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Detailed Architecture

This section outlines the necessary adaptations to convert a baseline architecture into the
proposed PRISM pipeline. Starting from existing pipelines designed for crystal structures,
such as iComformer,* eComformer,* or CartNet,“ the initial atom and edge encoders remain
unchanged. The primary modification involves the integration of a Superatom Encoder
and minimal alterations to the message-passing mechanism to accommodate the Multiscale
Expert, which lacks explicit geometric edge information. The subsequent subsections provide
comprehensive details on the Superatom Encoder implementation and outline the specific
adjustments made to CartNet, enabling the construction of the complete PRISM architecture.
Although this description focuses on CartNet, the proposed changes can be adapted similarly

to any other baseline architecture, as demonstrated in the Discussion Section of the main


daniel.aravena.p@usach.com
silvia.gomez@qi.ub.es
eliseo.ruiz@qi.ub.edu
j.ruiz@upc.edu

manuscript.

Superatom Encoder

This module creates the initial embedding representation of the supernode s, which is in
charge of the more global representations of the crystal and encodes the repetitions of the
crystal structure via Cell Expert.
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Figure 1: Schematic of the Superatom encoder. It performs self-attention between all the
nodes in ) and aggregates all of them in a single representation.

Figure [If shows a schematic of the Superatom encoder. Initially, each atom ¢ in the unit
cell V is assigned an embedding z.;; based on its atomic number. Subsequently, each atom
embedding is updated via a self-attention mechanism considering all other atoms within the

unit cell as follows:
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where q;, k;, and v, represent learnable linear projections of the initial atomic embeddings
Zeell, and «;; is the Softmax function of q!'k;/v/dim. Finally, the embeddings f; from all

atoms are summed to form the initial embedding for the superatom node s, denoted as h':



Baseline Modification

This section details the modifications necessary for adapting a baseline architecture into
the PRISM pipeline. While the following description specifically addresses the adjustments
required for CartNet,? due to its results highlighted in the Discussion Section from the main
manuscript, these modifications can be generalised and have been applied to other baseline
architectures designed for crystal structures. Figure [2]illustrates the modules employed within
the CartNet baseline. Atom nodes and edges are initialised using consistent Atom and Edge
Encoders, respectively, and the CartLayer serves as the primary message-passing module

utilised by our aggregation experts.
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Figure 2: Schematic of our detailed blocks used in CartNet. The Atom Encoder (blue) maps
discrete atomic features into continuous embeddings via a MLP. The Edge Encoder (red)
computes interatomic distances and directions, encodes distances with a set of Radial Basis
Functions (RBF), and processes them through a MLP. The CartLayer (green) performs gated
message passing with an explicit Envelope function. Orange paths indicate branches omitted
in the Multiscale Expert variant.



Atom Encoder

This module encodes the initial atomic representations h; and it has no modifications from
the original design. Each atom i has its own atomic number z;. We map z; into R*™ via an
embedding Emb(z;), and then apply a small MLP to obtain the initial hidden node feature
h, € R%™:

h; = MLPyoqe(Emb(z;)). (4)

The MLP,,qe consists of two linear layers: the first layer doubles the embedding dimension,
applies a SiLU activation; the second layer projects back to dim and applies another SiLLU.

This yields a smoothly non-linear mapping from the raw embedding into the hidden space.

Edge Encoder

The Edge Encoder is responsible for encoding the necessary geometrical information needed
for the edges. In our PRISM baseline, the Edge Encoder is used three times, the first one to
encode the edges for the atomistic neighbourhood, the second to encode the cell edges in the
cell neighbourhood and finally for the feature-space neighbourhood which is used per layer.

An edge (i, j) connects receiver atom ¢ and sender atom j. From their positions r;,r; € R?

we compute:

dij = |Jrj — il ()

Vi = (rj —r;)/d;j. (6)

We then encode the scalar distance d;; into a K-dimensional radial-basis (RBF) vector
p;; Via

pr(dij) = exp(—ﬁ(exp(—dij) — /Jk)Q), k=0,...,K—1, (7)

with fixed centers ju;, and width 5. p is initialized with equally spaced values between exp(—r,)

and 1, and 3 are initialized with a fixed 8 = (2K~ (1 — exp (—7.)))



