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Supplementary Fig. 1 Lab-based XRD patterns for xLi2CO3-ZrCl4. The large peak between 10-22° is the diffraction peak of the Kapton film used to seal the tested powders to avoid any air exposure.
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Supplementary Fig. 2 Lab-based XRD patterns for xLi2CO3-HfCl4. The large peak between 10-22° is the diffraction peak of the Kapton film used to seal the tested powders to avoid any air exposure.
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Supplementary Fig. 3 EXAFS for xLi2CO3-TaCl5 amorphous SEs, as well as Ta2O5 and TaCl5 at Ta L3-edge.
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Supplementary Fig. 4 Wavelet-transformed (WT) EXAFS spectra of 0.8Li2CO3-TaCl5 (a), 0.9Li2CO3-TaCl5 (b), 1.1Li2CO3-TaCl5 (c) at Ta L3-edge with a k2 weighting. R + ΔR represents the radial distance, and ΔR indicates the distance correction due to phase shifts. 
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Supplementary Fig. 5 Fourier-transform (FT) EXAFS fitting for the Ta L3-edge spectrum of 0.8Li2CO3-TaCl5 (a), 0.9Li2CO3-TaCl5 (b), and 1.1Li2CO3-TaCl5 (c).
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Supplementary Fig. 6 Computed structure of amorphous LTCCO (a) and LZCCO (b) at 1200 K generated from melt-and-quench AIMD simulations. 

[image: ]
Supplementary Fig. 7 High-resolution transmission electron microscopy (HRTEM) images of LTCCO. Bright-field image (a), energy-dispersive X-ray spectroscopy (EDS) mapping (b) and selected-area electron diffraction (SAED) image (c) of LTCCO.
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Supplementary Fig. 8 Fourier transform infrared spectroscopy (FT-IR) of LTCCO (a), and LZCCO (b).
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Supplementary Fig. 9 Normalized Nyquist plots for the xLi2CO3-TaCl5 cold-pressed pellets at various temperatures.
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Supplementary Fig. 10 Normalized Nyquist plots for the xLi2CO3-ZrCl4 cold-pressed pellets at various temperatures.
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Supplementary Fig. 11 Normalized Nyquist plots for the xLi2CO3-HfCl4 cold-pressed pellets at various temperatures.
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Supplementary Fig. 12 Normalized Nyquist plots for the Li2ZrCl6 (a), and Li2HfCl6 (b) cold-pressed pellets.
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Supplementary Fig. 13 Normalized Nyquist plots for the Li2CO3-AlCl3 (a), Li2CO3-InCl3 (b), Li2CO3-SrCl2 (c), and Li2CO3-CaCl2 (d) cold-pressed pellets.
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Supplementary Fig. 14 Lab-based XRD patterns for LTCCO under different ball-milling durations. The large peak between 10-22°is the diffraction peak of the Kapton film used to seal the tested powders to avoid any air exposure.
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Supplementary Fig. 15 Normalized Nyquist plots for the LTCCO cold-pressed pellets under different ball-milling durations.
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Supplementary Fig. 16 Arrhenius plots for xLi2CO3-ZrCl4 (a), and xLi2CO3-HfCl4(b) SEs.

Supplementary Fig. 17 The variation of ionic conductivity of LTCCO (a), and normalized Nyquist plots for the LTCCO (b) cold-pressed pellets at different exposure time.
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[bookmark: _Hlk211208956]Supplementary Fig. 18 The XRD patterns of LZCCO cold-pressed pellets exposed to air with 20% humidity for different periods of time.

[image: ]
[bookmark: _Hlk211208875]Supplementary Fig. 19 The XRD patterns and sample images of LZC cold-pressed pellets exposed to air with 20% humidity for different periods of time.
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Supplementary Fig. 20 Scanning electron microscope (SEM) images of the LTCCO (a), LZCCO (b), and LHCCO (c) cold-pressed pellets. 
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Supplementary Fig. 21 Scanning electron microscope (SEM) images of the Li3InCl6 (a), and Li2ZrCl6 (b) cold-pressed pellets. 
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Supplementary Fig. 22 Electronic conductivity of LTCCO (a), LZCCO (b), and LHCCO (c) determination by DC measurements at room temperature. 
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Supplementary Fig. 23 Linear cyclic voltammetry (LSV) profiles of LTCCO (a), LZCCO (b), and LHCCO (c). 
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Supplementary Fig. 24 Long cycle performance of LCO (a), and NCM88 (b) ASSBs using LTCCO at room temperature.
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Supplementary Fig. 25 Rate performance of LCO (a), and NCM88 (b) ASSBs using LTCCO at −10°C.


