) The multi-organ 

aging networks characterizing the influence of the age gap of one organ on another. Significant links 



 

 

were inferred by SEM at a threshold of Bonferroni-corrected P < (0.05/11 pairs), thicker and darker 

lines represent stronger influence. 

  



 

 

 
Figure S2 Diagram of the anatomy of different human organs used in the study. To enhance 

readability, this diagram illustrates the top anatomical structures involved in the IDPs contributing most 

to the biological age of the organs. 

  



 

 

 

Figure S3 Stratified organ age influence risk of disease and health outcomes. The survival curve 

demonstrating the association between stratified organ-specific age gap and incident of 13 different 

categories of diseases or health outcomes during follow-up. The organ-specific age gap was grouped to 

quantiles from lowest to highest, the Q4 is shown red and Q1 is shown in blue. The same associations 

as those presented in the main text are displayed. The associations between mean age gap across organs 

and disease risk is demonstrated in the last row. 

 

 

 

 

 

 

 



 

 

 

Figure S4 Prediction of the incident diseases and mortality. (A) The prediction of the incident 

diseases and mortality during the entire visit was made using information reflecting biological age, with 

IDPs contributing most (top 50%) to the biological age of organs selected as predictors. The heatmap 

demonstrates the prediction performance for incident diseases or health outcomes (x-axis) using 

information about organ-specific biological age (y-axis). The performance was evaluated with average 

AUC across 10-folds. The AUC values are color-coded, with darker colors representing better 

performance and AUC values less than 0.5 shown in blank. The overall prediction using IDPs 

contributing most to the biological age of all organs was also shown in the last row. (B) Then we 

separately illustrated the top five predictions with the largest AUC using information reflecting 

biological age of all organs, as well as GM, heart and body composition. 

  



 

 

 
Figure S5 GO biological process enrichment of positively and negatively associated proteins for 

different organs. The lollipop plots demonstrating the enrichment of the associated proteins of organ-

specific age gap in different GO biological processes. The x axis represents -log10 transformation of 

the uncorrected P values, the y axis represents the top five biological processes in enrichment results of 

the corresponding organ. The significance was determined by FDR-corrected P < 0.05 for each organ. 

  



 

 

 

Fig S6 Phenome-wise associations for age gap of all organs. The scatter plot demonstrating the 

association between organ-specific age gap of the eight different organs and the phenotypes at the 

imaging visit, with the FDR applied across all 139×8 phenotype-organ pairs and only those associations 

with FDR-corrected P < 0.05 were considered significant. The significant associations of different 

categories of phenotypes are drawn in different colors and the non-significant associations are shown in grey. 

The size of points is proportional to absolute of beta values. The x axis represents the eight different organs. 

The y axis represents the -log10 transformation of the uncorrected P values of the association between organ 

age gap and phenotypes. The positive associations are shown above y=0 and negative associations are shown 

below y=0. The two most significantly positive associations and negative associations are labelled. 
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