
Supplementary Methods

August 3, 2025

Contents

1 Theoretical Framework 2

1.1 Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bias Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Bias derivation for two special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Assortative mating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Polygenic Index Repository User Guide 10

2.1 Summary information about Repository PGIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Phenotype de�nitions and GWAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 PGI construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 PC construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Genotyping, imputation, and phenotype de�nitions in Repository datasets . . . . . . . 11
2.1.5 Predictive power of Repository PGIs in validation datasets . . . . . . . . . . . . . . . 11

2.2 Interpretational considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 GWAS and SNP-Weight Methodologies and the Additive SNP Factor . . . . . . . . . 12
2.2.2 Potential Confounds to a Causal Interpretation . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Importance of Confounds Depends On the Application . . . . . . . . . . . . . . . . . . 13
2.2.4 Identifying Causal E�ects of Genetic Variants Using a Family-Based PGI Study . . . 13
2.2.5 Genetic E�ects Can Operate Through Environmental Mechanisms . . . . . . . . . . . 14

1



1 Theoretical Framework

Here we expand on and provide proofs of the claims in the paper's theoretical framework. To keep the
supplementary section self-contained, we repeat the setup in the paper while also providing additional details.

Consider a phenotype y∗i . The allele count for individual i and his/her parents at SNP j is denoted by
x∗ij ∈ {0, 1, 2} and x∗p,ij ∈ {0, 1, 2, 3, 4} respectively. Without loss of generality, we use mean-centred trans-
formations of the phenotype and allele counts, such that yi = y∗i − E(y∗i ), xij = x∗ij − E(x∗ij) and xp,ij =
x∗p,ij−E(x∗p,ij), for each SNP j. Note that xp,ij = xij+xn,ij , where xn,ij denotes non-transmitted alleles. De-
note a vector of mean-centered allele counts of i and his/her parents across J SNPs by xi = (xi1, xi2, ..., xiJ)
and xp,i = (xp,i1, xp,i2, ..., xp,iJ), respectively. Similarly, a vector of non-transmitted alleles is denoted by
xn,i = (xn,i1, xn,i2, ..., xn,iJ).

For simplicity, here we assume that the causal e�ects of the genetic variants are homogeneous across in-
dividuals. In a more realistic scenario where causal e�ects vary across individuals, the causal parameters
below should be interpreted as weighted averages. Individuals with heterozygous parents receive more weight
because the variance in their genotype is greater (see refs.1and2). In this model, �causal e�ect of a genetic
variant� is a convenient shorthand for such a weighted average.

Suppose that the phenotype y is determined by

yi = xiγ + xp,iθ + ui. (1)

The coe�cient on the parental genotype vector, θ, captures (a linear approximation to) causal e�ects of
parental genotypes on yi that operate through parental phenotypes that a�ect individual i's environment -
which we call parental genetic e�ects (the more common term is �parental indirect genetic e�ects�) - but it
also captures confounding from gene-environment correlation, population strati�cation, and e�ects of genetic
variants not included in xi but that are correlated with xi due to non-random mating (assortative mating
and population structure)3. In contrast, because xi is randomly assigned conditional on xp,i, the coe�cient
vector γ is free from confounding from gene-environment correlation: it is the best linear approximation to
the causal genetic component, given the set of SNPs included in the analysis2. It captures causal e�ects
of SNPs included in xi, and it includes causal e�ects of genetic variants not included in xi to the extent
that they are correlated with included SNPs. Note that if controls were included in (1), θ could change
but γ would remain unchanged as long as those controls are causally prior to xi (i.e., the controls are not
themselves causally a�ected by xi).

We de�ne the the causal additive SNP factor as

gci =
xiγ

sd(xiγ)
, (2)

The causal additive SNP factor maximizes the variance explained in yi conditional on the parental genotypes,
and in that sense, it represents the overall causal e�ects of genetic variants as faithfully as possible, conditional
on the SNPs included in the analysis and on using a linear approximation. We refer to the variance explained
by the causal additive SNP factor, denoted h2γ ≡ V ar(xiγ)/V ar(yi), as the causal SNP heritability. (If xi
and xp,i contained all genetic variants in the genome, then gci would be the causal additive genetic factor,
and the phenotypic variance explained by xiγ would be the narrow-sense heritability.)

Researchers cannot use the causal additive SNP factor as a PGI because γ is unknown. Although γ can
be estimated from summary statistics of a family-based GWAS4,5, the estimates are noisy, mostly because
sample sizes are relatively small. Indeed, even though genetic e�ects are estimated with bias in a standard
GWAS, at present, the mean squared error of the estimates from standard GWAS currently tend to be
far smaller than the unbiased estimates from family-based GWAS due to the smaller estimation error6.
Consequently, PGIs based on standard GWAS have much greater predictive power. For that reason, PGIs
used in practice, including those in the Repository, are constructed from standard (non-family-based) GWAS.
To formalize these PGIs, consider the population regression of yi on xi:

yi = xiµ+ ξi, (3)
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where µ captures both the causal e�ect and the parental association since yi = xiγ + (xi + xn,i)µ + ui =
xi(γ + θ) + xn,iθ + ui = xiµ + xn,iθ + ui = xiµ + ξi. The coe�cient vector µ maximizes the variance
explained in yi, but it does not have a causal interpretation because µ will partially capture confounding,
including gene-environment correlation (due to its θ component). This is consistent with Trejo et al.7 who
show that the causal genetic e�ect is overestimated if parental genetic e�ect is not controlled for.

Standard methods for constructing SNP weights from GWAS summary statistics, such as SBayesR8 (which
we use) and LDpred9, generate a SNP weight vector w = µ̂ that is a consistent estimate of µ. We assume
that µ̂ is an unbiased estimate of µ, which we showed in our earlier paper10 is a good approximation when
the GWAS sample size is large. We refer to xiµ as the associational additive SNP factor, and the variance
explained by it, denoted h2µ ≡ V ar(xiµ)/V ar(yi) , as the associational SNP heritability.

