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1 Theoretical Framework

Here we expand on and provide proofs of the claims in the paper’s theoretical framework. To keep the
supplementary section self-contained, we repeat the setup in the paper while also providing additional details.

Consider a phenotype yf. The allele count for individual ¢ and his/her parents at SNP j is denoted by
rj; €{0,1,2} and z; ;; € {0,1,2,3,4} respectively. Without loss of generality, we use mean-centred trans-
formations of the phenotype and allele counts, such that y; = y; — E(y;), =i = zj; — E(2;) and zp,;; =
x;ij fE(:z:;’ij), for each SNP j. Note that x;, ;; = =i; +2p,i;j, where x,, ;; denotes non-transmitted alleles. De-
note a vector of mean-centered allele counts of ¢ and his/her parents across J SNPs by x; = (21, Zi2, ..., TiJ)
and X, ; = (Tp,i1, p,i2, .- Tp,ig), respectively. Similarly, a vector of non-transmitted alleles is denoted by
Xn,i = (-’I;n,ila L ,i2y ey xn,i])-

For simplicity, here we assume that the causal effects of the genetic variants are homogeneous across in-
dividuals. In a more realistic scenario where causal effects vary across individuals, the causal parameters
below should be interpreted as weighted averages. Individuals with heterozygous parents receive more weight
because the variance in their genotype is greater (see refs.!and?). In this model, “causal effect of a genetic

variant” is a convenient shorthand for such a weighted average.

Suppose that the phenotype y is determined by

Yi = XY + Xp 0 + u;. (1)

The coefficient on the parental genotype vector, €, captures (a linear approximation to) causal effects of
parental genotypes on y; that operate through parental phenotypes that affect individual i’s environment -
which we call parental genetic effects (the more common term is “parental indirect genetic effects”) - but it
also captures confounding from gene-environment correlation, population stratification, and effects of genetic
variants not included in x; but that are correlated with x; due to non-random mating (assortative mating
and population structure)®. In contrast, because x; is randomly assigned conditional on x, ;, the coefficient
vector «y is free from confounding from gene-environment correlation: it is the best linear approximation to
the causal genetic component, given the set of SNPs included in the analysis?. It captures causal effects
of SNPs included in x;, and it includes causal effects of genetic variants not included in x; to the extent
that they are correlated with included SNPs. Note that if controls were included in (1), 6 could change
but 4 would remain unchanged as long as those controls are causally prior to x; (i-e., the controls are not
themselves causally affected by x;).

We define the the causal additive SNP factor as

s @)
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The causal additive SNP factor maximizes the variance explained in y; conditional on the parental genotypes,
and in that sense, it represents the overall causal effects of genetic variants as faithfully as possible, conditional
on the SNPs included in the analysis and on using a linear approximation. We refer to the variance explained
by the causal additive SNP factor, denoted h2 = Var(x;v)/Var(y;), as the causal SNP heritability. (If x;
and x,; contained all genetic variants in the genome, then g§ would be the causal additive genetic factor,
and the phenotypic variance explained by x;v would be the narrow-sense heritability.)

Researchers cannot use the causal additive SNP factor as a PGI because ~ is unknown. Although - can
be estimated from summary statistics of a family-based GWAS*?, the estimates are noisy, mostly because
sample sizes are relatively small. Indeed, even though genetic effects are estimated with bias in a standard
GWAS, at present, the mean squared error of the estimates from standard GWAS currently tend to be
far smaller than the unbiased estimates from family-based GWAS due to the smaller estimation error®.
Consequently, PGIs based on standard GWAS have much greater predictive power. For that reason, PGIs
used in practice, including those in the Repository, are constructed from standard (non-family-based) GWAS.

To formalize these PGIs, consider the population regression of y; on x;:

Yi = Xipb + &, (3)



where p captures both the causal effect and the parental association since y; = x;v + (X; + Xpi )b + u; =
X (Y +0) + %0 +u; = X+ %0 +u; = x4+ §. The coefficient vector g maximizes the variance
explained in y;, but it does not have a causal interpretation because p will partially capture confounding,
including gene-environment correlation (due to its & component). This is consistent with Trejo et al.” who
show that the causal genetic effect is overestimated if parental genetic effect is not controlled for.

