
Supplementary Information

Àlex Solé,†,‡ Albert Mosella-Montoro,† Joan Cardona,‡ Daniel Aravena,∗,¶ Silvia

Gómez-Coca,∗,‡ Eliseo Ruiz,∗,‡ and Javier Ruiz-Hidalgo∗,†

†Image Processing Group - Signal Theory and Communications Department, Universitat

Politècnica de Catalunya, Barcelona, Spain

‡Inorganic and Organic Chemistry Department and Institute of Theoretical and

Computational Chemistry, Universitat de Barcelona, Barcelona, Spain

¶Materials Chemistry Department, Faculty of Chemistry and Biology, Universidad de

Santiago de Chile, Santiago, Chile

E-mail: daniel.aravena.p@usach.com; silvia.gomez@qi.ub.es; eliseo.ruiz@qi.ub.edu; j.ruiz@upc.edu

Detailed Architecture

This section outlines the necessary adaptations to convert a baseline architecture into the

proposed PRISM pipeline. Starting from existing pipelines designed for crystal structures,

such as iComformer,1 eComformer,1 or CartNet,2 the initial atom and edge encoders remain

unchanged. The primary modification involves the integration of a Superatom Encoder

and minimal alterations to the message-passing mechanism to accommodate the Multiscale

Expert, which lacks explicit geometric edge information. The subsequent subsections provide

comprehensive details on the Superatom Encoder implementation and outline the specific

adjustments made to CartNet, enabling the construction of the complete PRISM architecture.

Although this description focuses on CartNet, the proposed changes can be adapted similarly

to any other baseline architecture, as demonstrated in the Discussion Section of the main

1

daniel.aravena.p@usach.com
silvia.gomez@qi.ub.es
eliseo.ruiz@qi.ub.edu
j.ruiz@upc.edu


manuscript.

Superatom Encoder

This module creates the initial embedding representation of the supernode s, which is in

charge of the more global representations of the crystal and encodes the repetitions of the

crystal structure via Cell Expert.

Figure 1: Schematic of the Superatom encoder. It performs self-attention between all the
nodes in V and aggregates all of them in a single representation.

Figure 1 shows a schematic of the Superatom encoder. Initially, each atom i in the unit

cell V is assigned an embedding zcell,i based on its atomic number. Subsequently, each atom

embedding is updated via a self-attention mechanism considering all other atoms within the

unit cell as follows:

αij =
e

q⊤i kj√
dim∑

∀u∈V e
q⊤
i

ku√
dim

(1)

fi =
∑
∀j∈V

αijvj, (2)

where qi, kj , and vj represent learnable linear projections of the initial atomic embeddings

zcell, and αij is the Softmax function of qT
i kj/

√
dim. Finally, the embeddings fi from all

atoms are summed to form the initial embedding for the superatom node s, denoted as h
(0)
s :

2



h(0)
s =

∑
∀i∈V

fi. (3)

Baseline Modification

This section details the modifications necessary for adapting a baseline architecture into

the PRISM pipeline. While the following description specifically addresses the adjustments

required for CartNet,2 due to its results highlighted in the Discussion Section from the main

manuscript, these modifications can be generalised and have been applied to other baseline

architectures designed for crystal structures. Figure 2 illustrates the modules employed within

the CartNet baseline. Atom nodes and edges are initialised using consistent Atom and Edge

Encoders, respectively, and the CartLayer serves as the primary message-passing module

utilised by our aggregation experts.

Figure 2: Schematic of our detailed blocks used in CartNet. The Atom Encoder (blue) maps
discrete atomic features into continuous embeddings via a MLP. The Edge Encoder (red)
computes interatomic distances and directions, encodes distances with a set of Radial Basis
Functions (RBF), and processes them through a MLP. The CartLayer (green) performs gated
message passing with an explicit Envelope function. Orange paths indicate branches omitted
in the Multiscale Expert variant.

