Supplementary information

A. Absolute and convective instabilities

When considering problems of propagation of excitations, two approaches can be
used: either the development of the excitation in time at a given point in space is
considered, or the development of the excitation in space at a given moment in time.
In the first case, the value of complex frequencies ® = o'+ i®"" are found from the
dispersion relations for real wave vectors K'. In the second, the complex wave vectors
k =k'+ i k' are found from the dispersion relations for real frequencies. If some real
value of the wave vector k' corresponds to a complex value of the frequency o with

®"(k") <0 then the disturbance, which has the form of a plane monochromatic wave

e " will grow indefinitely with time, thus, the dynamic system will be unstable. In

fact, small perturbations do not have the form of plane monochromatic waves, but are
packets, which are a superposition of monochromatic waves. The asymptotic behavior
of wave packets can differ significantly from the behavior of individual waves. We will
show that at r—>o a wave packet can remain confined at a fixed point even at
®"(k") < 0. Write the wave packet for the point x =0 in the form

U(O, l,) — J uOkeim'(k')te—m”(k')tdkr ) (Al)

If ®" <0, then the term exp(—"¢) approaches infinity when ¢ — o . But the term
exp(iw't) is the rapidly oscillating function, which after multiplying on continuous
function u,, and integration it over wave vector k', evaluates to zero in the limit # — oo

. Therefore, expression (A1) represents uncertainty of 0-00, thus it can achieve values
as infinitesimal small as infinitely large. Thus, it is insufficient to merely ascertain the
existence of complex frequencies among the roots of the dispersion equation
investigating the nature of wave growth over time. Rather, it is necessary to examine
the behavior of a wave packet at a fixed point as ¢ — .

Suppose one has to solve a one-dimension problem. When the perturbation U (x,?)

infinitely grows in fixed point x at # — oo, the instability is named absolute instability

lim U(x,t) = . (A2)
t—>0

If the disturbance remains confined, the instability is called convective



lim U(x,f)=4, 0<A<oo. (A3)
x=const

Absolute instability is spontaneous infinite growing fluctuations over the time in the
fixed point inside the system. Such system can play a role of generator of oscillations.
In convective instability, the limitation of the growth of a disturbance at a fixed point
in space is associated with the removal of the excitation by its moving in a space. This
type of instability corresponds to the amplification of waves.

Other words, the key feature of the convective instability phenomenon is that if a
disturbance is observed at a fixed position, it will be seen to pass the observation point,
increasing in amplitude, and then disappear, carried away by the flow. At this fixed
point, the system returns to its initial state after the disturbance has passed. This implies
that condition (A3) with A = 0 is satisfied. For this to occur, the propagation speed of
the disturbance must be less than the flow speed of the medium; that is, the flow
"carries away" the disturbance faster than it can propagate back. The result is an
amplification of the signal or disturbance, but this usually does not cause chaos or a
complete destruction of the stationary state at a particular location, since the growing
disturbance is continuously advected downstream (or "carried away").

The concept of amplification in a system exhibiting convective instability can be
explained as follows: An external perturbation, such as a surface plasmon wave with a
frequency o (or a defined frequency spectrum), is introduced into the flow (the system).
The system is characterized by the kinetic energy associated with the flow shear
(electric current in the case under consideration). The interaction between the wave and
the flow enables the wave to extract energy from the flow, converting this kinetic
energy into the energy of wave motion. This energy transfer process leads to an
exponential increase in the amplitude of the wave as it propagates along the flow. This
1s typically modeled as A(x)<A4y-exp(kix), where k;> 0 1s the spatial amplification factor.
As a result, the wave (surface plasmon) leaves the system with an amplitude
significantly larger than its initial value, while maintaining its original frequency (a
process known as linear amplification). Thus, convective instability is precisely the
property that allows a system to amplify disturbances introduced from the outside

without internal self-excitation (which is characteristic of absolute instability).

B. Sturrock’s criteria



The interaction of waves under certain conditions can lead to instability in the
system. Simple and intuitive criteria for studying the stability of a system when two
waves interact are Sturrock’s criterions. Their derivation is based on the above-
mentioned principles in Appendix A.

