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Genetic rescue despite outbreeding depression
This is an R Markdown document to accompany the manuscript by Ben Fitzpatrick. The functions and
commands recapitulate the figures in the manuscript.

Be sure to set your working directory as appropriate. Activate the 3d plotting library:
library(plot3D)

Single Locus expectations without population dynamics

#quartz("Figure_1", width=5, height=5)
par(mfrow=c(2,2), mar=c(5,5,2,1))

WDD <- 0.90
WDR <- 0.85
WRR <- 1.1

pHat <- (WDD-WDR)/(WRR+WDD-2*WDR)
pvec <- (0:100)/100
wBar <- pvecˆ2*WRR + 2*pvec*(1-pvec)*WDR + (1-pvec)ˆ2*WDD

barplot(c(WDD,WDR,WRR), ylab="Fitness", xlab="Genotype", names.arg=c("DD", "DR", "RR"))
text(c(WDD,WDR,WRR),x=c(.75,1.85,3.15),y=c(WDD,WDR,WRR),pos=1)
mtext("a", at=.0, line=.5)
plot(pvec, wBar, type="l", xlab="Frequency of R allele", ylab="Population mean fitness", ylim=c(.8,1.1))
abline(v=pHat, lty=3)
text(pHat, 0.85, pos=4, expression(hat(p)))
mtext("b", at=0, line=.5)

WDD <- 0.99
WDR <- 0.75
WRR <- 1.1

pHat <- (WDD-WDR)/(WRR+WDD-2*WDR)
pvec <- (0:100)/100
wBar <- pvecˆ2*WRR + 2*pvec*(1-pvec)*WDR + (1-pvec)ˆ2*WDD

barplot(c(WDD,WDR,WRR), ylab="Fitness", xlab="Genotype", names.arg=c("DD", "DR", "RR"))
text(c(WDD,WDR,WRR),x=c(.75,1.85,3.15),y=c(WDD,WDR,WRR),pos=1)
mtext("c", at=.0, line=.5)
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plot(pvec, wBar, type="l", xlab="Frequency of R allele", ylab="Population mean fitness", ylim=c(.8,1.1))
abline(v=pHat, lty=3)
text(pHat, 0.85, pos=4, expression(hat(p)))
mtext("d", at=0, line=.5)
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Genetic Rescue Simulation: 1 locus
Deterministic finite population model

Define function to iterate classic population genetics model:
single.locus <- function(G, W, dd, imm=0, gens=100){

N <- Wbar <- p <- numeric(length=gens) #p is the frequency of the rescue allele
#1 compute total population size and actual allele frequencies
N[1] <- sum(G)
p[1] <- G%*%c(1/N[1], 1/(2*N[1]), 0)
Wbar[1] <- (G%*%W)/N[1]

for(i in 1:(gens-1)){
#2 compute expected allele frequencies in the next generation
## selection before random mating
# p[i+1] <- (G[1]*W[1]+G[2]*W[2]/2)/(N[i]*Wbar[i])
## selection after random mating (as in Lewontin & Kojima)
af <- (G[1]+G[2]/2)/sum(G)
Wbar[i] <- afˆ2*W[1]+2*af*(1-af)*W[2]+(1-af)ˆ2*W[3]
p[i+1] <- (afˆ2*W[1]+af*(1-af)*W[2])/Wbar[i]
#3 compute expected population size in the next generation
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N[i+1] <- Wbar[i]*N[i]/(1+dd*N[i])
#4 compute new genotype numbers
G <- N[i+1]*W*c(p[i+1]ˆ2,2*p[i+1]*(1-p[i+1]),(1-p[i+1])ˆ2)
#5 Add immigrants
G[1] <- G[1]+imm
N[i+1] <- N[i+1]+imm
Wbar[i+1] <- (G%*%W)/N[i+1]
#6 Return to step 1 or finish loop
if(N[i+1]<3){break}

}
data.frame(N=N, p=p, Wbar=Wbar)

}

Now run it for 100 generations with the fitness values in Table 1 of the manuscript with two different starting
population sizes:
gens <- 100
W <- c(1.1, 0.85, 0.9)
imm <- 0

K <- 500
dd <- (max(W)-1)/K
N0 <- 50

G <- c(0.2*N0, 0, 0.8*N0)
N5.20 <- single.locus(G*.5, W, dd, imm, gens)
N10.40 <- single.locus(G, W, dd, imm, gens)