3



Atom Encoder

This module encodes the initial atomic representations hi and it has no modifications from

the original design. Each atom i has its own atomic number zi. We map zi into Rdim via an

embedding Emb(zi), and then apply a small MLP to obtain the initial hidden node feature

hi ∈ Rdim:

hi = MLPnode

(
Emb(zi)

)
. (4)

The MLPnode consists of two linear layers: the first layer doubles the embedding dimension,

applies a SiLU activation; the second layer projects back to dim and applies another SiLU.

This yields a smoothly non-linear mapping from the raw embedding into the hidden space.

Edge Encoder

The Edge Encoder is responsible for encoding the necessary geometrical information needed

for the edges. In our PRISM baseline, the Edge Encoder is used three times, the first one to

encode the edges for the atomistic neighbourhood, the second to encode the cell edges in the

cell neighbourhood and finally for the feature-space neighbourhood which is used per layer.

An edge (i, j) connects receiver atom i and sender atom j. From their positions ri, rj ∈ R3

we compute:

dij = ∥rj − ri∥, (5)

v̂ij = (rj − ri)/dij. (6)

We then encode the scalar distance dij into a K-dimensional radial-basis (RBF) vector

ρij via

ρk(dij) = exp
(
−β(exp(−dij)− µk)

2
)
, k = 0, . . . , K − 1, (7)

with fixed centers µk and width β. µ is initialized with equally spaced values between exp(−rc)

and 1, and β are initialized with a fixed β = (2K−1 (1− exp (−rc)))
−2

4



Concatenating ρij with v̂ij, we obtain the edge feature

eij = MLPedge

(
[ρij ∥ v̂ij]

)
. (8)

Here MLPedge also has two linear layers: the first doubles the input dimension dim and

applies SiLU, the second returns to dim and applies SiLU.

In our specific PRISM scenario, for the atomistic and feature-space neighbourhood, RBF

is initialised with rc, and for the cell neighbourhood is initialised using Rc, where Rc >> rc.

For the feature-space neighbourhood, before the computation of the of the distance dij and

the direction vector v̂ij , the minimal distance between repetitions is found using the equations

described in the Methodology Section from the main manuscript.

Message-Passing Module

The Message-Passing Module is in charge to share information between nodes and/or su-

pernodes. In our specific pipeline, the Message-Passing Module is used 4 times, one for each

expert (Cell, Multiscale, Atomistic, and Similarity).

At each module, sender and receiver node features hi,hj and edge feature eij are combined

into a gate and a message. The gate is:

gij = σ
(
BN(MLPgate[hi∥eij∥hj])

)
⊙ Env(dij), (9)

where MLPgate first projects the 3dim input down to dim, applies SiLU, then projects within

dim again; its output is batch-normalized and passed through a sigmoid.

The Envelope function is defined as:

Env(dij) =
1

2

(
cos

(π dij
rc

)
+ 1

)
, (10)

which smoothly decays interactions near the cutoff rc.

5



In parallel, the raw message is:

m̃ij = MLPmsg[hi∥eij∥hj], (11)

where MLPmsg first projects the 3dim input down to dim, applies SiLU, then projects within

dim again; but without batch-norm or sigmoid. We then weight it by the gate:

mij = m̃ij ⊙ gij. (12)

Aggregating over neighbours Ni and applying batch-norm + SiLU with a residual connec-

tion yields:

h′
i = hi + SiLU

(
BN

(∑
j∈Ni

mij

))
, (13)

e′ij = eij + gij. (14)

For the multiscale expert (orange paths in Figure 2), we omit the edge encoder and

gating branches: messages are computed solely from the concatenated node embeddings and

aggregated without updating any eij.

Head

The final atomic embeddings hfinal
i ∈ Rdim are processed through a multilayer perceptron

(MLP) to produce individual atomic predictions. Specifically, the MLP consists of two linear

layers with weights W1 ∈ R dim
2

×dim, W2 ∈ R1× dim
2 and biases b1 ∈ R dim

2 , b2 ∈ R1, separated

by a SiLU activation function:3

oi = W2 SiLU(W1h
final
i + b1) + b2, (15)

where the SiLU activation function is used as non-linearity.

