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This Supplementary Information provides detailed mathematical formulations, simulation pa-
rameters, and statistical modeling procedures supporting the analyses reported in the main text.
It is organized as follows:

e Supplementary Note 1. Graph-theoretic formulation of road networks
e Supplementary Note 2. Restoration strategies based on centrality measures

e Supplementary Note 3. Resilience metrics and performance quantification

Supplementary Note 4. Simulation workflow and computational setup

Supplementary Note 5. Statistical modeling of recovery outcomes

Supplementary Note 1: Graph-theoretic formulation of road networks

Each road network is modeled as a directed graph G = (V, A), where the set of vertices V =
{v1,v9,...,un} represents road intersections and A denotes the directed arcs (road segments)
connecting them. Two-way streets are represented as pairs of directed arcs.

We define «;; = 1 if two vertices v; and v; are directly connected by an arc, and 0 otherwise:

A= {(vi,vj) ‘ Vi, V5 € V, Qij = 1}.

Each arc (4, ) is assigned a travel time o;; proportional to link length, where o;; = oo if a;; = 0.
The travel time between any pair of vertices v, and v is the length of the shortest path o,5, and
0,-s denotes the number of such paths.

For any vertex or edge x € (V, A), 0,s(x) represents the number of shortest paths between
v, and vg that pass through z. This formulation enables the computation of topological metrics
(degree, clustering, centrality, assortativity) that characterize network structure and underpin the
restoration strategies.

Supplementary Note 2: Restoration strategies based on centrality measures

For each disrupted arc (4, j), the selected centrality metric Cihj serves as a priority score, where
h indicates the recovery heuristic. Five graph-based heuristics and one random baseline were used.

Restoration strategies h € H are implemented as rank-based prioritizations of failed arcs using
topological centrality measures. In addition, we incorporate static link travel times to identify
shortest paths and use graph-based proxy variables to capture demand and the relative importance
of junctions. For each disrupted arc (i, j), the centrality metric Clhj is computed and functions as a
priority score. All disrupted arcs are then sorted according to this score and recovery actions are
scheduled and implemented in the simulations in that order. In this study, we select six centrality
measures that are commonly found in the literature in the context of transport infrastructure
recovery decisions. In the remainder of this section, we define these centrality metrics.



Betweenness centrality

Betweenness centrality measures the degree to which a vertex or arc falls on the shortest path
between other graph components. Using the previously introduced graph notation, betweenness
centrality Cg of an arc (7,j) € A can be defined as:
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where 6,5 is the number of shortest paths from vertex r to vertex s, computed using link travel
times 0;; (minimizing total path travel times), and 60,4(¢, ) is the number of those shortest paths
that pass through arc (i, ).

Degree centrality

Degree centrality measures the centrality of a vertex or arc based on the number of adjacent
components. For a directed graph, the centrality of a vertex is split into incoming and outgoing arcs.
Consider a vertex ¢, then the incoming degree centrality cD " (i) of this vertex is the number of
incoming arcs and the outgoing degree centrality o Out(i) of this vertex is the number of outgoing
arcs.

CB = Z Qg + Z Ok (2)
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where «a;;, and ay; are the indicator variables corresponding to the presence of arcs (i, k) and (k, ),
respectively. For arc (i,j), the degree centrality is then computed as the product of the outgoing
centrality of the origin node and the incoming centrality of the destination node:

ch=Cp-Cp (3)

Nearest-neighbour edge centrality

Near-neighbourhood centrality is a more recently developed edge centrality metric. Nearest-
neighbour edge centrality could be an effective recovery strategy indicator because it can identify
critical edges using local degree information, making it more efficient than global metrics under
time-sensitive situations. For an arc (i, 7), the near-neighbour edge centrality is defined as:

oY = (/WU) i), (4)
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where p; is the strength of vertex ¢ expanded as p; = ) jev Tij + > jev Ojis and o;; is the travel
time of arc (i, j).
The limitations of the nearest-neighbour edge centrality metric are that it does not account
for the directionality of arcs, and it does not capture long-range structural dependencies in the
network.

Closeness centrality

For closeness centrality, an edge is more central the shorter the paths are that connect it to all
other edges. Let (i,j) be an arc between vertices i and j, then using the shortest path defined as
o0;; before, closeness centrality can be computed as:
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where oy; is the shortest path distance from vertex k to vertex ¢, computed using travel time as
edge weights (minimizing total weight), and |V| is the number of vertices. If vertex s cannot reach
some i, oy; = 00, and if the case is true Yk € V, then C{ = 0. |A| is the number of arcs (edges),
C’g and C’g are the closeness centality values of vertices ¢ and j. If C’g + C’g =0, set C’Z-(;- = 0.