#quartz(title="Figure_2", width=4,height=8)
# par(mfrow=c(3,1), mar=c(3,4,2,1), cex=1)
plot(N10.40$p[1:40], type="l", ylim=c(0,1),xlab="",ylab="Allele Frequency", lwd=2)
lines(N5.20$p, lty=2, col="grey", lwd=2)
#mtext("a", line=0,at=-8, cex=1.2)
title(main="Fig. 1a")
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Fig. 1a

#par(mar=c(3.5,4,1.5,1))
plot(N10.40$N[1:40], type="l",xlab="",ylab="Population Size", lwd=2)
lines(N5.20$N, lty=2, col="grey", lwd=2)
#mtext("b", line=0,at=-8, cex=1.2)
title(main="Fig. 1b")
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Fig. 1b

#par(mar=c(4,4,1,1))
plot(N10.40$W[1:40], type="l",xlab="Generations",ylab="Mean Fitness", ylim=c(0,1.2), lwd=2)
lines(N5.20$W, lty=2, col="grey", lwd=2)
#mtext("c", line=0,at=-8, cex=1.2)
title(main="Fig. 1c")
abline(h=1, lty=3)
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Fig. 1c

Two-locus models
First define the functions to run the computations from Lewontin and Kojima
# deterministic two locus model
LK.infinite <- function(G,W,R=0.5,gens){

Wbar <- p <- r <- numeric(length=gens)
# distribution of gametotypes before selection

g11 <- G[1] + G[2]/2 + G[4]/2 + (1-R)*G[5]/2 + R*G[6]/2
g10 <- G[2]/2 + G[3] + R*G[5]/2 + (1-R)*G[6]/2 + G[7]/2
g01 <- G[4]/2 + R*G[5]/2 + (1-R)*G[6]/2 + G[8] + G[9]/2
g00 <- (1-R)*G[5]/2 + R*G[6]/2 + G[7]/2 + G[9]/2 + G[10]
p[1] <- g11+g10
r[1] <- g11+g01

Wbar[1] <- sum(G*W)

for(i in 2:gens){
# genotype frequency according to HW (in order of L & K table 4)

g11 <- round(g11, 10)
g10 <- round(g10, 10)
g01 <- round(g01, 10)
g00 <- round(g00, 10)

# random union of gametes
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G <- c(g11*g11, 2*g11*g10, g10*g10, 2*g11*g01, 2*g11*g00, 2*g10*g01,2*g10*g00, g01*g01, 2*g01*g00, g00*g00)

# expected frequency after selection
Wbar[i] <- sum(G*W)
Gs <- G*W/Wbar[i]

# new gametes
g11 <- Gs[1] + Gs[2]/2 + Gs[4]/2 + (1-R)*Gs[5]/2 + R*Gs[6]/2
g10 <- Gs[2]/2 + Gs[3] + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[7]/2
g01 <- Gs[4]/2 + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[8] + Gs[9]/2
g00 <- (1-R)*Gs[5]/2 + R*Gs[6]/2 + Gs[7]/2 + Gs[9]/2 + Gs[10]

# new allele frequencies
p[i] <- g11+g10
r[i] <- g11+g01

}

data.frame(p,r,Wbar)
}

#####################################################
# Deterministic model with population regulation
LKBH <- function(G,K,W,R=0.5,gens){

# Lewontin-Kojima-Beverton-Holt
dd <- (max(W)-1)/K
N <- p <- r <- Wbar <- numeric(length=gens)
N[1] <- sum(G)
G <- G/N[1]
# distribution of gametotypes before selection

g11 <- G[1] + G[2]/2 + G[4]/2 + (1-R)*G[5]/2 + R*G[6]/2
g10 <- G[2]/2 + G[3] + R*G[5]/2 + (1-R)*G[6]/2 + G[7]/2
g01 <- G[4]/2 + R*G[5]/2 + (1-R)*G[6]/2 + G[8] + G[9]/2
g00 <- (1-R)*G[5]/2 + R*G[6]/2 + G[7]/2 + G[9]/2 + G[10]
p[1] <- g11+g10
r[1] <- g11+g01

Wbar[1] <- sum(G*W)

for(i in 2:gens){
g11 <- round(g11, 10)
g10 <- round(g10, 10)
g01 <- round(g01, 10)
g00 <- round(g00, 10)

# random union of gametes
G <- c(g11*g11, 2*g11*g10, g10*g10, 2*g11*g01, 2*g11*g00, 2*g10*g01,2*g10*g00, g01*g01, 2*g01*g00, g00*g00)