The final property prediction y for the crystal is obtained by averaging these atomic-level

6



predictions, thus capturing comprehensive local-to-global structural and chemical contexts

while naturally preserving the physical symmetries inherent in crystalline materials:

y =
1

N

N∑
i=1

oi. (16)

Where N is the number of atoms in the unit cell V .

Scalability and Computational Cost

In our PRISM framework, each graph edge corresponds to a single message passed during

inference, and thus the total number of edges, equivalently, the total number of messages,

governs the computational cost. We decompose the total edge count, denoted Etotal, into four

disjoint components:

Etotal = Eatomistic + Ecell + Efeat + Emultiscale (17)

The multiscale expert connects each of the N atomic nodes from the unit cell V bidirec-

tionally to a global superatom, yielding

Emultiscale = 2N (18)

Showing a linear relation between the computational cost and the number of atoms N .

By contrast, the atomistic and cell edges depend on the neighbour counts within fixed

cutoff radii and must be estimated empirically. The feature-space expert produces edges

according to learned similarity thresholds, which depend on the model, training data, and

optimization, which implies that also must be estimated empirically. Figure 3 illustrates the

scaling behavior of each edge component on a log–log axis. For small unit cells (N ≲ 10),

Ecell/N is relatively large: compact lattice vectors place many periodic images within the cell-

space cutoff, producing dense superatom connectivity. In contrast, Eatomistic/N , Emultiscale/N ,

and Efeat/N remain low, since few geometric neighbours fall inside the atomistic radius, the

7



multiscale edges contribute exactly two per atom, and feature-space edges are limited by

learned similarity thresholds. As the number of atoms grows, the lattice expands (reducing

Ecell/N) while more Euclidean neighbours lie within the atomistic cutoff, increasing Eatomistic/N ;

the multiscale term grows linearly and feature edges remain a small, roughly constant fraction

(see the lower-left and lower-right panels of Figure 3).

Figure 3: Log–log scatter plots of atomistic edges Eatomistic (upper-left), cell edges Ecell (upper-
right), multiscale edges Emultiscale (lower-left), and feature-space edges Efeat (lower-right) versus
number of atoms N .

Figure 4 focuses on the feature-space expert across the four message-passing layers. The

nearly identical edge counts in layers 0–3 show that each depth learns a stable similarity

threshold. A slight downward trend at large N indicates that, as embeddings become more

discriminative, fewer atom pairs exceed the cutoff.

Based on the empirical data from the JARVIS formation-energy dataset, we can approxi-

8



Figure 4: Log–log scatter plots of Efeat for each model layer versus number of atoms N .

mate by a linear regression that:

Eatomistic = 43.38N, Ecell = −6.5N, Efeat = 9.15, Emultiscale = 2N.

Consequently,

Etotal =
(
43.38− 6.5 + 9.15 + 2

)
N ≈ 48N, (19)

demonstrating overall linear scaling O(48N).

To benchmark against existing approaches, we approximate typical neighbour counts of

43 since it is the average of the neighbours in the Jarvis dataset for 5 for radius graphs and

k = 25 for k-NN graphs since it is the default value for state-of-the-art methods. For the case

of iComformer, they perform k-NN to create the neighbourhood, and then three messages,

9



one per dimension, are performed to encode the edge. Table 1 summarises the per-atom

complexity and parameter counts of several state-of-the-art methods.

Table 1: Comparison of methods in terms of per-atom message-passing complexity and
number of parameters. Best in bold and second-best underlined.

Method Complexity Num. Params.

Matformer O(31N) 2.9M
ALIGNN O(625N) 4.0M
PotNet O(N2) 1.76M
eComFormer O(25N) 12.4M
iComFormer O(75N) 5.0M
CartNet O(43N) 2.5M
PRISM O(48N) 9M

PRISM’s O(48N) scaling places similar to the radius-graph models (e.g. CartNet O(43N)).