Concatenating p;; with v;;, we obtain the edge feature

eij = MLPeagd([p; || Vi5])- )

Here MLPg4qe also has two linear layers: the first doubles the input dimension dim and
applies SiLLU, the second returns to dim and applies SiLLU.

In our specific PRISM scenario, for the atomistic and feature-space neighbourhood, RBF
is initialised with r., and for the cell neighbourhood is initialised using R., where R, >> r,.
For the feature-space neighbourhood, before the computation of the of the distance d;; and
the direction vector v;;, the minimal distance between repetitions is found using the equations

described in the Methodology Section from the main manuscript.

Message-Passing Module

The Message-Passing Module is in charge to share information between nodes and/or su-
pernodes. In our specific pipeline, the Message-Passing Module is used 4 times, one for each
expert (Cell, Multiscale, Atomistic, and Similarity).

At each module, sender and receiver node features h;, h; and edge feature e;; are combined

into a gate and a message. The gate is:

gij = 0 (BN(MLPgaic[hi[le;;]h,])) © Env(dy), (9)

where MLP . first projects the 3dim input down to dim, applies SiLU, then projects within
dim again; its output is batch-normalized and passed through a sigmoid.

The Envelope function is defined as:

Env(d;;) = %(cos(w) + 1), (10)

Tc

which smoothly decays interactions near the cutoff r..



In parallel, the raw message is:

m,; = MLP[hi[le;[/h;], (11)

where MLP,q, first projects the 3dim input down to dim, applies SiLU, then projects within

dim again; but without batch-norm or sigmoid. We then weight it by the gate:

m;; = m;; © g;;. (12)

Aggregating over neighbours N; and applying batch-norm + SiLU with a residual connec-

tion yields:

b, = h; + SILU(BN(Y_ my) ), (13)
JEN;
e;j = €y + 8ij- (14)

For the multiscale expert (orange paths in Figure , we omit the edge encoder and
gating branches: messages are computed solely from the concatenated node embeddings and

aggregated without updating any e;;.

Head

The final atomic embeddings hf"al € R¥™ are processed through a multilayer perceptron

(MLP) to produce individual atomic predictions. Specifically, the MLP consists of two linear

dim

layers with weights W, € R 2

dim dim

xdim, W2 c RY>™55" and biases bl eER™>

. by € R}, separated
by a SiLU activation function:®
0; = Wy, SiLU(W hi™ b)) + by, (15)

where the SiLLU activation function is used as non-linearity.

The final property prediction y for the crystal is obtained by averaging these atomic-level



predictions, thus capturing comprehensive local-to-global structural and chemical contexts

while naturally preserving the physical symmetries inherent in crystalline materials:

Y= %Zoi. (16)

Where N is the number of atoms in the unit cell V.

Scalability and Computational Cost

In our PRISM framework, each graph edge corresponds to a single message passed during
inference, and thus the total number of edges, equivalently, the total number of messages,
governs the computational cost. We decompose the total edge count, denoted &;ia1, into four
disjoint components:

gtotal = 5atomistic + gcell + gfeat + gmultiscale (17)

The multiscale expert connects each of the N atomic nodes from the unit cell V bidirec-

tionally to a global superatom, yielding
gmultiscale = 2N (18)

Showing a linear relation between the computational cost and the number of atoms N.