Supplementary Table 1 Summary of the ionic conductivities of the representative SEs

	Inorganic SSE
category
	Materials
	Ionic conductivity
at 25oC (S cm-1)
	Ref.

	Sulfide
	Li9.54Si1.74P1.44S11.7Cl0.3
	2.5 × 10-2
	Nat. Energy 2016, 1 (4),16030.

	
	Li10GeP2S12
	1.2 × 10-2
	Nat. Mater. 2011, 10 (9), 682-686.

	
	Li6.6Si0.6Sb0.4S5I
	1.5 × 10-3
	J. Am. Chem. Soc. 2019, 141(48), 19002-19013.

	
	Li6PS5X (X = Cl, Br)
	5.4 × 10-3
	J. Am. Chem. Soc. 2018, 140(47), 16330-16339

	
	
	1.0 × 10-3
	Angew. Chem. Int. Ed. 2008, 47 (4), 755-758.

	
	Li5.5PS4.5Cl1.5
	9.4 × 10-3
	Angew. Chem. Int. Ed. 2019, 58 (26), 8681-8686

	
	Glass-ceramic Li7P3S11
	3.2 × 10-3
	Adv. Mater. 2005, 17 (7), 918-921.

	Oxide
	Li7La3Zr2O12 system
	10-4 ~10-3
	Angew. Chem. Int. Ed. 2007, 46,7778–7781; Chem. Mater. 2014,26, 3610–3617; Chem. Mater.2016, 28, 2384–2392; ACS Appl. Mater. Interfaces 2017, 9, 1542–1552; Chem. Mater. 2017, 29,1769–1778;

	
	LiTi2(PO4)3 system
	~10-4
	J. Electrochem. Soc. 1990, 137, 1023-1027; Acc. Chem Res. 1994, 27, 265–270.

	
	LiGe2(PO4)3 system
	~10-3
	J. Electrochem. Soc. 2008, 155, A915–A920; Solid State Ionics 2016, 289, 180–187.

	
	Li3xLa2/3 − xTiO3
	~10-4
	Solid State Commun. 1993, 86,10, 689-693

	
	100[Li1.5Cr0.5Ti1.5(PO4)3]-
5SiO2
	2.14 × 10−2
	J. Non-Cryst. Solids 2015, 409,120–125

	Halide
	Li2ZrCl6
	8.1 × 10-4
	Nat. Commun. 2021, 12(1), 1-
11

	
	Li3YCl6
	5.1 × 10-4
	Adv. Mater. 2018, 30 (44),
1803075

	
	Li3YBr6
	1.7 × 10-3
	Adv. Mater. 2018, 30 (44),
1803075

	
	Li3InCl6
	2.0 × 10-3
	Angew. Chem. Int. Ed. 2019, 58 (46), 16427-16432

	
	Li3ScCl6
	3.0 × 10-3
	J. Am. Chem. Soc. 2020, 142
(15), 7012-7022

	
	Li2Sc2/3Cl4
	1.5 × 10-3
	Energy Environ. Sci. 2020, 13
(7), 2056-2063

	Dual-anion amorphous SEs
	1.6Li2O-TaCl5
	6.6× 10-3
	Nat Commun.2023,14, 3780

	
	1.5Li2O-HfCl4
	1.97× 10-3
	Nat Commun.2023,14, 3780

	
	1.5Li2O-ZrCl4
	1.3× 10-3
	J. Am. Chem. Soc. 2024, 146, 2977−2985

	
	Li1.75ZrCl4.75O0.5
	2.42× 10-3
	Nat Commun.2023,14, 3807

	
	Li3N-TaCl5
	7.34× 10-3
(30℃)
	Angew. Chem. Int. Ed. 2024, e202415847

	
	0.4125Li3N-TaCl5
	5.91× 10-3
	Nat Commun. 2025,16, 143.

	
	Li1.5Zr0.5Ta0.5Cl5.0O0.5
	3.88× 10-3
	J. Am. Chem. Soc. 2025, 147, 23170−23179





Supplementary Table 2. Structural parameters of xLi2CO3-TaCl5 (x = 0.8, 0.9, 1.0 and 1.1) amorphous SEs extracted from Ta L3-edge EXAFS fittings.

