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Supplementary information 

 

A.  Absolute and convective instabilities 

When considering problems of propagation of excitations, two approaches can be 

used: either the development of the excitation in time at a given point in space is 

considered, or the development of the excitation in space at a given moment in time. 

In the first case, the value of complex frequencies  = + i are found from the 

dispersion relations for real wave vectors k. In the second, the complex wave vectors 

k = k+ i k are found from the dispersion relations for real frequencies. If some real 

value of the wave vector k corresponds to a complex value of the frequency  with 

( ) 0  k  then the disturbance, which has the form of a plane monochromatic wave 

( )i te −kr
, will grow indefinitely with time, thus, the dynamic system will be unstable. In 

fact, small perturbations do not have the form of plane monochromatic waves, but are 

packets, which are a superposition of monochromatic waves. The asymptotic behavior 

of wave packets can differ significantly from the behavior of individual waves. We will 

show that at t→  a wave packet can remain confined at a fixed point even at 

( ) 0  k . Write the wave packet for the point 0x =  in the form 

                   
( ) ( )

0(0, ) i t t

kU t u e e d



    −

−

= 
k k

k .                                 (A1) 

If 0  , then the term exp( )t−  approaches infinity when t→ . But the term 

exp( )i t  is the rapidly oscillating function, which after multiplying on continuous 

function 0ku  and integration it over wave vector k , evaluates to zero in the limit t→

. Therefore, expression (A1) represents uncertainty of 0  , thus it can achieve values 

as infinitesimal small as infinitely large.  Thus,  it is insufficient to merely ascertain the 

existence of complex frequencies among the roots of the dispersion equation 

investigating the nature of wave growth over time. Rather, it is necessary to examine 

the behavior of a wave packet at a fixed point as t→ .  

Suppose one has to solve a one-dimension problem. When the perturbation ( , )U x t  

infinitely grows in fixed point x at t→ , the instability is named absolute instability 

lim ( , )
t
x const

U x t
→
=

=   .                                               (A2) 

If the disturbance remains confined, the instability is called convective  
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 lim ( , ) ,      0
t
x const

U x t A A
→
=

=    .                              (A3) 

Absolute instability is spontaneous infinite growing fluctuations over the time in the 

fixed point inside the system. Such system can play a role of generator of oscillations. 

In convective instability, the limitation of the growth of a disturbance at a fixed point 

in space is associated with the removal of the excitation by its moving in a space. This 

type of instability corresponds to the amplification of waves. 

Other words, the key feature of the convective instability phenomenon is that if a 

disturbance is observed at a fixed position, it will be seen to pass the observation point, 

increasing in amplitude, and then disappear, carried away by the flow. At this fixed 

point, the system returns to its initial state after the disturbance has passed. This implies 

that condition (A3) with A = 0 is satisfied. For this to occur, the propagation speed of 

the disturbance must be less than the flow speed of the medium; that is, the flow 

"carries away" the disturbance faster than it can propagate back. The result is an 

amplification of the signal or disturbance, but this usually does not cause chaos or a 

complete destruction of the stationary state at a particular location, since the growing 

disturbance is continuously advected downstream (or "carried away").  

The concept of amplification in a system exhibiting convective instability can be 

explained as follows: An external perturbation, such as a surface plasmon wave with a 

frequency ω (or a defined frequency spectrum), is introduced into the flow (the system). 

The system is characterized by the kinetic energy associated with the flow shear 

(electric current in the case under consideration). The interaction between the wave and 

the flow enables the wave to extract energy from the flow, converting this kinetic 

energy into the energy of wave motion. This energy transfer process leads to an 

exponential increase in the amplitude of the wave as it propagates along the flow. This 

is typically modeled as A(x)∝A0⋅exp(kix), where ki > 0 is the spatial amplification factor. 

As a result, the wave (surface plasmon) leaves the system with an amplitude 

significantly larger than its initial value, while maintaining its original frequency (a 

process known as linear amplification). Thus, convective instability is precisely the 

property that allows a system to amplify disturbances introduced from the outside 

without internal self-excitation (which is characteristic of absolute instability). 

 

B.  Sturrock’s criteria 
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The interaction of waves under certain conditions can lead to instability in the 

system. Simple and intuitive criteria for studying the stability of a system when two 

waves interact are Sturrock’s criterions. Their derivation is based on the above-

mentioned principles in Appendix A. 