The dispersion equation describing the interaction of two waves in some domain

near the point (®,k) often has a form
(o—kv)(®w—-kv,)+m=0, (B1)

where v,,v, are the phase velocity of the

waves, m 1is the parameter of interaction
between the waves. If there is no interaction
between the waves, then the parameter m = 0
and equation (B1) decomposes into two

equations, each of which describes an

independent wave. If the interaction between

the waves is small, then it most significantly

affects the dispersion curves of independent

waves at the point of phase synchronism, that
Fig.B1. The splitting of the curves of g, at the point of intersection of the dispersion
dispersion relations for two waves in
the case v,-v, >0, m >0, which
corresponds to convective instability ~ Phase synchronism, both waves have the same

curves of independent waves. At the point of

in the range (k,,k,). frequency and wave vector. In the theory of
oscillations, such a state of the system is called

degenerate. If there is interaction between the waves in the system, then the degeneracy
is removed and the splitting arises at the point of synchronism. Sturrock’s criteria allow
to determine the type of instability in the system by the type of splitting [20]. For

example, if the asymptotes (v; , v2) of the curves are inclined to an one side (v, -v, >0

), then convective instability occurs at m >0. This case is shown in Fig.B1. Thus, to
determine the convective instability in the system under consideration, one should
study the dispersion relations near the point of phase synchronism

For more details, one should see, for example, Refs.[30-35]

C. Effective susceptibility of a layer of plasmonic nanoparticles



To determine the effective susceptibility (the linear response to an external field)
for a nanosystem comprising of plasmon nanoparticles and units of active layer, we

will solve the self-consistency equation known as the Lippmann-Schwinger equation
E(R,0)=E”(R,0)-
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where GV(R,Rj,m) is the electrodynamic Green's function, describing the

electrodynamic properties of the medium containing the plasmon nanoparticles and the

active layer particles. Furthermore, xz" (w) represents the susceptibility of a single

metal nanoparticle on the surface of the magnetic film, and )Zj’., (m) is the susceptibility

of a single unit within the absorber layer (e.g., a semiconductor quantum dot or an
organic dye molecule). The effective susceptibility, in this case, is a global
characteristic of a sub-monolayer coverage. Supposing that all nanoparticles of the
layer of plasmonic nanoparticles (LPNPs) are located from the surface at the same
distance z;, let us introduce the effective susceptibility of the LPNPs as the non-local
linear response of the system to an external field, defined by the following relation

J.(r,z,,0) = —iog, I dr'’X (r—r',z,0)E” (v, z,0), (C2)

Vipne

with J.(r,z,,o)the effective electric current induced inside the film of LPNPs,
X (r—r',z,0) effective susceptibility of nanoplasmonic system. From the other

side, the current defined in Equation (C2) can be connected with a local field through
a microscopic relation, offering an alternative formulation for the effective
susceptibility

J(r,z,,m) = —imaoxz” (0)E (1,z,0) . (C3)

Taking into account that the system under consideration is macroscopically
homogeneous along the surface and supposing that nanoobjects are distributed along

the surface homogeneously, one can write second and third terms in the right part of
(CD
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means the mathematical procedure of averaging of the system over locations of the

particles. Thus, each term in Eq.(C4) has a form
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Each of the N, terms on the right-hand side has the form
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Thus,
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We can introduce the surface concentration of the particles as n = Ny/S. Equation (C1)
holds true for any point inside the system under consideration, particularly at the
specific locations of each plasmon nanoparticle. This allows us to calculate the field
on the B-th object of the LPNP array, which is located at point

Ei(rgszla(o) = Ei(O)(r[?,ale(D) -
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where Ny, and N are the surface density of plasmon nanoparticles and units of active
layer, respectively. Taking into account that spatial averaging allows us to assume that
the nano-objects are effectively 'spread' over the surface to form a homogeneous film,
one can compare Egs. (C2) and (C3) and transform to the Fourier representation (k-
space) to obtain the connection between the local and external field via the effective
susceptibility

XV (k,z,®)E (K, z,0) =%V (0)E,/(K,z,0) , (C10)

or
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Performing 2D Fourier transformation and using Eq.(C11), one obtains from (C9)
[ @] X k2, 0)E® (K, 2,,0) = E® (5, 2,,0) -
kN, G, (k. 2,2, 07 @) 1 ()] XS (k2,0 EC(k,z,0)~  (C12)

N -1
~ kNG (K, 2.2, )75 (@) 1 (@) | X (k,2,0)E0 (K, z,0) .



Here, one assumes that the local electric field does not differ significantly at the planes
of z; and z,. Under this simplification, one obtains an equation that defines the effective
susceptibility of the LPNPs.
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Because the external field does not equal to zero, one obtains
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Denominator of this expression defines the pole part of the effective susceptibility and

1s the determinant of the matrix
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For more details, one should see, for example, Ref.[39]