Standard methods for constructing SNP weights from GWAS summary statistics, such as SBayesR® (which
we use) and LDpred?, generate a SNP weight vector w = f1 that is a consistent estimate of p. We assume
that fi is an unbiased estimate of p, which we showed in our earlier paper'® is a good approximation when
the GWAS sample size is large. We refer to x;p as the associational additive SNP factor, and the variance
explained by it, denoted hZ = Var(x;u)/Var(y;) , as the associational SNP heritability.

We can write the standardized PGI constructed with the weight vector w = i as
. Xifb
= . 4
Sd(xefs) @
The same weights are used to construct the parental PGI:
Xp zﬂ
ilad 5
(.70 )
We can write the standardized child’s and parental PGIs as:

Opi =
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where g; = gf + ¢; and g,; = g, ; + qp; such that

_ xi(p—p)
& = i) (8)
o Xp,i( (L — H)
i sd(Xp,i7) ©)
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So, €; and €, ; are the estimation errors, which we assume to be uncorrelated with gf, gy ;, ¢, ¢p,i, wi, and
yi- On the other hand, ¢; and ¢, ; are non-classical measurement errors that arise because p is estimated in
a population GWAS and captures not only the causal genetic effect v but also the parental association 6.

1.1 Special Case

Suppose that the parental associations and causal genetic effects are proportional, so that & = A\v, where
A > 0 is a scaling constant (possibly A = 0 if there are no parental genetic effects and no confounding
from gene-environment correlation in standard GWAS estimates). In addition, assume that the SNP weights
are estimated in a very large GWAS so that there is no estimation error in the SNP weights and therefore
no classical measurement error in the PGIs: ¢,; = ¢; = 0 for all . Then, it is straightforward that



¢ = Ag§, and a = /Var(g; +9gf) = Var((l —l—)\)gf) = (14 MN)sd(gf) = (1 + A). This implies that

s gita _ (AHNgP
9i= "o = g s =i
This implies that using g; and g, ; instead of gf and g ; will not introduce any bias in the estimation. Note

that this also will imply that Corr(g;, g¢) = 1, which is unlikely to be the case for most phenotypes'!.

1.2 Bias Derivation

Consider the following model:

(6] C C (&
¢ = Bcgi + ﬂp,cgp,i + Zicc + o, 0.+ Wp,i(sp,c + Vi, (14)
where z; is a vector of size z of mean-zero covariates normalized to have sd(z;) = 1. The model also includes
interaction between @ = g{zint,i and @; ; = gy ;Zint,i, Where zin; ; C {zijl7 = 1,2,...,2} and it has size
Zint-

We first derive the coefficients from the correct model defined by equation (14).
Denote Bge = (Be, ¢, Bpcs Op.c, €.)'- Then the coefficient vector B is equal to

_( Var(G5)  Cov(Gf,z)\ " (Cov(GE )\ _ 1 (Cou(GE, ) 5
Be- = Cov(z;, GS)  Var(z) Cov(zi, ¢3) ) 9% \ Cov(zi,¢) )’ (15)

c _ c c 4C c H : cy - . .
where G§ = (g5, @¢, g5, ;» @}, ;) and we denote its size by G, and Var(GY) is the variance-covariance matrix
of G5.

Now suppose that we only observe g; and g, ;. So, we estimate the model
bi = BGi + Bpdp,i + 2:¢ + @0 + 0y iy, + Vi (16)
Denote /Bé = (ﬁv 67 5p76p7 C)/ and Gl = (giaﬁiv.@p,ivﬁp,i)a where ﬁ"b = gizint,i and ﬁp,i = gp,izint,i-
Then the coefficient vector B4 is
~ A —1 A~ ~
. = VarEGi) Cov(Gy,2;) Cov(Gi, ¢i)\ _ V-l Cov(Gy, ¢;) (17)
G Cov(Gi,z;) Var(z;) Cov(z;, d;) g Cov(zi, d;)