We can write the standardized PGI constructed with the weight vector w = µ̂ as

ĝi ≡
xiµ̂

sd(xiµ̂)
. (4)

The same weights are used to construct the parental PGI:

ĝp,i ≡
xp,iµ̂

sd(xp,iµ̂)
(5)

We can write the standardized child's and parental PGIs as:

ĝi =
gci + qi + εi

sd(gci + qi + εi)
=
gci + qi + εi

α
=
gi + εi
α

(6)

ĝp,i =
gcp,i + qp,i + εp,i

sd(gcp,i + qp,i + εp,i)
=
gcp,i + qp,i + εp,i

α
=
gp,i + εp,i

α
, (7)

where gi = gci + qi and gp,i = gcp,i + qp,i such that

εi =
xi(µ̂− µ)

sd(xiγ)
(8)

εp,i =
xp,i(µ̂− µ)

sd(xp,iγ)
(9)

qi =
xi(µ− γ)

sd(xiγ)
=

xiθ

sd(xiγ)
(10)

qp,i =
xp,i(µ− γ)

sd(xp,iγ)
=

xp,iθ

sd(xp,iγ)
(11)

gcp,i =
xp,iγ

sd(xp,iγ)
(12)

α = sd(gci + qi + εi) =
sd(xiµ̂)

sd(xiγ)
= sd(gcp,i + qp,i + εi) =

sd(xp,iµ̂)

sd(xp,iγ)
. (13)

So, εi and εp,i are the estimation errors, which we assume to be uncorrelated with gci , g
c
p,i, qi, qp,i, ui, and

yi. On the other hand, qi and qp,i are non-classical measurement errors that arise because µ is estimated in
a population GWAS and captures not only the causal genetic e�ect γ but also the parental association θ.

1.1 Special Case

Suppose that the parental associations and causal genetic e�ects are proportional, so that θ = λγ, where
λ ≥ 0 is a scaling constant (possibly λ = 0 if there are no parental genetic e�ects and no confounding
from gene-environment correlation in standard GWAS estimates). In addition, assume that the SNP weights
are estimated in a very large GWAS so that there is no estimation error in the SNP weights and therefore
no classical measurement error in the PGIs: εp,i = εi = 0 for all i. Then, it is straightforward that
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qi = λgci , and α =
√
V ar(qi + gci ) =

√
V ar

(
(1 + λ)gci

)
= (1 + λ)sd(gci ) = (1 + λ). This implies that

ĝi =
gci+qi
α =

(1+λ)gci
1+λ = gci .

This implies that using ĝi and ĝp,i instead of gci and g
c
p,i will not introduce any bias in the estimation. Note

that this also will imply that Corr(ĝi, g
c
i ) = 1, which is unlikely to be the case for most phenotypes11.

1.2 Bias Derivation

Consider the following model:

ϕi = βcg
c
i + βp,cg

c
p,i + ziζc +ϖc

iδc +ϖc
p,iδp,c + vi,c, (14)

where zi is a vector of size z of mean-zero covariates normalized to have sd(zi) = 1. The model also includes
interaction between ϖc

i = gci zint,i and ϖc
p,i = gcp,izint,i, where zint,i ⊆ {zi,j |j = 1, 2, . . . , z} and it has size

zint.

We �rst derive the coe�cients from the correct model de�ned by equation (14).
Denote βGc = (βc, δc, βp,c, δp,c, ζc)

′. Then the coe�cient vector βGc is equal to

βGc =

(
V ar(Gc

i ) Cov(Gc
i , zi)

Cov(zi,G
c
i ) V ar(zi)

)−1(
Cov(Gc

i , ϕi)
Cov(zi, ϕi)

)
= V −1

gc

(
Cov(Gc

i , ϕi)
Cov(zi, ϕi)

)
, (15)

where Gc
i = (gci ,ϖ

c
i , g

c
p,i,ϖ

c
p,i)

′ and we denote its size by G, and V ar(Gc
i ) is the variance-covariance matrix

of Gc
i .

Now suppose that we only observe ĝi and ĝp,i. So, we estimate the model

ϕi = βĝi + βpĝp,i + ziζ + ϖ̂iδ + ϖ̂p,iδp + νi. (16)

Denote βĜ = (β, δ, βp, δp, ζ)
′ and Ĝi = (ĝi, ϖ̂i, ĝp,i, ϖ̂p,i), where ϖ̂i = ĝizint,i and ϖ̂p,i = ĝp,izint,i.

Then the coe�cient vector βĜ is

βĜ =

(
V ar(Ĝi) Cov(Ĝi, zi)

Cov(Ĝi, zi) V ar(zi)

)−1(
Cov(Ĝi, ϕi)
Cov(zi, ϕi)

)
= V−1

ĝ

(
Cov(Ĝi, ϕi)
Cov(zi, ϕi)

)
(17)

Note that

(
Cov(Ĝi, ϕi)
Cov(zi, ϕi)

)
=


Cov(ĝi, ϕi)
Cov(ϖ̂i, ϕi)
Cov(ĝp,i, ϕi)
Cov(ϖ̂p,i, ϕi)
Cov(zi, ϕi)

 =


Cov(

gci+qi+εi
α , ϕi)

Cov
(

(gci+qi+εi)zint,i

α , ϕi

)
Cov(

gcp,i+qp,i+εp,i
α , ϕi)

Cov
(

(gcp,i+qp,i+εp,i)zint,i

α , ϕi

)
Cov(zi, ϕi)


= P−1

((Cov(Gc
i , ϕi)

Cov(zi, ϕi)

)
+

(
Cov(Qi, ϕi)

0|z×G|

))
,

(18)

where P =

(
diag(α) 0|G×z|
0|z×G| I|z×z|

)
, diag(α) is a diagonal matrix of size G×G with α on its main diagonal, I|z×z|

is an identity matrix with z rows, 0|z×G| is a matrix of zeros of size z×G, andQi = (qi, qizint,i, qp,i, qp,izint,i).