# expected frequency after selection
Wbar[i] <- sum(G*W)
Gs <- G*W/Wbar[i]

#expected population size
N[i] <- Wbar[i]*N[i-1]/(1+dd*N[i-1])

# new gametes
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g11 <- Gs[1] + Gs[2]/2 + Gs[4]/2 + (1-R)*Gs[5]/2 + R*Gs[6]/2
g10 <- Gs[2]/2 + Gs[3] + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[7]/2
g01 <- Gs[4]/2 + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[8] + Gs[9]/2
g00 <- (1-R)*Gs[5]/2 + R*Gs[6]/2 + Gs[7]/2 + Gs[9]/2 + Gs[10]

# new allele frequencies
p[i] <- g11+g10
r[i] <- g11+g01

}

data.frame(N, p,r,Wbar)

}

#####################################################
# Drift with constant population size
LK.finite <- function(G,W,R=0.5,gens){

N <- sum(G)
G <- G/N
# distribution of gametotypes before selection

g11 <- G[1] + G[2]/2 + G[4]/2 + (1-R)*G[5]/2 + R*G[6]/2
g10 <- G[2]/2 + G[3] + R*G[5]/2 + (1-R)*G[6]/2 + G[7]/2
g01 <- G[4]/2 + R*G[5]/2 + (1-R)*G[6]/2 + G[8] + G[9]/2
g00 <- (1-R)*G[5]/2 + R*G[6]/2 + G[7]/2 + G[9]/2 + G[10]
p <- g11+g10
r <- g11+g01

Wbar <- sum(G*W)

for(i in 2:gens){
# because some weird rounding thing was giving slightly negative values for some that should be zero!!!
g11 <- round(g11, 10)
g10 <- round(g10, 10)
g01 <- round(g01, 10)
g00 <- round(g00, 10)

# genotype frequency according to HW (in order of L & K table 4)
G <- c(g11*g11, 2*g11*g10, g10*g10, 2*g11*g01, 2*g11*g00, 2*g10*g01,2*g10*g00, g01*g01, 2*g01*g00, g00*g00)

# expected frequency after selection
Ps <- G*W/Wbar[i-1]

# Wright-Fisher sampling
Ns <- rmultinom(1,N,Ps)[,1]
Gs <- Ns/N

# new gametes
g11 <- Gs[1] + Gs[2]/2 + Gs[4]/2 + (1-R)*Gs[5]/2 + R*Gs[6]/2
g10 <- Gs[2]/2 + Gs[3] + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[7]/2
g01 <- Gs[4]/2 + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[8] + Gs[9]/2
g00 <- (1-R)*Gs[5]/2 + R*Gs[6]/2 + Gs[7]/2 + Gs[9]/2 + Gs[10]

# new allele frequencies
p[i] <- g11+g10
r[i] <- g11+g01

Wbar[i] <- sum(W*c(g11*g11, 2*g11*g10, g10*g10, 2*g11*g01, 2*g11*g00, 2*g10*g01,2*g10*g00, g01*g01, 2*g01*g00, g00*g00))
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}
data.frame(N,p,r,Wbar)

}

# Beverton-Holt Population Regulation
# with immigration
LK.popi <- function(G, K, W, imm, R=0.5, gens){

# demographic stochasticity, population regulation, Wright-Fisher sampling
N <- p <- r <- Wbar <- numeric(length=gens)
dd <- (max(W)-1)/K
N[1] <- sum(G)
G <- G/N[1]
# distribution of gametotypes before selection

g11 <- G[1] + G[2]/2 + G[4]/2 + (1-R)*G[5]/2 + R*G[6]/2
g10 <- G[2]/2 + G[3] + R*G[5]/2 + (1-R)*G[6]/2 + G[7]/2
g01 <- G[4]/2 + R*G[5]/2 + (1-R)*G[6]/2 + G[8] + G[9]/2
g00 <- (1-R)*G[5]/2 + R*G[6]/2 + G[7]/2 + G[9]/2 + G[10]

p[1] <- g11+g10
r[1] <- g11+g01

Wbar[1] <- sum(G*W)

for(i in 2:gens){
g11 <- round(g11, 10)
g10 <- round(g10, 10)
g01 <- round(g01, 10)
g00 <- round(g00, 10)