 The dispersion equation describing the interaction of two waves in some domain 

near the point  ( , ) k  often has a form 

 1 2( )( ) 0m− − + =kv kv ,            (B1) 

where  1 2,v v  are the phase velocity of the 

waves, m is the parameter of interaction 

between the waves. If there is no interaction 

between the waves, then the parameter m = 0 

and equation (B1) decomposes into two 

equations, each of which describes an 

independent wave. If the interaction between 

the waves is small, then it most significantly 

affects the dispersion curves of independent 

waves at the point of phase synchronism, that 

is, at the point of intersection of the dispersion 

curves of independent waves. At the point of 

phase synchronism, both waves have the same 

frequency and wave vector. In the theory of 

oscillations, such a state of the system is called 

degenerate. If there is interaction between the waves in the system, then the degeneracy 

is removed and the splitting arises at the point of synchronism. Sturrock’s criteria allow 

to determine the type of instability in the system by the type of splitting [20]. For 

example, if the asymptotes (v1 , v2) of the curves are inclined to an one side ( 1 2 0 v v

), then convective instability occurs at 0m  . This case is shown in Fig.B1. Thus, to 

determine the convective instability in the system under consideration, one should 

study the dispersion relations near the point of phase synchronism 

 

For more details, one should see, for example, Refs.[30-35] 

С. Effective susceptibility of a layer of plasmonic nanoparticles 

Fig.B1. The splitting of the curves of 

dispersion relations for two waves  in 

the case , , which 

corresponds to convective instability  

in the range . 
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To determine the effective susceptibility (the linear response to an external field) 

for a nanosystem comprising of plasmon nanoparticles and units of active layer, we 

will solve the self-consistency equation known as the Lippmann-Schwinger equation 
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where (33) ( , , )ij lG  R R  is the electrodynamic Green's function, describing the 

electrodynamic properties of the medium containing the plasmon nanoparticles and the 

active layer particles. Furthermore, ( )Np

jl   represents the susceptibility of a single 

metal nanoparticle on the surface of the magnetic film, and ( )d

jl  is the susceptibility 

of a single unit within the absorber layer (e.g., a semiconductor quantum dot or an 

organic dye molecule). The effective susceptibility, in this case, is a global 

characteristic of a sub-monolayer coverage. Supposing that all nanoparticles of the 

layer of plasmonic nanoparticles (LPNPs) are located from the surface at the same 

distance zl, let us introduce the effective susceptibility of the LPNPs as the non-local 

linear response of the system to an external field, defined by the following relation 

 ( ) (0)

0( , , ) ( , , ) ( , , )

LPNP

S

i l ij l j l

V

J z i d z E z   = −   −  r r r r r ,               (С2) 

with ( , , )i lJ z r the effective electric current induced inside the film of LPNPs, 

( ) ( , , )S

ij lz − r r  effective susceptibility of nanoplasmonic system. From the other 

side, the current defined in Equation (С2) can be connected with a local field through 

a microscopic relation, offering an alternative formulation for the effective 

susceptibility 

0( , , ) ( ) ( , , )Np

i l jl l lJ z i E z = −    r r  .                          (С3) 

Taking into account that the system under consideration is macroscopically 

homogeneous along the surface and supposing that nanoobjects are distributed along 

the surface homogeneously, one can write second and third terms in the right part of 

(С1)  
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where  

 ( )1 2

1
(...) ... ...  ,      ,NN

S S S

d d d l m
S 

=  =  r r r                           (C5) 

means the mathematical procedure of averaging of the system over locations of the 

particles.  Thus, each term in Eq.(C4) has a form 
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Each of the N0 terms on the right-hand side has the form 
10
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Thus,  
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We can introduce the surface concentration of the particles as n = N0/S. Equation (C1) 

holds true for any point inside the system under consideration, particularly at the 

specific locations of each plasmon nanoparticle. This allows us to calculate the field 

on the -th object of the LPNP array, which is located at point  

(0)

2

0 2

2

0 2

( , , ) ( , , )

                  ( , , , ) ( ) ( , , )
(2 )

                         ( , , , ) ( ) ( , , ) ,
(2 )

i l i l

i Np

Np ij l l jl l l

i d

ij l d jl l d

E z E z

d
k N e G z z E z

d
k N e G z z E z





 

−

−

 =  −

−     −


−    






kr

kr

r r

k
k k

k
k k





              (C9) 

where NNp  and N are the surface density of plasmon nanoparticles and units of active 

layer, respectively. Taking into account that spatial averaging allows us to assume that 

the nano-objects are effectively 'spread' over the surface to form a homogeneous film, 

one can compare Eqs. (C2) and (C3) and transform to the Fourier representation (k-

space) to obtain the connection between the local and external field via the effective 

susceptibility 

( ) (0)( , , ) ( , , ) ( ) ( , , )S Np

ij l j l jl l lz E z E z   =   k k k  ,                     (C10) 

or 
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  =      k k k  .                   (C11) 

 

Performing 2D Fourier transformation and using Eq.(C11), one obtains from (C9) 
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Here, one assumes that the local electric field does not differ significantly at the planes 

of zl and zd. Under this simplification, one obtains an equation that defines the effective 

susceptibility of the LPNPs. 
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Because the external field does not equal to zero, one obtains 
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Denominator of this expression defines the pole part of the effective susceptibility and 

is the determinant of the matrix  

2 2

0 0( , ) ( , , , ) ( ) ( , , , ) ( )Np d

jm jm Np jp l l pm jl l d lmk N G z z k NG z z  =  +    +   k k k .    (C15) 

 

For more details, one should see, for example, Ref.[39] 

 