Importantly, equation (18) is based on the assumption that εi and εp,i are uncorrelated with zint,i and ϕi,
which implies that Cov(εi, ϕi) = Cov(εp,i, ϕi) = Cov(εizint,i, ϕi) = Cov(εp,izint,i, ϕi) = 0.

Equations (17) and (18) imply that

βĜ = V−1
ĝ P−1

((Cov(Gc
i , ϕi)

Cov(zi, ϕi)

)
+

(
Cov(Qi, ϕi)

0|z×G|

))
= V−1

ĝ P−1
(
VgcβGc +

(
Cov(Qi, ϕi)

0|z×G|

))
. (19)

Next, it can be shown that
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(
Cov(Qi, ϕi)

0|z×1|

)
=

(
Cov(Qi,G

c
i ) Cov(Qi, zi)

0|z×G| 0|z×z|

)
βGc = Mq,gcβGc . (20)

This transforms (19) into

βĜ = V−1
ĝ P−1

(
Vgc +Mq,gc

)
βGc . (21)

Recall that V−1
ĝ =

(
V ar(Ĝi) Cov(Ĝi, zi)

Cov(Ĝi, zi) V ar(zi)

)
. It can be shown that

V−1
ĝ = P−1

(
Vgc +Vq +VE +M′

q,gc +Mq,gc

)
P−1 . (22)

Hence,
Vgc = PVĝP−Vq −VE −M

′

q,gc −Mq,gc , (23)

where Vq is a partitioned matrix of the same size as Vgc with the �rst block being the variance-covariance

matrix of Qi such that Vq =

(
V ar(Qi) 0|G×z|
0|z×G| 0|z|

)
; and VE is a partitioned matrix of the same size as Vgc

with the �rst block being V ar(Ei), the variance-covariance matrix of Ei = (εi, εizint,i, εp,i, εp,izint,i), such

that VE =

(
V ar(Ei) 0|G×z|
0|z×G| 0|z×z|

)
.

Let us de�ne

Ψ = Vq +Mq,gc =

(
V ar(Qi) + Cov(Gc

i ,Qi) 0|G×z|
Cov(zi,Qi) 0|z×z|

)
. (24)

This transforms (21) into

βĜ = V−1
ĝ P−1

(
PVĝP−VE −Ψ

)
βGc . (25)

Below we de�ne each component of equation (25).

We start from the component of VE from 24, V ar(Ei). Note that we assume that the error terms εi and
εp,i are independent from all the control variables and the genetic variables. This implies that

V ar(Ei) =


V ar(εi) 0|1×zint| Cov(εi, εp,i) 0|1×zint|
0|zint×1| V ar(εi)V ar(zint,i) 0|zint×1| Cov(εi, εp,i)V ar(zint,i)

Cov(εi, εp,i) 0|1×zint| V ar(εp,i) 0|1×zint|
0|zint×1| Cov(εp,i, εi)V ar(zint,i) 0|zint×1| V ar(εp,i)V ar(zint,i)

 ,

= V ar(ε)
⊗

Vzint

(26)

where V ar(ε) =

(
V ar(εi) Cov(εi, εp,i)

Cov(εi, εp,i) V ar(εp,i)

)
, Vzint

=

(
1 0|1×zint|

0|zint×1| V ar(zint,i)

)
, and

⊗
denotes Kronecker

product.

Next we de�ne the �rst component of Ψ from 24. Note that since gi = gci + qi,

Var(Qi ) + Cov(Gc
i ,Qi ) =


Cov(gi , qi ) Cov(gi , qizint,i ) Cov(gi , qp,i ) Cov(gi , qp,izint,i )

Cov(gizint,i , qi ) Cov(gizint,i , qizint,i ) Cov(gizint,i , qp,i ) Cov(gizint,i , qp,izint,i )
Cov(gp,i , qi ) Cov(gp,i , qizint,i ) Cov(gp,i , qp,i ) Cov(gp,i , qp,izint,i )

Cov(gp,izint,i , qi ) Cov(gp,izint,i , qizint,i ) Cov(gp,izint,i , qp,i ) Cov(gp,izint,i , qp,izint,i )


(27)

Next, we de�ne α and V ar(ε).Begin by de�ning ψ = sd(xiγ)
sd(xiµ) . Thus,

α2 = V ar(gci + qi + εi) = V ar
( xiµ

sd(xiγ)
+ εi

)
=

1

ψ2
+ V ar(εi). (28)
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Now note that

h2SNP =
Cov(yi, gi)

2

V ar(yi)V ar(gi)
(29)

R2 =
Cov(yi, ĝi)

2

V ar(yi)V ar(ĝi)
=
Cov(yi,

gi+εi
α )2

V ar(yi)
=
Cov(yi, gi)

2

α2V ar(yi)
=
V ar(gi)h

2
SNP

α2
. (30)

This implies that

α2 =
V ar(gi)h

2
SNP

R2
=
V ar(xiµ)

V ar(xiγ)

h2SNP
R2

=
ρ2

ψ2
≥ 1, (31)

where ρ2 =
h2
SNP

R2 . Hence, V ar(εi) = V ar(εp,i) =
1
ψ2 (ρ

2 − 1).

Now let us de�ne Cov(εi, εp,i). Note that

Cov(ĝi, ĝp,i) = Cov( giα ,
gp,i
α ) + Cov( εiα ,

εp,i
α ) =

1
α2

(
Cov( sd(xiµ)xiµ

sd(xiγ)sd(xiµ) ,
sd(xp,iµ)xp,iµ

sd(xp,iγ)sd(xp,iµ) ) + Cov(εi, εp,i)
)
=

ψ2

ρ2

(
ρpo
ψ2 + Cov(εi, εp,i)

)
.