Eigenvector centrality

For eigenvector centrality, an edge is central if its adjacent edges are also central.

Let Apmax be the dominant eigenvalue of a matrix M where M is the edge adjacency matrix.
M jy(k,ey = 1 if arcs (4,7) and (k, /) are connected to the same node. Arc centrality is then
computed as follows, through the power iteration method as a system of linear equations:

1
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where A is the set of arcs, M(; jyx,¢) = 1 if arcs (i, 7) and (k, £) share a common vertex (consid-
ering directionality), else 0, oy is the travel time of arc (k,£), and A\pax is the largest eigenvalue of
the weighted edge adjacency matrix M.

Supplementary Note 3: Resilience metrics and performance quantification

The multidimensional nature of road network resilience is captured through four aggregate
performance indicators: operational efficiency, accessibility, spatial equity, and connectivity. All
indicators are normalized to the undisrupted state (P, (t) € [0,1]). The cumulative performance
loss over recovery is:
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Smaller P,,, values indicate higher resilience.

Operational efficiency
Operational efficiency refers to how efficiently people (and goods) can move between their origins
and destinations. We define it as the average shortest-path travel time Tioa1, computed as:

_ Efficiency(G(t))
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where 0,5 is the shortest path travel time between nodes v, and vs, n is the number of vertices
in G, and Efficiency(G) = 1. In this paper, we solely use topological data and do not weight the
operational efficiency by commuter flows between OD pairs, though such weighting can be readily
incorporated. A lower Pggiciency indicates lower resilience in terms of operational efficiency.



Accessibility

Accessibility refers to how easy it is to reach a node in the network. Here, we use closeness
centrality as a proxy for accessibility. We define accessibility of a vertex v; as A; and compute it
as the average closeness centrality-weighted reciprocals of travel times for each node, as follows:

 Accessibility (G(t))
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where C; is the closeness centrality of node r in the baseline network G. The pre-disruption
closeness centrality of destination Cj is used as a surrogate measure for the economic and social
opportunities at r accessible from i as those nodes which are central to the network may also have
more opportunities (for example, central business district of a city). More severe disruptions result
in lower values of Paccessibitity values.

Spatial equity

Spatial equity refers to how fairly resources, services, or opportunities (in this case, transport ac-
cessibility) are distributed across a geographic area. In this study, we quantify spatial equity as the
change in Moran’s I corresponding to accessibility to opportunities at other nodes in the network.
For every disrupted state of the network, we compute the node-level accessibility values and then
compute their spatial autocorrelation using a weight matrix. The w spatial weights are computed
as a function of Euclidean distances between nodes in the undisrupted state (Equation .

Pgpatial(t) = max (0, min (Moran’s HG®) , 1))
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Here A, (t) (for o,4(t) < oo) is defined as accessibility of node r at time ¢, A(t) is the mean
accessibility across all nodes, Sy = Zle 22:1 wys is the sum of the spatial weights, d,.s is the
Euclidean distance between v, and v, € is a small positive threshold added to avoid division by
zero, and b is the distance decay parameter (a value of 1.0 km is used in this study). Pspatial values
are clipped between 0 and 1 as we are more interested in segregation of accessibility impacts which
may result in disproportionate impact on certain affected regions during recovery.



Connectivity

Connectivity refers to how well different parts of the network are linked. We use the directed
clustering coefficient following. For a node v;, let k; denote its total degree (the number of in- and
out-neighbours) and T;(¢) the number of directed triangles involving v; at time ¢. The local directed
clustering coefficient is defined as

Ti(t)

Ci(G(t) = S

We compute network-level connectivity as the average of these local coefficients across all n nodes:
1 n
Connectivity(G(t)) = - Zl Ci(G(t)).
1=

Finally, we define the connectivity performance metric as

P (1) = Connectivity(G(t))
Connectivity (%) = Connectivity(G)

Supplementary Note 4: Simulation framework and pseudocode

The stress-testing experiments for data generation are implemented through a structured sim-
ulation framework that applies disruptions to each network, restores links step by step according
to different strategies, and evaluates multidimensional resilience outcomes. The main steps of this
procedure are outlined in Algorithm