# random mating
# new genotype frequency according to HW (in order of L & K table 4)

G <- c(g11*g11, 2*g11*g10, g10*g10, 2*g11*g01, 2*g11*g00, 2*g10*g01,2*g10*g00, g01*g01, 2*g01*g00, g00*g00)

# expected frequency after selection
Wbar[i] <- sum(W*G)
Ps <- G*W/Wbar[i]

#expected population size
N[i] <- Wbar[i]*N[i-1]/(1+dd*N[i-1])

#Draw random population size
N[i] <- rpois(1,N[i])
if(N[i]<2) break

# Wright-Fisher sampling
Ns <- rmultinom(1,N[i],Ps)[,1]

# add immigrants
Ns[10] <- Ns[10]+imm
N[i] <- N[i]+imm
Gs <- Ns/N[i]

# new gametes
g11 <- Gs[1] + Gs[2]/2 + Gs[4]/2 + (1-R)*Gs[5]/2 + R*Gs[6]/2
g10 <- Gs[2]/2 + Gs[3] + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[7]/2
g01 <- Gs[4]/2 + R*Gs[5]/2 + (1-R)*Gs[6]/2 + Gs[8] + Gs[9]/2
g00 <- (1-R)*Gs[5]/2 + R*Gs[6]/2 + Gs[7]/2 + Gs[9]/2 + Gs[10]

# new allele frequencies
p[i] <- g11+g10
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r[i] <- g11+g01

}

data.frame(N,p,r,Wbar)
}

Note: For the two locus simulations, I saved the basic functions above as a script to read in with the ‘source’
command: source(“NewTwoLocusModels.R”)

Neutral hitchhiker

N <- 50
K <- 500
p <- 0.80 # frequency of the neutral native allele
r <- 0.80 # frequency of the deleterious native allele
LD <- p*(1-r) # initial admixture = maximum correlation
G <- c(0.8,rep(0,8),0.2)
# multilocus fitness function (double-heterozygote twice)
W <- c(0.9, .85, 1.1,

0.9, .85, .85, 1.1,
0.9, .85, 1.1)

wmat <- matrix(W[-5],nrow=3)
colnames(wmat) <- c("AA","AB","BB")
rownames(wmat) <- c("DD","DR","RR")
t(wmat)

## DD DR RR
## AA 0.9 0.85 1.1
## AB 0.9 0.85 1.1
## BB 0.9 0.85 1.1

hitch0.50 <- LKBH(G, K, W, R=0.5, 100)
hitch0.05 <- LKBH(G, K, W, R=0.05, 100)
hitch0.005 <- LKBH(G, K, W, R=0.005, 100)

# stronger selection, keeping phat<0.2: Wrr=(Wdd-Wdr)/Phat -Wdd+2Wdr
Phat <- 0.2
Wdd <- 0.85
Wdr <- 0.72
(Wrr <- (Wdd-Wdr)/Phat-Wdd+2*Wdr+0.06)

## [1] 1.3

W <- c(Wdd, Wdr, Wrr,
Wdd, Wdr, Wdr, Wrr,
Wdd, Wdr, Wrr)

hitchS.50 <- LKBH(G, K, W, R=0.5, 100)
hitchS.05 <- LKBH(G, K, W, R=0.05, 100)
hitchS.005 <- LKBH(G, K, W, R=0.005, 100)

#quartz("hitchhiking effects", width=4, height=6.5)
#par(mfrow=c(2,1), mar=c(4,4,2,1))
plot(hitch0.005$p, ylim=c(0,1), xlab="Generation", ylab="Allele frequency", type="l", lwd=2, lty=2)
lines(hitch0.05$p, lwd=2, lty=2)
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lines(hitch0.50$p, lwd=2, lty=2)
lines(1-hitch0.50$r, lwd=2)
text(80,.95,"rescue")
text(80,.75,"c=0.5")
text(80,.59,"c=0.05")
text(80,.08,"c=0.005")
abline(h=0,lty=3)
#mtext("a", at=-23, cex=1.2)
title(main="Fig. 3a")
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Fig. 3a

plot(hitchS.005$p, ylim=c(0,1), xlab="Generation", ylab="Allele frequency", type="l", lwd=2, lty=2)
lines(hitchS.05$p, lwd=2, lty=2)
lines(hitchS.50$p, lwd=2, lty=2)
lines(1-hitchS.50$r, lwd=2)
text(80,.95,"rescue")
text(80,.74,"c=0.5")
text(80,.39,"c=0.05")
text(80,.12,"c=0.005")
abline(h=0,lty=3)
#mtext("b", at=-23, cex=1.2)
title(main="Fig. 3b")
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Fig. 3b