(32)

This implies that

Cov(εi, εp,i) =
ρ2

ψ2Cov(ĝi, ĝp,i)− 1
ψ2 ρpo =

1
ψ2

(
Cov(ĝi, ĝp,i)ρ

2 − ρpo

)
,

(33)

where ρpo is a parent-o�spring genetic correlation. This implies that

V ar(ε) = 1
ψ2

(
ρ2 − 1 Cov(ĝi, ĝp,i)ρ

2 − ρpo
Cov(ĝi, ĝp,i)ρ

2 − ρpo ρ2 − 1

)
= 1

ψ2Ω . (34)

Note that under random mating and when parental genotypes are not imputed, Cov(ĝi, ĝp,i) = ρpo = 1√
2
,

implying that Cov(εi, εp,i) =
1
ψ2

1√
2
(ρ2 − 1).

Therefore, having information of Ψ, ψ, and ρ allows us to correct the bias in estimates of βĜ, where the
vector of corrected estimates is

β̂corr = A−1β̂Ĝ, (35)

where A =
(
V−1
ĝ P−1(PVĝP−VE −Ψ)

)
. And the standard errors can be obtained from

V ar(β̂corr) = A−1V ar(β̂Ĝ)(A
−1)T . (36)

However, in this general case, it is typically infeasible to implement the bias correction. That is mainly
because Ψ is unobserved in most cases because the non-classical measurement error may not be indepen-
dent of the covariates zi, and the variance of zint,i may depend on gi and qi, making it di�cult to infer

Cov(gizint,i, qizint,i). Also note that in the special case γ = µ, then A =
(
V−1
ĝ P−1(PVĝP−VE)

)
, which

is the correction equation from12.

Hence, we make the following assumptions:

Assumption 1. Random mating.

Assumption 2. The control variables that are interacted with the PGI, zint,i, are independent of the
individual and parental genotypes, xi and xp,i.
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1.3 Bias derivation for two special cases

Here we specialize the bias formula derived above for two special cases: (1) the control variables zi are
uncorrelated with xi and xp,i, and (2) the control variables zi are not causally a�ected by the genotype
vector xi. The �rst special case is simpler, and the second corresponds to the analysis described in the main
text.

We begin with some more general observations. Under Assumption 1 (random mating), Cov(ĝi, ĝp,i) =
ρpo = 1√

2
. (Note that this might not be the case when parental genes are imputed even in the absence of

assortative mating since imputation removes some of the parental genetic variation that is uncorrelated with
the o�spring genetic variation.)

Under both Assumptions 1 and 2 described above,

Ψ = Vq +M′

q,gc =

(
V ar(Qi) + Cov(Gc

i ,Qi) 0|G×z|
Cov(zi,Qi) 0|z×z|

)
=

((
V ar(q) + Cov(gc,q)

)⊗
Vzint

0|G×z|

Cov(zi,Qi) 0|z×z|

)
(37)

and V ar(q) + Cov(gc,q) =
(
V ar(xiθ)
V ar(xiγ)

+ Cov(xiγ,xiθ)
V ar(xiγ)

)
Γ , where Γ =

(
1 1√

2
1√
2

1

)
.

Also note that

Cov(xiγ,xiθ)
V ar(xiγ)

+ V ar(xiθ)
V ar(xiγ)

= Cov(xiµ,xiµ−xiγ)
V ar(xiγ)

=
V ar(xiµ)
V ar(xiγ)

− Cov(xiγ,xiµ)
V ar(xiγ)

= V ar(xiµ)
V ar(xiγ)

− Corr(xiγ,xiµ)sd(xiµ)
sd(xiγ)

= 1−ψCorr(xiγ,xiµ)
ψ2 = 1−ψr

ψ2 ,
(38)

where r = Corr(xiγ,xiµ), the correlation between the associative and causal genetic e�ect.

Note that under the assumption of random mating, V ar(ϵ) = 1
ψ2Ω = 1

ψ2 (ρ
2 − 1)Γ.

Case 1: Covariates are uncorrelated with xi and xp,i.
Note this implies that Cov(zi,Qi) = 0|z×Q|. Thus,

V ar(Ĝi) =

(
Γ
⊗

Vzint 0|G×z|
0|z×G| V ar(zi)

)
,

VE = 1
ψ2 (ρ

2 − 1)

(
Γ
⊗

Vzint
0|G×z|

0|z×G| 0|z|,

)
,

Ψ = 1
ψ2

(
1− ψr

)(
Γ
⊗

Vzint 0|G×z|
0|z×G| 0|z|

)
.

Substituting this into (35), we obtain:

βĜ =

(
diag( rρ ) 0|G×z|
0|z×G| I|z×z|

)
βGc , (39)

where diag( rρ ) is a diagonal matrix of size G × G with r
ρ on its main diagonal. Hence, when the controls

are uncorrelated with xi and xp,i, βĜ = r
ρβGc for both PGIs and their interactions, and βĜ = βGc for the

control variables.

Therefore, we can compute the corrected estimate β̂corr = ρ
r β̂Ĝ for both PGIs and their interactions and

β̂corr = β̂Ĝ for the control variables. Note that we can compute SE(β̂corr) by taking the square root of the

diagonal elements of matrix V ar(β̂corr) computed according to equation 36, with A =

(
diag( rρ ) 0|G×z|
0|z×G| I|z×z|

)
.

Given that A is diagonal, it is straightforward that SE(β̂corr) =
ρ
rSE(β̂Ĝ) for both PGIs and their interac-

tions, and SE(β̂corr) = SE(β̂Ĝ) for the control variables.

Case 2: The control variables zi are not causally a�ected by the genotype vector xi.
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In this case, the correlation between the control variables zi and the transmitted alleles is equal to the
correlation between zi and the non-transmitted alleles. This implies that: Cov(zi, qp,i) =

√
2Cov(zi, qi) and

Cov(zi, ĝp,i) =
√
2Cov(zi, ĝi).