By contrast, the atomistic and cell edges depend on the neighbour counts within fixed
cutoff radii and must be estimated empirically. The feature-space expert produces edges
according to learned similarity thresholds, which depend on the model, training data, and
optimization, which implies that also must be estimated empirically. Figure |3|illustrates the
scaling behavior of each edge component on a log—log axis. For small unit cells (N < 10),
Ecen/N is relatively large: compact lattice vectors place many periodic images within the cell-
space cutoff, producing dense superatom connectivity. In contrast, Eatomistic/N; Emutiscale/V,

and Erear /N remain low, since few geometric neighbours fall inside the atomistic radius, the



multiscale edges contribute exactly two per atom, and feature-space edges are limited by
learned similarity thresholds. As the number of atoms grows, the lattice expands (reducing
Ecen/N) while more Euclidean neighbours lie within the atomistic cutoff, increasing Eatomistic/NV;
the multiscale term grows linearly and feature edges remain a small, roughly constant fraction

(see the lower-left and lower-right panels of Figure (3)).
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Figure 3: Log-log scatter plots of atomistic edges Eatomistic (upper-left), cell edges Ecen (upper-
right), multiscale edges Eputiscale (lower-left),; and feature-space edges Ereay (lower-right) versus
number of atoms N.

Figure {4 focuses on the feature-space expert across the four message-passing layers. The
nearly identical edge counts in layers 0-3 show that each depth learns a stable similarity
threshold. A slight downward trend at large N indicates that, as embeddings become more
discriminative, fewer atom pairs exceed the cutoff.

Based on the empirical data from the JARVIS formation-energy dataset, we can approxi-
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Figure 4: Log-log scatter plots of &, for each model layer versus number of atoms V.

mate by a linear regression that:

gatomistic = 4338N7 gcell = _65N7 gfeat = 9157 gmultiscale =2N.

Consequently,

Erotal = (43.38 —6.5+9.15+2) N = 48 N, (19)

demonstrating overall linear scaling O(48N).

To benchmark against existing approaches, we approximate typical neighbour counts of
43 since it is the average of the neighbours in the Jarvis dataset for 5 for radius graphs and
k = 25 for k-NN graphs since it is the default value for state-of-the-art methods. For the case

of iComformer, they perform k-NN to create the neighbourhood, and then three messages,



one per dimension, are performed to encode the edge. Table [1| summarises the per-atom

complexity and parameter counts of several state-of-the-art methods.

Table 1: Comparison of methods in terms of per-atom message-passing complexity and
number of parameters. Best in bold and second-best underlined.

Method Complexity Num. Params.
Matformer O(31N) 2.9M
ALIGNN O(625N) 4.0M
PotNet O(N?) 1.76M
eComFormer  O(25N) 12.4M
iComFormer  O(75N) 5.0M
CartNet O(43N) 2.5M
PRISM O(48N) OM

PRISM’s O(48N) scaling places similar to the radius-graph models (e.g. CartNet O(43N)).
The number of parameters (9M) lies between iComformer (5M) and eComformer (12.4M).
The enhanced global and feature-space interactions justify the moderate constant factor,

yielding improved accuracy while maintaining practical efficiency.

Datasets Description

JARVIS 3D DFT Dataset. The JARVIS 3D DFT Dataset (version 2021.8.18)% comprises
approximately 55000 bulk crystal structures with properties computed via density functional
theory (DFT) under the OptB88-vdW® functional for both geometry optimization and

subsequent property evaluation. It includes:

e Formation energy (meV/atom), indicating thermodynamic stability relative to elemental

reference states.

e Band gap (OPT, eV), the Kohn—-Sham gap computed within the OptB88-vdW approxi-

mation.

e Total energy (eV), the ground-state energy of the optimized cell.
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e Band gap (MBJ, eV), a subset of ~18000 structures recomputed with the Tran-Blaha

modified Becke-Johnson potential for improved gap accuracy.®

e Energy above hull (Ehull, meV /atom), measuring metastability against phase decompo-

sition.

Materials Project Dataset. The Materials Project Dataset (release 2018.6.1)” contains
roughly 69000 inorganic crystals optimized at the PBE-D3(BJ)® level of theory. Reported
properties include formation energy, band gap, bulk modulus (log GPa), and shear modulus
(log GPa). Note that bulk and shear moduli are available for only ~ 5500 structures, posing

a moderate low-data challenge.

