Photovoltaic stimulation of mouse and pig retina with pyrolytic carbon microelectrodes integrated on high-density silicon solar cell arrays

Akihiro Matsumoto^{1*}, Pratik Kusumanchi^{2*}, Jesper Guldsmed Madsen^{3*}, Asbjørn Cortnum Jørgensen⁴, Gisele A.d.R. Benatto⁵, Sune Thorsteinsson⁵, Peter B. Poulsen⁵, Keisuke Yonehara¹, Toke Bek³, Stephan Sylvest Keller², Rasmus Schmidt Davidsen^{4†}

Supplementary information

Photovoltaic test pixel with Au contacts.

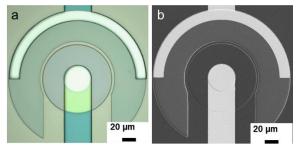


Fig. S1: a) Optical microscope and b) SEM image of single photovoltaic pixel with a diameter of 200 μ m with Au contacts on central n⁺ region and annular p⁺ region.

Photovoltaic pixel characterization with visible light. Initially, the photovoltaic properties of the pixels were characterized in a solar simulator for conventional testing of solar cells with visible light in AM 1.5G spectral conditions (100 mW cm⁻²). Fig. S2 shows a schematic of the experimental setup.

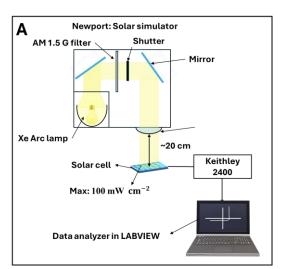


Fig. S2: Setup for testing solar cell pixels with AM 1.5G spectral conditions.

¹ Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan

² National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark

³ Department of Ophthalmology, Aarhus University Hospital

⁴ Department of Electrical & Computer Engineering, Aarhus University

⁵ Department of Electrical and Photonics Engineering, Technical University of Denmark

^{*}Are to be considered joint first authors, †Corresponding Author: rasda@ece.au.dk

Photovoltaic pixel characterization with NIR illumination.

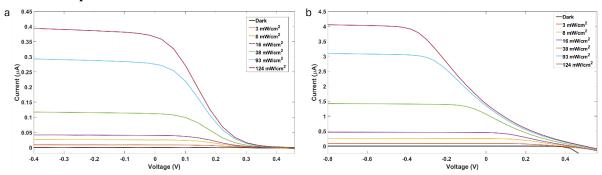


Fig. S3: I-V curves recorded for single photovoltaic pixels with diameter of a) 40 μ m and b) 200 μ m with Au contacts under 940 nm illumination with different intensities.

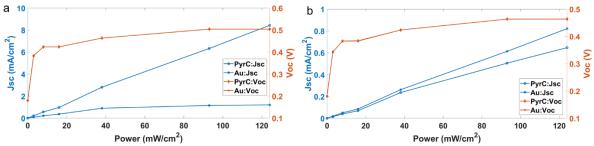
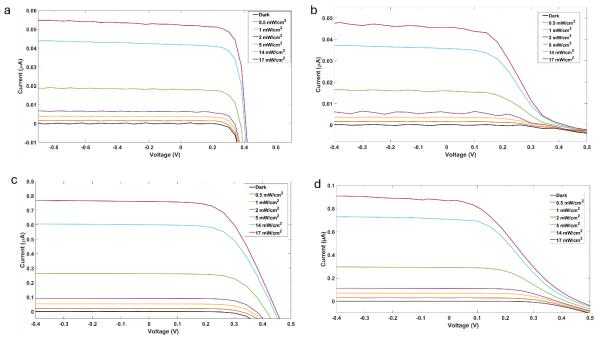



Fig. S4: Comparison of short circuit current density J_{sc} and open circuit voltage V_{oc} for a) 40 μ m pixels and b) 200 μ m pixels under 940 nm illumination with different intensities.

Fig. S5: I-V curves recorded for single photovoltaics pixels with diameter of a-b) 40 μm and c-d) 200 μm with a) and c) PyrC contacts and b) and d) Au contacts under 880 nm illumination with different intensities.

Table S1. Fill factor FF, short circuit current I_{sc} and open circuit voltage V_{oc} extracted from the recorded I-V curves under 880 nm NIR illumination at different intensities for pixels with PyrC and Au electrodes.

Irradiance	40 μm pixels						200 μm pixels					
880 nm	FF		I _{sc} (nA)		$V_{oc}(V)$		FF		$I_{sc}(\mu A)$		$V_{oc}(V)$	
(mW cm ⁻²)	Au	PyrC	Au	PyrC	Au	PyrC	Au	PyrC	Au	PyrC	Au	PyrC
0.5	0.51	0.76	1	1	0.295	0.262	0.61	0.69	0.03	0.02	0.332	0.362
1	0.38	0.68	3	3	0.336	0.302	0.55	0.68	0.06	0.05	0.382	0.383
2	0.38	0.64	5	6	0.342	0.343	0.54	0.65	0.11	0.09	0.382	0.392
5	0.30	0.65	15	17	0.382	0.382	0.43	0.61	0.29	0.26	0.423	0.410
14	0.27	0.72	33	41	0.416	0.410	0.31	0.58	0.72	0.59	0.467	0.455
17	0.22	0.68	45	52	0.423	0.423	0.29	0.51	0.87	0.76	0.495	0.463