First, suppose that interactions are not included in the model. It can be shown that in this case, the
estimated child's PGI e�ect satis�es

β =
r

ρ
βc,

while the bias in the parental coe�cient βp is more complex and depends on the correlation with the control

variables. Notably, this involves computing V ar(Ĝi)
−1.

Since we are demonstrating only the magnitude of the bias in the child's PGI e�ect βc, it su�ces to compute
the �rst row of V ar(Ĝi)

−1. To compute the inverse, we use the adjugate method:

V ar(Ĝ)−1
i,j = (−1)i+j

Mi,j

det(V ar(Ĝ))
,

where V ar(Ĝ)−1
i,j is the (i, j) entry of V ar(Ĝ)−1, and Mi,j is the minor of the (i, j) entry of V ar(Ĝ).

Now, the key observation is that if we delete the �rst row of V ar(Ĝ) to compute the minors of the elements
in the �rst row, columns 1 and 2 are identical up to a constant factor (column 2 is

√
2× column 1 under the

imposed assumptions). This implies that

M1,z1 = · · · =M1,zN = 0,

and consequently, all elements in the last z columns of row 1 are equal to zero.

Next, we determine the elements V ar(Ĝ)−1
1,1 and V ar(Ĝ)−1

1,2. Since all but the �rst two elements of the �rst
row are zero, the Laplace expansion yields

V ar(Ĝ)1,1V ar(Ĝ)−1
1,1 + V ar(Ĝ)1,2V ar(Ĝ)−1

1,2 = V ar(Ĝ)−1
1,1 +

1√
2
V ar(Ĝ)−1

1,2 = 1.

Additionally, since deleting the �rst row of V ar(Ĝ) results in column 2 being
√
2× column 1, we have

M1,2 =
√
2M1,1,

which implies that
V ar(Ĝ)−1

1,2 = −
√
2V ar(Ĝ)−1

1,1.

Solving this system for V ar(Ĝ)−1
1,1 and V ar(Ĝ)−1

1,2, we obtain

V ar(Ĝ)−1
1,1 = 2, V ar(Ĝ)−1

1,2 = −
√
2.

Thus, the �rst row of V ar(Ĝ)−1 is

[2,−
√
2, 0, . . . , 0].

The remainder of the proof straightforward and shows that the �rst row of the correction matrix A is[
r

ρ
, 0, . . . , 0

]
,

which implies that

β =
r

ρ
βc.

In a similar manner, we can show that under our assumptions, when the interactions between ĝi and ĝp,i with

zint,i are included, the �rst 1+zint rows (corresponding to ĝi and ĝizint,i) of V ar(Ĝ)−1 are [2, 0,−
√
2, 0, .., 0]
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and [0, 2, 0,−
√
2, 0, .., 0]. This implies that the corresponding rows of the correction matrix A are [ rρ , 0, .., 0]

and [0, rρ , 0, .., 0]. This, in turn, implies that

β =
r

ρ
βc

and
δ =

r

ρ
δc.

Hence both the child's PGI e�ect and its interactions with zint,i will be attenuated by a factor of rρ . This is
the result reported in the main text.

Therefore, we can compute the vector of corrected estimates β̂corr =
ρ
r β̂Ĝ for the individuals own PGI e�ect

and its interactions with zint. We can compute SE(β̂corr) by taking the square root of the diagonal elements

of matrix V ar(β̂corr) computed according to equation 36. Note that because the �rst 1 + zint rows of the
correction matrix A have r

ρ in the main diagonal and the rest of elements in these rows are equal to zero,

the �rst 1+ zint rows of A
−1 have ρ

r in the main diagonal and the rest of elements in these rows are equal to
zero. This can be shown using the Laplace expansion and the adjugate method to compute the elements of
A−1. Hence, equation 36 implies that the �rst 1+ zint diagonal elements of V ar(β̂corr) are the �rst 1+ zint

diagonal elements of V ar(β̂Ĝ) multiplied by ρ2

r2 , which implies that SE(β̂corr) =
ρ
rSE(β̂Ĝ) for child's own

genetic e�ect and its interactions with the independent controls zint,i. Note that the correction of parental
genetic e�ect and its interactions with zint,i is more complex and requires additional information.

1.4 Assortative mating

A GWAS coe�cient is estimated by regressing yi on each genetic variant xij . Thus, the GWAS coe�cient
for variant j is µ̂j = γj + θj(1 + Cov(xij , xn,ij)) + εj . This suggests that when there is assortative mating,
PGIs cannot be expressed as described in equation (6).

To analyse how the bias changes when there is assortative mating and how this bias is comparable to our
theoretically derived bias, we conduct a simple simulation under random and assortative mating.

We start by generating genomes of 2,000 biallelic, independent SNPs for two samples of sizeM ∈ {15000, 24286}
individuals in the initial generation, assuming half are male and half are female. For the random mating
simulation, we randomly match each male with a female and simulate two o�spring per pair under the laws
of Mendelian segregation assuming each SNP is inherited independently. We then generate a phenotype with
variance one according to Equation (1), where the e�ect sizes are drawn from mean-zero normal distribution
with variance such that the narrow-sense heritability is 0.2, the contribution of the parental component to
variance is 0.1, and the correlation of these two vectors of coe�cients (which we refer to as the �Child-parental
e�ect correlation�) varies between zero and one.

For the assortive mating simulation, we add standard normal noise to the phenotype and match the males
and females according to their rank of the noisy phenotype such that the correlation of the mates for the
original phenotype is 0.5. Then, we simulate two o�spring for each pair and calculate their phenotypes
using the same simulated self and and parental e�ect sizes as in the randomly mating generation. This is
repeated 100 times such that population is in equilibrium. In the �nal generation, we do not add noise to
the phenotype.

