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[bookmark: _Hlk207126082]Supplementary Fig. 1. Molecular dynamics (MD) simulations for different electrolytes. (a) The total energy of different electrolyte systems. (b) The life of hydrogen bonds. (c) Probability distributions of intermolecular hydrogen bond angles. Hydrogen bonds exhibit pronounced directionality and saturation, with a donor-acceptor distance shorter than 3.5 Å and a donor-hydrogen-acceptor angle smaller than 30° defining the interaction.
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Supplementary Fig. 2. 3D snapshots of the electrolytes and typical solvation structures in the electrolyte without (a) and with 1 M ACN (b).
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Supplementary Fig. 3. The FTIR of pure ACN.
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Supplementary Fig. 4. The in-situ temperature-dependent FTIR of electrolytes with different ACN concentrations. (a) 0 M. (b) 0.2 M. (c) 0.6 M. (d) 1.0 M. (e) 1.4 M. (f) 1.8 M. 
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Supplementary Fig. 5. (a) The Raman spectrum of pure ACN. (b) Temperature-dependent Raman analysis for electrolytes with different ACN concentrations. (c) Detailed Raman spectra for SO42- in (b).
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[bookmark: _Hlk204089632]Supplementary Fig. 6. 1H NMR chemical shifts for pure ACN (a) and electrolytes with different ACN concentrations (b).
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Supplementary Fig. 7. Physicochemical characterizations of different electrolytes. (a) Differential scanning calorimeter data. (b) Viscosity. (c) Electrical conductivity. 
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Supplementary Fig. 8. The LSV curves for the Na2SO4 electrolytes.
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Supplementary Fig. 9. Nyquist plots of Al electrodes in various electrolytes.
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Supplementary Fig. 10. Current-time transients obtained at predetermined potentials. tm: time needed to achieve the peak current (Im). Current-time transients were normalized using Im and its corresponding time (tm). These normalized data were compared with the Scharifker-Hills nucleation model1. This well-established theory classifies nucleation into two distinct modes: instantaneous (I) and progressive (P). The mathematical expressions governing these modes2 are:
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Supplementary Fig. 11. The electrochemical performances of Pb-Ag anodes in different electrolytes. (a) LSV curves. (b) Galvanostatic voltage profiles at 500 A m-2.
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Supplementary Fig. 12. The current efficiencies (a, d), cell voltages (b, e), and energy consumptions (c, f) of zinc electrowinning at different current densities. The current efficiencies (g, j), cell voltages (h, k), and energy consumptions (i, l) of zinc electrowinning in the electrolytes with different Cl-/F- concentrations.
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Supplementary Fig. 13. The zinc deposit morphology post-stripping from the Al cathodes after electrowinning for 3 h.
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Supplementary Fig. 14. Optical micrographs of zinc deposits after electrowinning at different current densities for 3 h.
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Supplementary Fig. 15. Schematic diagram of the HCP structure of Zn with a (002), (100), (101) crystal plane. Zinc crystallizes in the P63/mmc space group with a hexagonal close-packed (hcp) structure. During electrodeposition, zinc growth primarily occurs along three low-index facets: (100), (002), and (101). Among these, the (002) plane exhibits high atomic density and low surface energy, resulting in superior thermodynamic stability3. In contrast, the (101) plane enables stable vertical epitaxial growth with enhanced mass transfer kinetics, offering sustained and controllable deposition behavior4.
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Supplementary Fig. 16. The finite element simulations for SO42- concentration distributions.
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Supplementary Fig. 17. The finite element simulations for H+ flux.
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Supplementary Fig. 18. Time-varying images of deposited zinc after electrowinning in different electrolytes.
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Supplementary Fig. 19. Time-varying optical micrographs of deposited zinc after electrowinning in different electrolytes.
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Supplementary Fig. 20. The height variations and surface roughness across distinct regions of the CLSM images. (a) Horizontal line scanning. (b) Vertical line scanning. (c) Diagonal line scanning.

Supplementary Table 1. Tafel parameters derived from curve fitting analysis.
	Concentration (M)
	Corrosion potential (V)
	Corrosion current density (mA cm-2)

	0
	-0.633
	87.10

	0.2
	-0.610
	60.67

	0.6
	-0.588
	46.99

	1.0
	-0.580
	41.11

	1.4
	-0.559
	39.54

	1.8
	-0.560
	38.28



Supplementary Table 2. Comparative evaluation of electrolyte additives for ZE.
	Additive
	Current density (A m-2)
	Current efficiency (%)
	Cell voltage (V)
	Energy consumption (kWh t-1)
	Reference

	1.0 M ACN without F-
	500
	94.3
	2.91
	2531.4
	This work

	
	1500
	82.6
	3.34
	3317.3
	

	1.0 M ACN with 1 g L-1 F-
	500
	90.8
	2.93
	2644.9
	

	5 mg L-1 gelatin
	500
	96.2
	3.80
	3239.0
	5

	5 mg L-1 Tannic acid
	500
	89.3
	3.11
	2850.0
	6

	5 mg L-1 FS-301
	500
	93.4
	3.52
	3090.0
	7

	1 mg L-1 CTABr
	500
	81.4
	3.03
	3053.4
	8
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