Note that

. Cov gf+q1'+si’ ;
Cov(gi, bi) S

S+qitei)Zine,i
Cov(Gy, b;) Cov(ww;, ¢;) COU(%,@)
<C’ov(z-u¢-z)> = | Covlgpi,di) | = COU(W%J
iy Pi COU(@'p,ia(bi) Cov (gg,iJer,H*Ep,i)zmt’i ¢) (18)
Cov(zi, ¢;) P , b
Cov(zi, di)

(@) ()

where P = <déag(a) 2(}“'), diag(c) is a diagonal matrix of size G x G with « on its main diagonal, I},
|zXG| |zXxz|

is an identity matrix with z rows, 0|,/ is a matrix of zeros of size 2 x G, and Q; = (i, GiZint,i» Up,i> p,i%int,i)-

Importantly, equation (18) is based on the assumption that ¢; and ¢, ; are uncorrelated with z;,;; and ¢;,
which implies that Cov(e;, ¢;) = Cov(ep, i) = Cov(€iZint i, $i) = Cov(ep iZint s, $i) = 0.
Equations (17) and (18) imply that

ip-1( [Cov(GS, ¢:) Cov(Qy,0i)\\ _ v—1p— Cov(Q;, ¢:)
Be=V,'P 1(<Cov(zi,¢i)>+( Opre )) =V,'P 1(VgcﬁGc+< 0oy )) (19)

Next, it can be shown that



(COU(Qiu ¢2)> — (COU(in Gzc) COU(QwZ

02x1 0)2xg| 0)2xz|

Z)) Bae = Mg g-Bge- (20)

This transforms (19) into

Be =V, P! (Vgc n Mq’gc)ch. (21)
Recall that V3! = VarﬁGi) COU(G zi) . It can be shown that
9 Cov(G,,2;) Var(z;)
Vi =P (Ve £ Vi + Vi o+ My o+ My e )P7L (22)
Hence, ,
Vgc = PV@P — Vq - VE - Mq’gc - Mq7gca (23)

where V is a partitioned matrix of the same size as V4. with the first block being the variance-covariance

matrix of @, such that V, = (V(;IT(Qi) OIgXZ); and Vg is a partitioned matrix of the same size as V 4c
|2 xG] |2| ‘
with the first block being Var(E;), the variance-covariance matrix of E; = (&, €iZint i, €p.is €p,iZint,i), such
that Vg = (VW( 2 O'G“)
0|z><G\ 0|z><z|
Let us define

_ o VQT(QZ) + CO’U(G?» Qz) 0|(G><z|
U=V,+M,4 = < Cov(z:, Q) Opny ) (24)
This transforms (21) into
B :V;lP_l(PVgP—VE —\If),BGC. (25)

Below we define each component of equation (25).

We start from the component of Vg from 24, Var(E;). Note that we assume that the error terms ¢; and
€p,i are independent from all the control variables and the genetic variables. This implies that

Var(si) 0|1><zim\ COU(Eivqui) 0|1><th,\
Var(E;) = 0120 x1 Var(e;)Var(zint,:) 0120 x1 Cov(ei, epi)Var(zint,i) ’
Cov(e;,ep ;) 011 x 25| Var(ep;) 011 25t (26)
01z, x1] Cov(ep i, e))Var(zing,i) 01z, x1 Var(ep,i)Var(zint,;)
=Var(e) @V,

Var(al) Cov(e;,ep4)

product.