Next, for both simulations, we conduct a GWAS (not controlling for the parental genotypes) in a sample
of either 5,000 individulals (high ρ) or 14,286 indivduals (low ρ). These sample sizes were chosen because,
under the data generation procedure describe above, N = 5, 000 corresponds to ρ = 1.7 and N = 14, 286
corresponds to ρ = 3 in a randomly mating population where the child-parental e�ect correlation is zero.
We use the GWAS coe�cients as SNP weights to build PGIs for the parents and the o�spring in the residual
sample of 10,000 individuals. We then regress the PGI onto the phenotype in the prediction sample and
report the coe�cient from this regression.

Figure 1 presents the results from 10 replications of this simulation. The black markers represent the true
(i.e., observed) mean coe�cient from the PGI regression for the Low ρ and High ρ setting as well as the
95% con�dence intervals. The gray markers represent the theoretical expected attenuation derived above
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under a model of random mating. If the GWAS sample size were in�nite and there were no bias from the
parental e�ects, the estimated e�ect would be one. However, because sample sizes are �nite, introducing
sampling error, and there is confounding from parental e�ects, the estimates are attenuated. In Panel (a),
we see that using data from our random-mating simulation, the theoretical attenuation is contained within
the con�dence interval of the observed attenuation. However, in our assortative-mating simulation in Panel
(b), the attenuation is larger than predicted by our theoretical model, although the di�erence is small.

Figure 1: Attenuation factor of the individual's PGI e�ect. Simulation under random and assortative mating
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The average values of the observed and theoretical attenuation factors, along with the 95% con�dence intervals from 10

simulations for each set of parameters, are reported. The theoretical attenuation factor is calculated as Corr(assoc., causal)/ρ.

2 Polygenic Index Repository User Guide

In this guide, we summarize the key information regarding the construction of the Repository PGIs, lay
out some of the interpretational issues that are likely to arise as researchers begin to use PGIs from the
Repository, and outline how we suggest thinking through those issues. This version of the User Guide is
up to date as of the publication of ref.13; the most up-to-date version is available on the SSGAC website:
https://www.thessgac.org/pgi-repository.

2.1 Summary information about Repository PGIs

Here, we provide a brief summary of how the PGIs were constructed (please see Methods for a more detailed
description). We refer the reader to the relevant tables where more information can be found.

2.1.1 Phenotype de�nitions and GWAS

The PGIs are based on meta-analyses of summary statistics from up to three sources: GWAS conducted
in 23andMe, Inc. and UKB (some of which are novel), and published GWAS. Supplementary Table 2 lists
the phenotype measures used in the new or updated UKB GWAS that we conducted ourselves, including
information on how repeated measures were handled and the sample size in each of the three UKB partitions.
Supplementary Table 7 lists the phenotype de�nitions and describes the association models for all novel or
published 23andMe GWAS, and for published GWAS, it cites the relevant publications. For phenotypes
included in the �rst release of the Repository whose UKB or 23andMe GWAS were not updated in the
current release, the corresponding information can be found in Supplementary Tables 5 and 6 in Becker et
al.10.
In order to avoid sample overlap between the GWAS and Repository datasets, we conducted multiple versions
of the GWAS meta-analysis for each phenotype (so as to have, for each dataset, a version of the meta-analysis
that excludes that dataset). Supplementary Table 11 lists all GWAS meta-analyses used as inputs for the

10



PGIs. The �Repository datasets meta-analysis is used to make PGIs for� column shows which meta-analysis
the SNP weights come from for each Repository dataset.

2.1.2 PGI construction

The PGIs were made using SBayesR8 applied to the overlapping variants between each input GWAS meta-
analysis and 2,865,810 pruned common variants from the full UKB European-genetic-ancestry dataset for
which LD estimates were made available by Lloyd-Jones et al.8. The inclusion criterion was that the
�expected� out-of-sample predictive power of a PGI be greater than 1%. The expected predictive power was
calculated from the results of the largest GWAS meta-analysis available for that phenotype15. The expected
predictive power of each PGI (including the ones not included in the Repository because they did not pass
the cuto� of 1%) are shown in Supplementary Table 11. Notably, even though the expected predictive power
of each PGI is greater than 1%, in many instances, the actual predictive power of the PGI in a particular
dataset may be less than 1%.

2.1.3 PC construction

As part of the Repository, we also release 20 principal components (PCs) based on the genome-wide data
in each of the participating cohorts. The primary purpose of the release is to make them available for users
who wish to use them as controls for population strati�cation. In order to make the PCs, we �rst restricted
the samples to individuals of European genetic ancestries and removed markers with imputation accuracy
less than 70% or minor allele frequency less than 1%, as well as markers in long-range LD blocks (provided
by the plinkQC R package16). We then pruned all SNPs that survived these �lters using a 1Mb rolling
window (incremented in steps of 5 variants) and an r2 threshold of 0.1. Next, we calculated the pairwise
relatedness between all individuals in our full sample and generated a sample of conventionally unrelated
individuals by dropping one individual from each pair of individuals with an estimated relatedness greater
than 0.05 as calculated by in Plink1.917. We then estimated the �rst 20 PC loadings in this sample of
approximately unrelated individuals. Finally, we projected all individuals in the sample� including both
members of related pairs�onto these loadings to compute their corresponding PCs.
In HRS, we re-labeled the PCs in sets of �ve in order to address identi�ability concerns. Therefore, it is only
possible to infer from the variable name of a PC if it is one of the �rst �ve PCs (PC 1-5), one of the next
�ve PC (PCs 6-10), etc.

2.1.4 Genotyping, imputation, and phenotype de�nitions in Repository datasets

Details on genotyping and imputation of the Repository datasets are listed in Supplementary Table 6.
Supplementary Table 14 lists the phenotype de�nitions for the subset of these datasets that we used to
validate our PGIs, excluding UKB. The phenotype de�nitions for UKB can be found in Supplementary
Table 2.