	
	
	0.8Li2CO3-TaCl5
	0.9Li2CO3-TaCl5
	1.0Li2CO3-TaCl5
	1.1Li2CO3-TaCl5

	Ta-O
path
	CN
	4.537
	4.094
	4.345
	5.864

	
	d (Å)
	1.862
	1.872
	1.877
	1.910

	
	σ2(Å2)
	0.003
	0.018
	0.004
	0.004

	Ta-Cl path
	CN
	3.996
	4.171
	3.898
	4.05

	
	d (Å)
	2.518
	2.557
	2.453
	2.305

	
	σ2 (Å2)
	0.016
	0.003
	0.018
	0.009


*CN, coordination number; d (Å), bonding distance; σ2, Debye-Waller factor; Ta-O path is from the crystal structures of Ta2O5 (mp-10390). Ta-Cl path from the crystal structure of TaCl5 (mp-29831). The fitted k range was set to be 2–12 Å−1, and the fitted R range was set to be 1−2.6 Å. A k2 weighting was used.



Supplementary Table 3. Summary of the electrochemical performances of ASSBs operating at low temperature

	Battery
	Lowest  working  temperature ( °C)
	Capacity  retention  vs. RT (%)
	Current  density  (mA/cm2)
	Ref.

	In|Li6PS5Cl|NCM622
	−30
	60
	0.053
	Chem. Commun., 2018,54, 14116-14119

	Li-In|65Li2S-30P2S5 5Li2O  |Li3InCl6|NCM622
	−20
	45.7
	0.08
	Rare Met. 41, 106–114.

	Li-In|Li5.6PS4.6Br1.4|NCM622
	−20
	67.7
	0.0064
	Materialia 26, 101603.

	Li-In|Li5.5PS4.5Cl1.5|NCM622
	−20
	26.6
	0.8
	Chem. Eng. J. 430, 132896.

	Li-In|Li6PS5I|NCM712
	−20
	23.4
	0.024
	Rare Met. 41, 798–805.

	Li-In|Li5.5PS4.5Cl1.5|LNO@NCM712
	−20
	50.4
	0.044
	Energy Storage Mater. 43, 53–61.

	Li-In|Li5.5PS4.5Cl1.5|LNO@NCM712
	−20
	50.0
	0.016
	Energy Environ. Mater. 6, 12308.

	Li-In|Li5.5PS4.5Cl1.5|NCM811
	−20
	60.8
	0.0063
	J. Power Sources 520, 230890.

	Li-In|Li5.5PS4.425O0.075Cl1.5|NCM811
	−20
	59.2
	0.016
	ACS Appl. Mater. Interfaces 14, 4179–4185.

	μSi|Li6PS5Cl|NCM811
	−20 (discharge)
	36.7
	0.3
	Science 373, 1494–1499.

	Ag-C|Li6PS5Cl|Li2O-ZrO2  @NCM90(LiNi0.90Co0.05Mn0.05O2)
	−10 (discharge)
	47
	0.68
	Nat. Energy 5, 299–308.

	Li-In|Li6PS5Cl| Li3InCl6|NCM  (LiNi0.90Co0.06Mn0.04O2)
	−20 
	54.7
	0.1
	Energy Environ. Sci. 16, 4453–4463.



	Li4Ti5O12|LGPS|LNO@LCO
	−30 (discharge)
	92.6 ( 68.1)
	0.06 (0.6)
	Nat. Energy 1, 1–7.

	Li-In|Li9.54 [Si0.6Ge0.4]1.74 P1.44  S11.1Br0.3O0.6|LNO@LCO
	−10 (discharge)
	75
	0.587
	Science 381, 50–53.

	Li-In|Li10SnP1.84Sb0.16S11.6O0.4  |LNO@LCO
	−20 
	75
	0.069
	Chem Electro Chem 9, e202200156.

	Li-In|Li6PS5Cl|Li3InCl6|LCO
	−30(−10)
	53.8 (74.9)
	0.06 (0.48)
	Adv. Funct. Mater. 32, 2205594.

	Li-In|Li6PS5Cl|Li3InCl6|LCO|GLC@Al
	−10
	75.2
	0.03
	Adv. Funct. Mater. 32, 2200767.

	Li-In|Li6PS5Cl|1.6Li2O-TaCl5|LCO
	−10
	74.5
	0.125
	Nat. Commun. 14, 3780.

	Li|Li6.5La3Zr1.5Ta0.5O12|LCO
	10 (discharge)
	20
	0.0567
	Small 19, e2301904.
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