With local adaptation in conflict

This chunk will create the right-hand side of figure 4, showing the fitness functions and deterministic
trajectories of the rescue allele (solid line) and native local advantage allele (dashed line):
N <- 50
K <- 500
sa <- 0.15 # additive effect of immigrant allele at the local adaptation locus
sr <- 0.10 # additive effect of immigrant allele at the rescue locus
Wn <- 0.90 # native fitness

# multilocus fitness function (double-heterozygote twice)
WA <- Wn + c(0, sr, 2*sr,

-sa, -sa+sr, -sa+sr, -sa+2*sr,
-2*sa, -2*sa+sr, -2*sa+2*sr)

wmat <- matrix(WA[-5],nrow=3)
colnames(wmat) <- c("AA","AB","BB")
rownames(wmat) <- c("DD","DR","RR")
t(wmat)

## DD DR RR
## AA 0.90 1.00 1.10
## AB 0.75 0.85 0.95
## BB 0.60 0.70 0.80

# Dobzhansky-Muller
sa <- 0.10
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h0 <- 0.05
h1 <- 0.10
h2 <- 0.15
WD <- Wn + c(0, sr, 2*sr,

-sa-h1, -sa+sr-h0, -sa+sr-h0, -sa+2*sr,
-2*sa-h2, -2*sa+sr-h1, -2*sa+2*sr)

wmat <- matrix(WD[-5],nrow=3)
colnames(wmat) <- c("AA","AB","BB")
rownames(wmat) <- c("DD","DR","RR")
t(wmat)

## DD DR RR
## AA 0.90 1.00 1.1
## AB 0.70 0.85 1.0
## BB 0.55 0.70 0.9

# two loci with heterozygote dysfunction
sa <- 0.10
d1 <- 0.15
d2 <- 0.15
WE <- Wn + c(0, sr-d1, 2*sr,

-sa-d2, -sa+sr-d1-d2, -sa+sr-d1-d2, -sa+2*sr-d2,
-2*sa, -2*sa+sr-d1, -2*sa+2*sr)

wmat <- matrix(WE[-5],nrow=3)
colnames(wmat) <- c("AA","AB","BB")
rownames(wmat) <- c("DD","DR","RR")
t(wmat)

## DD DR RR
## AA 0.90 0.85 1.10
## AB 0.65 0.60 0.85
## BB 0.70 0.65 0.90

d1 <- 0.12
d2 <- 0.12
WE2 <- Wn + c(0, sr-d1, 2*sr,

-sa-d2, -sa+sr-d1-d2, -sa+sr-d1-d2, -sa+2*sr-d2,
-2*sa, -2*sa+sr-d1, -2*sa+2*sr)

# unlinked (R=0.5)
add1 <- LKBH(N*G, K, WA, 0.5, 100)
het1 <- LKBH(N*G, K, WE, 0.5, 100)
het2 <- LKBH(N*G, K, WE2, 0.5, 100)
bdm1 <- LKBH(N*G, K, WD, 0.5, 100)

# quartz("Figure_4_part")
par(mfrow=c(4,2), mar=c(2,2,1,1))

hist3D(z=t(matrix(WA[-5], nrow=3)), colvar=FALSE, border="black", col="grey", lighting=TRUE, axes=FALSE)

plot(add1$p, type="l", ylim=c(0,1), lwd=2, lty=2); lines(1-add1$r, lwd=2)

hist3D(z=t(matrix(WE[-5], nrow=3)), colvar=FALSE, border="black", col="grey", lighting=TRUE, axes=FALSE)

plot(het1$p, type="l", ylim=c(0,1), lwd=2, lty=2); lines(1-het1$r, lwd=2)
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abline(v=which(het1$N<3)[1], lty=2)

hist3D(z=t(matrix(WE2[-5], nrow=3)), colvar=FALSE, border="black", col="grey", lighting=TRUE, axes=FALSE)

plot(het2$p, type="l", ylim=c(0,1), lwd=2, lty=2); lines(1-het2$r, lwd=2)

hist3D(z=t(matrix(WD[-5], nrow=3)), colvar=FALSE, border="black", col="grey", lighting=TRUE, axes=FALSE)

plot(bdm1$p, type="l", ylim=c(0,1), lwd=2, lty=2); lines(1-bdm1$r, lwd=2)