The number of parameters (9M) lies between iComformer (5M) and eComformer (12.4M).

The enhanced global and feature-space interactions justify the moderate constant factor,

yielding improved accuracy while maintaining practical efficiency.

Datasets Description

JARVIS 3D DFT Dataset. The JARVIS 3D DFT Dataset (version 2021.8.18)4 comprises

approximately 55 000 bulk crystal structures with properties computed via density functional

theory (DFT) under the OptB88-vdW5 functional for both geometry optimization and

subsequent property evaluation. It includes:

• Formation energy (meV/atom), indicating thermodynamic stability relative to elemental

reference states.

• Band gap (OPT, eV), the Kohn–Sham gap computed within the OptB88-vdW approxi-

mation.

• Total energy (eV), the ground-state energy of the optimized cell.

10



• Band gap (MBJ, eV), a subset of ∼18 000 structures recomputed with the Tran–Blaha

modified Becke–Johnson potential for improved gap accuracy.6

• Energy above hull (Ehull, meV/atom), measuring metastability against phase decompo-

sition.

Materials Project Dataset. The Materials Project Dataset (release 2018.6.1)7 contains

roughly 69 000 inorganic crystals optimized at the PBE-D3(BJ)8,9 level of theory. Reported

properties include formation energy, band gap, bulk modulus (log GPa), and shear modulus

(log GPa). Note that bulk and shear moduli are available for only ∼ 5 500 structures, posing

a moderate low-data challenge.

MatBench. MatBench10 is a community-driven suite of crystal-property prediction tasks

spanning diverse data regimes. We adopt two representative tasks:

• e_form: formation-energy prediction on 132 752 crystals.

• jdft2d: elastic-property prediction on 636 two-dimensional crystal structures.

We follow the official MatBench evaluation protocol, reporting mean absolute error (MAE) and

root-mean-square error (RMSE) averaged over five random seeds, with standard deviations

to quantify uncertainty.

These datasets together span over two orders of magnitude in size and include both

large-scale (JARVIS, e_form) and small-scale (MBJ band gaps, jdft2d) tasks, enabling a

thorough assessment of PRISM’s accuracy and scalability across material-property prediction

regimes.

Training Details

Experiments were conducted on a single NVIDIA RTX 3090 GPU (24 GB memory) and a

host system with two AMD EPYC 7313 16-core CPUs. All implementations use PyTorch

11



v2.4.011 and PyTorch Geometric v2.6.1.12

Unless otherwise specified, models consist of four PRISM layers with feature dimension

d = 256 and are trained with a batch size of 64. We apply SO(3) rotational data augmentation

as in CartNet2 and optimize using the L1 loss.

In most experiments, we use the AdamW-ScheduleFree optimizer.13 For some other

properties we instead employ the Adam optimizer14 with a OneCycle learning rate sched-

uler (pct_start=0.01).15 Other hyperparameters—including the learning rate, momentum

coefficients (β1, β2), and cutoff radii (rc, Rc, rf )—are tuned per task.

JARVIS Dataset

Table 2 lists the hyperparameters used for the JARVIS benchmark.

Table 2: Hyperparameters for the JARVIS dataset.

Property Optimizer LR (β1, β2) Scheduler Weight Decay Epochs SO(3) Aug. rc Rc rf

Formation Energy AdamW-ScheduleFree 1× 10−3 (0.9, 0.999) None 0 500 Yes 5 Å 15 Å 1
Band Gap (OPT) AdamW-ScheduleFree 1× 10−3 (0.9, 0.999) None 0 500 Yes 5 Å 15 Å 1
Total Energy Adam 1× 10−3 (0.9, 0.999) OneCycle 0 500 Yes 5 Å 15 Å 1
Band Gap (MBJ) Adam 1× 10−3 (0.9, 0.999) OneCycle 0 500 Yes 5 Å 15 Å 1
Ehull Adam 1× 10−3 (0.9, 0.999) OneCycle 0 500 Yes 5 Å 30 Å 1

Materials Project Dataset

Table 3 presents the hyperparameters for the Materials Project dataset.