MatBench. MatBench™ is a community-driven suite of crystal-property prediction tasks

spanning diverse data regimes. We adopt two representative tasks:
e e form: formation-energy prediction on 132752 crystals.
e jdft2d: elastic-property prediction on 636 two-dimensional crystal structures.

We follow the official MatBench evaluation protocol, reporting mean absolute error (MAE) and
root-mean-square error (RMSE) averaged over five random seeds, with standard deviations
to quantify uncertainty.

These datasets together span over two orders of magnitude in size and include both
large-scale (JARVIS, e form) and small-scale (MBJ band gaps, jdft2d) tasks, enabling a
thorough assessment of PRISM’s accuracy and scalability across material-property prediction

regimes.

Training Details

Experiments were conducted on a single NVIDIA RTX 3090 GPU (24 GB memory) and a
host system with two AMD EPYC 7313 16-core CPUs. All implementations use PyTorch

11



v2.4.0M and PyTorch Geometric v2.6.1.42

Unless otherwise specified, models consist of four PRISM layers with feature dimension
d = 256 and are trained with a batch size of 64. We apply SO(3) rotational data augmentation
as in CartNet® and optimize using the L; loss.

In most experiments, we use the AdamW-ScheduleFree optimizer.¥ For some other
properties we instead employ the Adam optimizer™ with a OneCycle learning rate sched-
uler (pct_start=0.01).2 Other hyperparameters—including the learning rate, momentum

coeflicients (1, f2), and cutoff radii (7., R, 7¢)—are tuned per task.

JARVIS Dataset

Table [2] lists the hyperparameters used for the JARVIS benchmark.

Table 2: Hyperparameters for the JARVIS dataset.

Property Optimizer LR (B1, B2) Scheduler Weight Decay Epochs SO(3) Aug. . R. 1y
Formation Energy AdamW-ScheduleFree 1 x 1073 (0.9, 0.999) None 0 500 Yes 5A 15A 1
Band Gap (OPT) AdamW-ScheduleFree 1 x 1073 (0.9, 0.999)  None 0 500 Yes 54 15A 1
Total Energy Adam 1x107% (0.9, 0.999) OneCycle 0 500 Yes 5A 154 1
Band Gap (MBJ) Adam 1x 107 (0.9, 0.999) OneCycle 0 500 Yes 5A 154 1
B Adam 1x107% (0.9, 0.999) OneCycle 0 500 Yes 5A 30A 1
Materials Project Dataset

Table [3] presents the hyperparameters for the Materials Project dataset.

Table 3: Hyperparameters for the Materials Project dataset.

Property Optimizer LR (61, B2) Scheduler Weight Decay Epochs SO(3) Aug. 7. R. 1y
Formation Energy AdamW-ScheduleFree 1 x 1072 (0.9, 0.999) None 1x10°¢ 500 Yes 5A 15A 1
Band Gap AdamW-ScheduleFree 1 x 1073 (0.9, 0.999)  None 1x107° 500 Yes 5A 15A 1
Shear Moduli Adam 1x107% (0.9, 0.999) OneCycle 0 1000 Yes 54 15A 1
Bulk Moduli Adam 1x107% (0.9, 0.999) OneCycle 1x 1076 500 No 5A 30A 1
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Matbench Dataset

Table [] details the hyperparameters for the Matbench tasks. For the jdft2d task, we insert

a dropout layer (rate 0.5) between the final atomic embeddings and the prediction head.

Table 4: Hyperparameters for the Matbench dataset.

Property Optimizer LR (B1, B2) Scheduler Weight Decay Epochs SO(3) Aug. . R. 1y
e form  AdamW-ScheduleFree 1x 1073 (0.95,0.999)  None 0 500 Yes 5A 154 1
jdft2d ~ AdamW-ScheduleFree 1 x 107 (0.95, 0.999)  None 1x107° 5000 Yes 5A 15A 1
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