0 20 40 60 80 100

0.
0

0.
4

0.
8

Index
ad

d1
$p

0 20 40 60 80 100

0.
0

0.
4

0.
8

Index

he
t1

$p

0 20 40 60 80 100

0.
0

0.
4

0.
8

Index

he
t2

$p

0 20 40 60 80 100

0.
0

0.
4

0.
8

Index

bd
m

1$
p

Stochastic model
To recreate my stochastic outcomes exactly, use
set.seed(42)

stochastic two locus model

neutral, unlinked hitchhiker withOUT immigration

N <- 50
K <- 500
G <- round(N*c(0.8,0,0,0,0,0,0,0,0,0.2))
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# multilocus fitness function (double-heterozygote twice)
W <- c(0.9, .85, 1.1,

0.9, .85, .85, 1.1,
0.9, .85, 1.1)

gens <- 100

LK.infinite(G/50,W,gens=100)[100,]

## p r Wbar
## 100 0.795928 3.56691e-07 1.1

Just confirming that rescue is expected: deleterious allele dissappears (r ~0). To clarify: p is the frequency of
native allele at the ‘second’ locus, and r is the frequency of the native (deleterios allele) at the ‘rescue’ locus.
Now run the stochastic model with the same parameters:
reps <- 10000
imm <- 0
N2 <- P2 <- R2 <- matrix(nrow=gens, ncol=reps)
for(i in 1:reps){

Xs <- LK.popi(G, K, W, imm, R=0.5, gens=gens)
N2[,i] <- Xs$N
P2[,i] <- Xs$p
R2[,i] <- Xs$r

}

sum(N2[gens,]>2,na.rm=TRUE)

## [1] 2044

20.44% (2044/10000) success rate
mean(P2[gens,N2[gens,]!=0], na.rm=TRUE)

## [1] 0.7569408

0.7569 average native neutral allele frequency GIVEN population survival
mean(P2[gens,N2[gens,]!=0]==0, na.rm=TRUE)

## [1] 0.08414873

0.0841 fixation probability of nonnative neutral alleles (the command finds the proportion of simulations
where the native allele freqeuncy went to zero)

neutral, unlinked hitchhiker with immigration

imm <- 1
N2i <- P2i <- R2i <- matrix(nrow=gens, ncol=reps)
for(i in 1:reps){

Xs <- LK.popi(G, K, W, imm, R=0.5, gens=gens)
N2i[,i] <- Xs$N
P2i[,i] <- Xs$p
R2i[,i] <- Xs$r

}
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sum(N2i[gens,]>2,na.rm=TRUE)

## [1] 9648

96.48% success rate
mean(P2i[gens,N2i[gens,]>2], na.rm=TRUE)

## [1] 0.1803377

0.1803 . . . i.e., the average introduced AF is 81.97%
mean(P2i[gens,N2i[gens,]>2]==0, na.rm=TRUE)

## [1] 0.331364

0.3313 fixation prob (proportion of simulations where native neutral allele was lost)

Now make Figure 5
Pext0 <- rowMeans(N2>2)
Pexti <- rowMeans(N2i>2)
p2 <- replace(P2,N2<3,NA)
r2 <- replace(R2,N2<3,NA)
Pneu0 <- rowMeans(p2,na.rm=TRUE)
Pres0 <- rowMeans(r2,na.rm=TRUE)
p2i <- replace(P2i,N2i<3,NA)
r2i <- replace(R2i,N2i<3,NA)
Pneui <- rowMeans(p2i,na.rm=TRUE)
Presi <- rowMeans(r2i,na.rm=TRUE)
# quartz("Figure_5", width=4,height=6.5)

# Fig 5
# par(mfrow=c(2,1), mar=c(4,5,3,1))
spar <- 4*(1:25)
x <- 1:100
plot(x[spar],Pext0[spar], xlab="Generation", ylab="Proportion", pch=16, ylim=c(0,1))
lines(1:100,1-Pneu0, lwd=2)
lines(1:100,1-Pres0,lwd=2, lty=3)
#mtext("a: Without assisted gene flow", line=0.75, at=10)
title(main="Fig 5a (without assisted gene flow)")
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Fig 5a (without assisted gene flow)

plot(x[spar],Pexti[spar], xlab="Generation", ylab="Proportion", pch=16, ylim=c(0,1))
lines(1:100,1-Pneui, lwd=2)
lines(1:100,1-Presi,lwd=2, lty=3)
#mtext("b: With assisted gene flow", line=0.75, at=7)
legend("bottomright", c("Populations remaining", "Rescue allele", "neutral allele"), lty=c(0,3,1), lwd=2, pch=c(16,-1,-1))

title(main="Fig 5b (with assistend gene flow)")
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Fig 5b (with assistend gene flow)

repeat with larger population (for comparison in Fig.6)
N <- 100
K <- 500
G <- round(N*c(0.8,0,0,0,0,0,0,0,0,0.2))