1 012,
, Vo, = [1xzinel ) and ® denotes Kronecker
> ot (O|zim><1 Var(zint,i) ®

Next we define the first component of ¥ from 24. Note that since g; = g5 + ¢;,

Cov(gi, q:) Cov(gi, 4i%int,i) Cov(gi, 4p,i) Cov(9gi, dp,i%int,)
Cov(giZint,i, G:) Cov(giZint,i, GiZint,i) Cov(giZint,i, dp,i) Cov(giZint,i, Up,i%int,i)
\V/ . C G¢ ) = s 0 ’ >t 4P, %) 4P, >
ar(QZ) + OU( v QZ) Cov(gp,i, Qi) CO’U(gp’i, szint,i) COU(gp,h qp,i) Cov(gp,n (Ip,izmt,i)
Cov(gp,iZint,i> @) Cov(gp,iZint,i» GZint,i) Cov(gp,iZint,i, Op,i) Cov(gp,iZint,is Qp,i%int,i)
(27)
Next, we define o and Var(e).Begin by defining ¢ = ;jg:ﬁ% Thus,
2 c Xi b 1
o =Var(g; +q; +¢;) = Var( + si) + Var(e;). (28)
’ sd(xi7y) V2



Now note that

COU(yiagi)Z

h? = 29
SNE Var(y;)Var(g;) ®)
2 _ COU(yi,Qi)Q _ Cov(yi, %)2 _ COU(yi,gi)Q _ Var(gi)h%NP (30)
Var(y:)Var(g:) Var(y;) a?Var(y;) a? '
This implies that
o = Var(gi)hyp _ Var(xip) h3yp — Pj > 1, (31)
R? Var(xvy) R? P2
where p? = "%.ggp. Hence, Var(e;) = Var(ep,:) = g2 (p* — 1)
Now let us define Cov(e;,ep,;). Note that
Cov(gi, §p.i) = Cov(%, #4) + Cov (%, 24) =
1 sd(x; )%, sd(Xp,i W) Xp,i _
a2 (COU(sd(xi'y){:d(xﬁL) ’ sd(xp,q;'y)lzd(xpfp)) + COU(€i7 Epai)) - (32)
2
L (% + Covlenen))-
This implies that
2 A~ A~
Cov(ei,ep ;) = %Cov(givgp,i) - ﬁppo = (33)
L(Cov(é- dpi)p* = p )
P2 iy Yp,i 'po |
where p,, is a parent-offspring genetic correlation. This implies that
* -1 Cov(gi, Gp,i)p* — p )
Var(e) = - P v o) = L. 34
€) =5 (CO”U(%gp,i)/)2 = Ppo p*—1 v (34
Note that under random mating and when parental genotypes are not imputed, Cov(g;, §pi) = ppo = %,

implying that Cov(e;, g,,) = ﬁ%(pQ —1).

Therefore, having information of ¥, v, and p allows us to correct the bias in estimates of 85, where the
vector of corrected estimates is

Beorr = AP, (35)
where A = (V;lel(PVgP - Vg - \Il)) And the standard errors can be obtained from

Var(8 = A_lVar(BG)(A_l)T. (36)

corr )

However, in this general case, it is typically infeasible to implement the bias correction. That is mainly
because W is unobserved in most cases because the non-classical measurement error may not be indepen-
dent of the covariates z;, and the variance of z;,;; may depend on g¢; and ¢;, making it difficult to infer
Cov(9iZint,i; ¢iZint,s). Also note that in the special case v = p, then A = (Vg_lel(PVgP - VE)), which
is the correction equation from'2.

Hence, we make the following assumptions:
Assumption 1. Random mating.

Assumption 2. The control variables that are interacted with the PGI, z;,:;, are independent of the
individual and parental genotypes, x; and xp, ;.



1.3 Bias derivation for two special cases

Here we specialize the bias formula derived above for two special cases: (1) the control variables z; are
uncorrelated with x; and x,,, and (2) the control variables z; are not causally affected by the genotype
vector x;. The first special case is simpler, and the second corresponds to the analysis described in the main
text.

We begin with some more general observations. Under Assumption 1 (random mating), Cov(g;, gp:) =

Ppo = % (Note that this might not be the case when parental genes are imputed even in the absence of

assortative mating since imputation removes some of the parental genetic variation that is uncorrelated with
the offspring genetic variation.)