2.1.5 Predictive power of Repository PGIs in validation datasets

Supplementary Table 3 shows the observed predictive power of the Repository PGIs in our three validation
datasets, together with 95% con�dence intervals obtained using a bootstrap with 1000 repetitions. For
phenotypes that were included in the �rst release of the Repository, the table also shows the predictive
power of the �rst release PGIs for comparison.

2.2 Interpretational considerations

In this section, we lay out some of the interpretational issues that are likely to arise as researchers begin to
use PGIs from the Repository, and we outline how we suggest thinking through those issues. The executive
summary is as follows:

1. The methodologies used to conduct the GWAS and to construct the SNP weights jointly determine
the additive SNP factor that is proxied for by the PGI.
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2. These methodologies, together with the PGI phenotype, determine the relative importance of various
potential confounds to a causal interpretation of PGI associations. In most applications, researchers
should control for PCs (which are available from the datasets, along with the PGIs, as part of the
Repository).

3. Whether and which confounds should be highlighted (or can be safely ignored) depends on the appli-
cation.

4. Currently, the best way to cleanly identify causal e�ects is to conduct a family-based PGI study (where
the analysis controls for the parental PGI, constructed from either measured or imputed parental
genotypes). While the results of such a study have a causal interpretation, the correct interpretation
is subtle, and the results will generally underestimate the causal e�ects of genetic variants. In the
absence of clean identi�cation of causal e�ects, researchers should highlight the potential confounds to
a causal interpretation.

5. In interpreting PGI associations (whether causal or not), it is important to keep in mind that genetic
e�ects can operate through environmental mechanisms, and these mechanisms may be modi�able.
For this reason, researchers should be cautious about using terminology such as �genetic endowment�
that can connote genetic determinism. Researchers should remind readers of the potential role of
environmental mechanisms in explaining PGI associations.

The following subsections, numbered 1 through 5, provide more detail on the points above. In addition to
attending to these interpretational issues, we urge users of the Repository to conduct power calculations
prior to undertaking analyses; to pursue analyses only if they are adequately powered; and, when feasible,
to preregister planned analyses (along with the power calculations).
We note that the GWAS from which the Repository PGIs are constructed were conducted in samples of
European genetic ancestries (where �European genetic ancestry� is operationalized di�erently depending
on the study but almost always involves sample restrictions based on the genetic PCs; e.g., for our UKB
GWAS, see the �UKB GWAS� subsection of Section II in Methods). Due to the limited portability of such
GWAS results to other ancestries, for the PGIs released to participating datasets, the current version of the
Repository is restricted to individuals of European genetic ancestries, as de�ned by how their genetic PCs
cluster together with those classi�ed as having EUR-genetic-ancestry in the 1000 Genomes Project (see the
�Subject-level QC� subsection of Section I in Methods).

2.2.1 GWAS and SNP-Weight Methodologies and the Additive SNP Factor

In the Supplementary Methods section 6 of Becker et al.10, we showed how the set of control variables used
in a GWAS a�ects the additive SNP factor proxied for by a PGI. The choice of controls, however, is just
one of many dimensions of GWAS methodology. A change to any of these dimensions is likely to result in
a di�erent additive SNP factor (with a di�erent interpretation). For example, it is increasingly common for
researchers to conduct association analyses using mixed-linear models rather than OLS18,19. Since mixed-
linear models often produce estimates that are more robust to strati�cation, the additive SNP factor will be
akin to that generated by an OLS-based GWAS with some additional controls for strati�cation. Knowledge
of the methodology of the GWAS underlying a particular PGI is therefore often a necessary �rst step for
understanding what additive SNP factor a speci�c PGI is proxying for. For example, the methodologies
underlying the GWASs we conducted in UKB for the PGIs in the Repository are described in the �UKB
GWAS� subsection of Section II in Methods. Information about the association models in the 23andMe
GWASs can be found in Supplementary Table 6 of Becker et al. (2021)10 and Supplementary Table 7 of the
current paper.
The SNP-weight methodology can matter, as well. For example, our Repository PGI SNP-weights are
calculated from the GWAS results using ∼ 2.9 million pruned common variants from the full UKB European-
genetic-ancestry (N≈ 450,000) data set from Lloyd-Jones et al.8, which primarily capture common genetic
variation. If SNP weights were instead calculated based on results from SNPs that capture a di�erent mix
of common and rare genetic variation, then the additive SNP factor corresponding to that PGI would have
a di�erent interpretation: it would be the best linear predictor based on that set of SNPs.
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2.2.2 Potential Confounds to a Causal Interpretation

It is increasingly understood that standard GWAS approaches with a limited set of controls � for example,
sex, age, and up to 10 PCs, as in most of the GWASs underlying the Repository PGIs � generate PGIs
that can be subject to a number of confounds to a causal interpretation20�23. For example, PGIs for educa-
tional attainment derive a substantial share of their overall predictive power from their positive association
with rearing environment. In behavior-genetic parlance, this positive correlation arises due to the vertical
transmission of the parental phenotypes (parents' phenotypes impact their children's phenotypes). In recent
molecular-genetic research, this source of positive gene-environment correlation has been labeled �genetic
nurture� 21 or �parental indirect e�ects�; we refer to them as �parental genetic e�ects.� These e�ects can be
further exacerbated by assortative mating at the genetic level.
As another example, when the PCs are estimated in a small sample, they are often not very accurate proxies
for ancestry. Failure to adequately control for genetic ancestry gives rise to �population strati�cation� 24:
because the PGI is correlated with ancestry, which in turn is correlated with ethnicity and regional back-
ground, it picks up cultural or environmental factors that are correlated with these factors. In many empirical
applications, the goal is to estimate an association that is net of any such cultural and environmental con-
founds. In such cases, it may be possible to mitigate concerns that the underlying GWAS may have relied
on inaccurate ancestry controls by including a richer-than-usual set of environmental controls in the analysis
of the PGI.
Indeed, in most applications (that cannot exploit family data to control for parental PGIs), researchers should
include PCs in the set of controls. When estimating PGI-by-environment interactions, researchers should
additionally control for interactions between PCs and the �environment� variable25. For these purposes,
dataset-speci�c PCs are made available as part of the Repository. However, it is important to recognize
and acknowledge that the PCs are not fully accurate measures of ancestry, so even after controlling for PCs,
residual confounding almost surely remains.
The relevance of potential confounds could vary across phenotypes20,22,23. For example, parental genetic
e�ects are much smaller for height than educational attainment. Although the noisiness of PCs as measures
of ancestry in a given sample is the same across phenotypes, the noisiness is likely to be substantially more
problematic for educational attainment than for height because �ner ancestral distinctions (which require
more PCs to capture) probably matter for the social and environmental factors that in�uence educational
attainment. More generally, it seems likely that potential confounds to a causal interpretation matter more
for PGIs for social and behavioral phenotypes than for PGIs for more biologically proximal phenotypes.