Table 3: Hyperparameters for the Materials Project dataset.

Property Optimizer LR (β1, β2) Scheduler Weight Decay Epochs SO(3) Aug. rc Rc rf

Formation Energy AdamW-ScheduleFree 1× 10−3 (0.9, 0.999) None 1× 10−6 500 Yes 5 Å 15 Å 1
Band Gap AdamW-ScheduleFree 1× 10−3 (0.9, 0.999) None 1× 10−6 500 Yes 5 Å 15 Å 1
Shear Moduli Adam 1× 10−3 (0.9, 0.999) OneCycle 0 1000 Yes 5 Å 15 Å 1
Bulk Moduli Adam 1× 10−3 (0.9, 0.999) OneCycle 1× 10−6 500 No 5 Å 30 Å 1

12



Matbench Dataset

Table 4 details the hyperparameters for the Matbench tasks. For the jdft2d task, we insert

a dropout layer (rate 0.5) between the final atomic embeddings and the prediction head.

Table 4: Hyperparameters for the Matbench dataset.

Property Optimizer LR (β1, β2) Scheduler Weight Decay Epochs SO(3) Aug. rc Rc rf

e_form AdamW-ScheduleFree 1× 10−3 (0.95, 0.999) None 0 500 Yes 5 Å 15 Å 1
jdft2d AdamW-ScheduleFree 1× 10−3 (0.95, 0.999) None 1× 10−6 5000 Yes 5 Å 15 Å 1

References

(1) Yan, K.; Fu, C.; Qian, X.; Qian, X.; Ji, S. Complete and Efficient Graph Transform-

ers for Crystal Material Property Prediction. International Conference on Learning

Representations. 2024.

(2) Solé, À.; Mosella-Montoro, A.; Cardona, J.; Gómez-Coca, S.; Aravena, D.; Ruiz, E.;

Ruiz-Hidalgo, J. A Cartesian encoding graph neural network for crystal structure

property prediction: application to thermal ellipsoid estimation. Digital Discovery 2025,

4, 694–710.

(3) Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network

function approximation in reinforcement learning. Neural Networks 2018, 107, 3–11,

Special issue on deep reinforcement learning.

(4) Choudhary, K. et al. The joint automated repository for various integrated simulations

(JARVIS) for data-driven materials design. npj Computational Materials 2020, 6, 173.

(5) Klimeš, J. c. v.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals

applied to solids. Phys. Rev. B 2011, 83, 195131.

(6) Rai, D.; Ghimire, M.; Thapa, R. A DFT study of BeX (X= S, Se, Te) semiconductor:

modified Becke Johnson (mBJ) potential. Semiconductors 2014, 48, 1411–1422.

13



(7) Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph Networks as a Universal

Machine Learning Framework for Molecules and Crystals. Chemistry of Materials 2019,

31, 3564–3572.

(8) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

(9) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion

corrected density functional theory. Journal of Computational Chemistry 2011, 32,

1456–1465.

(10) Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking materials property

prediction methods: the Matbench test set and Automatminer reference algorithm. npj

Computational Materials 2020, 6, 138.

(11) Paszke, A. Pytorch: An imperative style, high-performance deep learning library. arXiv

preprint arXiv:1912.01703 2019,

(12) Fey, M.; Lenssen, J. E. Fast graph representation learning with PyTorch Geometric.

arXiv preprint arXiv:1903.02428 2019,

(13) Defazio, A.; Yang, X.; Khaled, A.; Mishchenko, K.; Mehta, H.; Cutkosky, A. The

road less scheduled. Advances in Neural Information Processing Systems 2024, 37,

9974–10007.

(14) Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. International

Conference on Learning Representations (ICLR). San Diega, CA, USA, 2015.

(15) Smith, L. N.; Topin, N. Super-convergence: Very fast training of neural networks

using large learning rates. Artificial intelligence and machine learning for multi-domain

operations applications. 2019; pp 369–386.

14