First, for each of the selected road networks, we generate disruptions by randomly removing a
specified percentage of total edges in the network and evaluate the resulting performance relative
to the undisrupted network. We adopt random incremental failures ((10%, 20%,...,100% road
links are failed) as a hazard-agnostic stress-testing approach. This provides a neutral baseline
that enables comparison of resilience outcomes across a large and diverse set of cities without bias
toward any specific hazard. To address the stochasticity of disruptions and subsequent recovery, we
repeat each simulation 25 times for each combination of initial disruption percentage and recovery
strategy within a network. Random failures are widely used in network science as a benchmark for
robustness analysis, and they capture a broad spectrum of possible disruption patterns, including
unforeseen or compound failures. Second, for each disruption scenario and recovery strategy, edges
are restored step by step according to strategy rankings, with performance metrics (efficiency,
accessibility, spatial equity, and connectedness) recorded after each step and recovery curves are
derived. We use a predefined percentage of total links in the network to define the amount of
repair actions in each time-step. In this way, we ensure that the amount of recovery resource
available in a network is proportional to its size and thus does not influence the recovery outcomes.
These curves are conceptually aligned with the resilience triangle framework, representing system
performance loss and recovery over time. Third, the resulting recovery curves are aggregated
across all networks, disruption levels, and strategies, and resilience metrics are derived by applying
trapezoidal integration to measure the area above the curves. Finally, these resilience outcomes
are combined with network-level topological variables to create a comprehensive dataset, which is
then used to estimate beta regression models and quantify the influence of topology, disruption
intensity, and recovery strategy on multidimensional resilience.



Algorithm 1 Pseudocode for simulation workflow implementation and final dataset generation

1: Input: Set of road networks G € G, recovery strategies h € H, damage percentages pct € P, iterations
N, incremental restoration percentage T

2: Output: Simulation dataset for regression analysis
3: for network G € G do
4: for damage percentage pct € P do
5: for disrupted edge combination i =1 to N do
6: Apply disruption: remove pct% of edges to create disrupted network G(0)
7 Evaluate baseline performance on GG
8: Evaluate performance on G(0)
9: for strategy h € H do
10: Initialize restoration counter ¢ < 1
11: while edges remain to restore do
12: Select edges to restore in this iteration based on ranking from h
13: Restore edges and update disrupted edge list
14: Re-evaluate network performance of (partially) restored network G(t) across resilience
dimensions m € M and compute corresponding normalized metrics P, (t)
15: t+—t+1
16: end while
17: end for
18: end for
19: end for
20: Aggregate results across strategies, iterations, and damage levels for G
21: end for

22: Combine results across all networks into unified dataset

23: Compute topology-related variables for all networks

24: Derive resilience metrics using trapezoidal integration of recovery curves

25: Merge variables corresponding to topological, disruption, strategy, and resilience metrics into final dataset

Supplementary Note 5: Statistical modeling of recovery outcomes

To assess the influence of topological features of networks on the performance of recovery strate-
gies, a statistical analysis is conducted using beta-regression. This model is selected due to the
bounded [0,1] scale of the performance metrics P,,, which quantify the effectiveness of recovery
strategies as the area above the recovery curves. The dependent variable in the analysis is one of
the performance metrics defined in Supplementary Note 3.

The general specification of the regression model is given in Equation A logit transformation
is applied, where 1, = In (g /(1 — ) and p, denotes the expected value of the standardized
performance metric Py,. Coefficients (50,m, 51,m, Or.ms Yh,ms Ph,m) quantify the influence of the pre-
dictors: pct represents the proportion of disrupted links (damage level), z;, denotes the topological
properties, [(h) indicates recovery strategies relative to the baseline (random recovery), and ¢y m,
captures the interaction between recovery strategy and damage level.

Nm = ﬁO,m + ﬁl,mpct + Z 5r,m$r + Z Yh,m * H(h) + Z (z)h,m(]l(h) : pCt)7 (14)
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The predictors included in this model fall into four categories: (i) the baseline damage variable
pet, (ii) structural features of the undisturbed network, (iii) categorical indicators for the recovery
strategy applied, and (iv) interaction terms between damage and recovery strategy.



The topological features were selected from an initial set of network characteristics that cap-
ture various structural properties, such as size, connectivity, redundancy, and spatial embedding
(number of edges, density, average and variability of node degrees, global and average cluster-
ing coefficients, assortativity by degree, average link length (metres), and average link travel time
(minutes).

Model fitting is performed via maximum likelihood estimation using the betareg package in
R. Continuous variables are standardized before estimation. Model diagnostics (residual plots,
likelihood ratio tests) are used to test model robustness and goodness of fit.

Data and Code Availability

All simulation scripts, processed datasets, and analysis code are available on the GitHub repos-
itory https://github.com /srijithbalakrishnan/transport_stresstesting. The road network data are
publicly accessible through the OpenStreetMap platform under the Open Database License (ODDbL).
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