2.2.3 Importance of Confounds Depends On the Application

The degree to which potential confounds to a causal interpretation matter depends on how the PGI is
used. For example, if a PGI is used as a control variable to increase precision for a randomized treatment
evaluation 26,27, then the goal is simply to use controls that absorb as much residual variance as possible
(and avoid controlling for any variables realized after the randomized intervention). Since the PGI is simply
being used as a predictive variable, its interpretation is irrelevant in that case. As a contrasting example,
consider the illustrative application in Becker et al.10 that tests how much parental education mediates the
predictive power of the PGI for educational attainment. There, the PGI should be understood as capturing
some of the parental genetic e�ects and ancestry associations with education. In most applications, the
potential confounds do matter and should be highlighted.

2.2.4 Identifying Causal E�ects of Genetic Variants Using a Family-Based PGI Study

The cleanest way to identify the causal e�ects of a PGI is to control for the parental PGI (which may be
constructed from either parental genotypes that are directly measured or imputed from other genotyped
family data, such as sibling data). This empirical strategy exploits a natural experiment: conditional on a
pair of biological parents, genetic inheritance is random. A robustly estimated non-zero estimate in a family-
based PGI study from a large and attrition-free sample would provide strong evidence of causal e�ects of
genetic variants. However, the causal interpretation of this estimate is nuanced because there is no single,
well-de�ned thought experiment that corresponds to changing the value of the PGI, since changing di�erent
genotypes that have di�erent e�ects could generate the same change in the PGI. The correct interpretation

13



of the coe�cient estimate is a weighted average of treatment e�ects from hypothetical experiments that
randomly modify, at conception, the genotypes of the causal SNPs responsible for the predictive power of
the PGI1,2.
The additive SNP factors corresponding to the PGIs in the Repository are not the best linear predictors
conditional on a pair of biological parents (because the GWAS underlying the SNP weights do not control
for the biological parents' genotypes). The PGIs proxying for additive SNP factors that would be the best
linear predictors for such a family-based analysis would be PGIs constructed from GWAS that control for
parental genotypes (or from GWAS in sibling samples that control for family �xed e�ects, although these
GWAS estimates would be biased if siblings' genotypes have causal e�ects on an individual's phenotype).
Unfortunately, to date genotyped family-based samples have been too small to produce reliable �within-
family PGIs.� The Repository does not yet contain any such PGIs. Ultimately, however, when genotyped
family-based samples become su�ciently large, the resulting within-family PGIs will be more predictive for
family-based analyses than PGIs constructed from currently-standard (between-family) GWAS.

2.2.5 Genetic E�ects Can Operate Through Environmental Mechanisms

We urge researchers who use PGIs in their research to be mindful of three important issues of interpretation
for the causal e�ects of a PGI. First, a PGI could exert its e�ects through the environment28. Consider a
PGI for BMI26. Suppose a family-based association analysis yields unambiguous evidence of a within-family
association between the PGI and BMI. Even though the family-based design provides strong support for a
causal interpretation, this does not imply that the SNPs in the PGI must be in�uencing BMI through some
narrowly physiological mechanism. In principle, the sibling di�erences in BMI could arise because of sibling
di�erences in genes that in�uence the proneness to eat sweets, exercise habits, or myriad other behaviors
with downstream e�ects on BMI. PGIs for seemingly �biological� phenotypes can thus have a substantial
behavioral component. A PGI for lung health may similarly derive predictive power from SNPs that in�uence
lung health very indirectly, through smoking habits29,30.
Second and relatedly, it is therefore a fallacy to assume that any genetic sources of heterogeneity captured by
a PGI are immutable�or even at least harder to modify than environmental sources of heterogeneity. Indeed,
the possibility of identifying modi�able mechanisms through which PGIs exert some of their e�ects motivates
some of the research using PGIs31,32. To continue the BMI example, the widespread replacement of sugar
by low-calorie sweeteners or better behavioral tools for avoiding temptation could eliminate or reduce the
e�ect of the PGI on BMI. Because of these issues, we urge researchers to avoid describing PGIs as �genetic
endowments� or other terms that may, however inadvertently, promote the common misunderstanding that
genes are a resource that is easily separable from choices made in light of that resource.
Third, because the additive genetic factor is de�ned conditional on the GWAS phenotype, population, and
environment, the same PGI may have di�erent predictive power in di�erent samples if there are di�erences in
the phenotype measure, population sampled, the sampling methodology, or the environmental context. For
example, the research participants from the UKB were recruited through the mail and had a 5.5% response
rate. Those that responded to the recruitment mailers were more healthy and more educated than the UK
population as a whole33,34. Because UKB participants make up a large fraction of the discovery sample for
many phenotypes, it may be that the PGI from this Repository does not correspond to a PGI that would
be produced from a representative sample or a sample of individuals not from the UK.
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