# multilocus fitness function (double-heterozygote twice)
W <- c(0.9, .85, 1.1,

0.9, .85, .85, 1.1,
0.9, .85, 1.1)

gens <- 100

reps <- 10000
imm <- 0
N2 <- P2 <- R2 <- matrix(nrow=gens, ncol=reps)
for(i in 1:reps){

Xs <- LK.popi(G, K, W, imm, R=0.5, gens=gens)
N2[,i] <- Xs$N
P2[,i] <- Xs$p
R2[,i] <- Xs$r

}

# success rate
sum(N2[gens,]>2,na.rm=TRUE)

## [1] 2491
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# average non-native neutral allele frequency GIVEN persistence
1-mean(P2[gens,N2[gens,]!=0], na.rm=TRUE)

## [1] 0.2331452

# Fixation probability of non-native neutral allele
mean(P2[gens,N2[gens,]!=0]==0, na.rm=TRUE)

## [1] 0.07544141

# neutral, unlinked hitchhiker with immigration
imm <- 1
N2i <- P2i <- R2i <- matrix(nrow=gens, ncol=reps)
for(i in 1:reps){

Xs <- LK.popi(G, K, W, imm, R=0.5, gens=gens)
N2i[,i] <- Xs$N
P2i[,i] <- Xs$p
R2i[,i] <- Xs$r

}

# success rate
sum(N2i[gens,]>2,na.rm=TRUE)

## [1] 9768

# average non-native neutral allele frequency GIVEN persistence
1-mean(P2i[gens,N2i[gens,]>2], na.rm=TRUE)

## [1] 0.7786604

# Fixation probability of non-native neutral allele
mean(P2i[gens,N2i[gens,]>2]==0, na.rm=TRUE)

## [1] 0.2623874

Pext0.1 <- rowMeans(N2>2)
Pexti.1 <- rowMeans(N2i>2)
p2.1 <- replace(P2,N2<3,NA)
r2.1 <- replace(R2,N2<3,NA)
Pneu0.1 <- rowMeans(p2.1,na.rm=TRUE)
Pres0.1 <- rowMeans(r2.1,na.rm=TRUE)
p2i.1 <- replace(P2i,N2i<3,NA)
r2i.1 <- replace(R2i,N2i<3,NA)
Pneui.1 <- rowMeans(p2i.1,na.rm=TRUE)
Presi.1 <- rowMeans(r2i.1,na.rm=TRUE)

With 1 immigrant per generation, the expected frequency of introduced alleles at unlinked neutral loci goes
to 0.779, and they are fixed 26% of the time (or 26% of loci) . . . so, would it be better to increase the initial
introduction and avoid the continual gene flow?
# vector of different numbers of individuals to be translocated
Trans <- seq(from=10, to=60, by=5)
# initial vectors to keep track of outcomes at the end of each simulation
Succ <- numeric() # how often the population is extant at the end
Neut <- numeric() # neutral non-native allele frequency
Rfre <- numeric() # rescue allele frequency
Rinc <- numeric() # is the rescue allele frequency greater than it started
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for(j in 1:length(Trans)){
N2 <- P2 <- R2 <- matrix(nrow=gens, ncol=reps)
G <- c(40,rep(0,8),Trans[j])
for(i in 1:reps){

Xs <- LK.popi(G, K, W, imm=0, R=0.5, gens=gens)
N2[,i] <- Xs$N
P2[,i] <- Xs$p
R2[,i] <- Xs$r

}

Succ[j] <- sum(N2[gens,]>2,na.rm=TRUE)
Neut[j] <- 1-mean(P2[gens,N2[gens,]>2], na.rm=TRUE)
Rfre[j] <- 1-mean(R2[gens,N2[gens,]>2], na.rm=TRUE)
Rinc[j] <- mean(R2[gens,N2[gens,]>2]<(Trans[j]/sum(G)), na.rm=TRUE)

}

(simout <- data.frame(Trans,Succ,Neut,Rfre,Rinc))

## Trans Succ Neut Rfre Rinc
## 1 10 2025 0.2347028 1.0000000 1.0000000
## 2 15 3736 0.3403564 0.9997323 0.9997323
## 3 20 5388 0.3884738 1.0000000 1.0000000
## 4 25 6929 0.4475128 1.0000000 1.0000000
## 5 30 7999 0.4940513 1.0000000 1.0000000
## 6 35 8782 0.5294551 0.9998861 0.9998861
## 7 40 9336 0.5683618 1.0000000 1.0000000
## 8 45 9607 0.5951595 1.0000000 1.0000000
## 9 50 9791 0.6202137 1.0000000 1.0000000
## 10 55 9896 0.6475673 1.0000000 1.0000000
## 11 60 9955 0.6726314 1.0000000 1.0000000

Rinc is the fraction of simulations where the population was extant at the end and the rescue allele was
increasing. That is, if this is less than one, the population is extant after the specified number of generations
but probably going extinct.

For example 0.9997323*3736 = 3735, aka one simulation was likely heading toward failure but hadn’t gotten
there yet because the agreement of Rfre and Rinc means the frequency of the rescue allele was zero . . .

add a different scenario (double the population size). . .
for(j in 1:length(Trans)){
N2 <- P2 <- R2 <- matrix(nrow=gens, ncol=reps)
G <- c(40,rep(0,8),Trans[j])*2 # doubling here
for(i in 1:reps){

Xs <- LK.popi(G, K=500, W, imm=0, R=0.5, gens=gens)
N2[,i] <- Xs$N
P2[,i] <- Xs$p
R2[,i] <- Xs$r

}
Succ[j] <- sum(N2[gens,]>2,na.rm=TRUE)
Neut[j] <- 1-mean(P2[gens,N2[gens,]>2], na.rm=TRUE)
Rfre[j] <- 1-mean(R2[gens,N2[gens,]>2], na.rm=TRUE)
Rinc[j] <- mean(R2[gens,N2[gens,]>2]<(Trans[j]/sum(G)), na.rm=TRUE)
}
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#(data.frame(IF,Succ,Neut,simout))

#quartz("Figure_6",width=4.5,height=4.5)
IF <- Trans/(Trans+40) # immigrant fraction
Psuc <- simout$Succ/reps
plot(IF,Psuc, ylim=c(0,1), type="l", col="black", xlab="Immigration Fraction", ylab="Frequency")
points(IF,Psuc,pch=21,bg="black")
lines(IF,simout$Neut, col="grey")
points(IF, simout$Neut, pch=17)
text(0.325,0.925,"Success rate", col="black")
text(0.475,0.325, "Neutral allele frequency")

lines(IF,Succ/reps, col="black")
points(IF,Succ/reps, col="black")
lines(IF,Neut, col="grey")
points(IF,Neut, col="black", pch=2)
abline(0,1,lty=3)
legend("bottomright",legend=c("N0=40","N0=80"),pch=c(1,16))
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data.frame(IF,simout[,-1],Succ,Neut,Rfre,Rinc)

## IF Succ Neut Rfre Rinc Succ.1 Neut.1 Rfre.1 Rinc.1
## 1 0.2000000 2025 0.2347028 1.0000000 1.0000000 2591 0.2306510 1 1
## 2 0.2727273 3736 0.3403564 0.9997323 0.9997323 4799 0.3064577 1 1
## 3 0.3333333 5388 0.3884738 1.0000000 1.0000000 6867 0.3763777 1 1
## 4 0.3846154 6929 0.4475128 1.0000000 1.0000000 8430 0.4329700 1 1
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## 5 0.4285714 7999 0.4940513 1.0000000 1.0000000 9322 0.4847525 1 1
## 6 0.4666667 8782 0.5294551 0.9998861 0.9998861 9729 0.5239691 1 1
## 7 0.5000000 9336 0.5683618 1.0000000 1.0000000 9906 0.5646198 1 1
## 8 0.5294118 9607 0.5951595 1.0000000 1.0000000 9970 0.5944820 1 1
## 9 0.5555556 9791 0.6202137 1.0000000 1.0000000 9986 0.6232608 1 1
## 10 0.5789474 9896 0.6475673 1.0000000 1.0000000 9993 0.6508507 1 1
## 11 0.6000000 9955 0.6726314 1.0000000 1.0000000 9999 0.6697314 1 1

This last data frame compares success rates at different immigrant fractions for the small and large population
sizes (columns with “.1”).
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