Under both Assumptions 1 and 2 described above,

vV, + M; o= (VCLT(Qi) + Cov(GY,Q;) O|G><z) _ <(Var(q) + Cov(gc7q)) RV..., 0G><z|>

OOU(ZiaQi) 0|z><z| CO’U<Z1‘7Qi) 0|Z><Z|
(37)
1 L
and Var(a) + Cov(g®, a) = (V) 4 Cplaso ) where T =, V7)),
’ V2
Also note that
C(;/lj(xz'y,xi)e) + ‘\;argxieg _ Cov()‘c;u,(xiu;xry) _
Var(xip)  Cov(xiv,Xip) _ \}Zr(xiu) . Co;“’;/"(xt'y,xiu)sd(xiusﬂ’: 1—9pCorr(x;v,%; ) _ 1-9r (38)
Var(xiv) Var(x;¥) Var(x;¥) sd(xi) 92 P2
where r = Corr(x;7,x;u), the correlation between the associative and causal genetic effect.
Note that under the assumption of random mating, Var(e) = ;zQ = 7> (p* = 1)T.
Case 1: Covariates are uncorrelated with x; and x,, ;.
Note this implies that Cov(z;, Q;) = 0).x¢q|. Thus,
. rQv., O
Var(G;) = Zint - ~|Gxz| )7
(G) ( 012xg| Var(z;)
rQv., 0
V = % 2 _ 1 ( Zint GXZI)’
B (p ) 012xg] 02,
r®V..., Ocg
q;:g(l_ r) < zine 0] XZ).
oY Ozxgl O
Substituting this into (35), we obtain:
diag(t) 0
Be = (0 (p) IGXZI) Bee, (39)
[z2XG]| |zxz]|

where diag(%) is a diagonal matrix of size G x G with £ on its main diagonal. Hence, when the controls
are uncorrelated with x; and x,,;, B2 = %EGC for both PGIs and their interactions, and B4 = Bg. for the
control variables.

corr

= gBG for both PGIs and their interactions and

Therefore, we can compute the corrected estimate B

BCOM = (B¢ for the control variables. Note that we can compute SE(3 by taking the square root of the

diag(%) OG><z|>

12xG|  djaxz|)
Given that A is diagonal, it is straightforward that SE(B,,,,) = gSE(BG) for both PGIs and their interac-
tions, and SE(B,,,,) = SE(,@G) for the control variables.

COTT)

diagonal elements of matrix Var(B,,,.,)

computed according to equation 36, with A (

Case 2: The control variables z; are not causally affected by the genotype vector x;.



In this case, the correlation between the control variables z; and the transmitted alleles is equal to the
correlation between z; and the non-transmitted alleles. This implies that: Cov(z;,qp.:) = v2Cov(z;, q;) and
Cov(zi, §p.i) = V2Cou(z;, ;).

First, suppose that interactions are not included in the model. It can be shown that in this case, the
estimated child’s PGI effect satisfies

B =18,
p

while the bias in the parental coefficient 3, is more complex and depends on the correlation with the control
1

variables. Notably, this involves computing Var(G;)~

Since we are demonstrating only the magnitude of the bias in the child’s PGI effect j., it suffices to compute
the first row of Var(G;)~!. To compute the inverse, we use the adjugate method:

M;,;

A1 o qyiti Mg
Var(G); j = (1) det(Var(G))’

where Var((;);]-l is the (i,7) entry of Var(G)™', and M;; is the minor of the (i, ) entry of Var(G).

Now, the key observation is that if we delete the first row of Var(G) to compute the minors of the elements
in the first row, columns 1 and 2 are identical up to a constant factor (column 2 is v/2x column 1 under the
imposed assumptions). This implies that

My, = =DM, =0,

and consequently, all elements in the last z columns of row 1 are equal to zero.

Next, we determine the elements Var(G)f’} and Var(G)fé. Since all but the first two elements of the first
row are zero, the Laplace expansion yields

RS

Var(é)1,1Var(G)1_& + V(IT(G)LQV(IT(G);% = Var(é)l_j + 7

Var(é)l_é =1.

Additionally, since deleting the first row of Var(G) results in column 2 being v/2x column 1, we have
Mz = V2M 1,

which implies that A .
Var(G)l_é = —\/iVar(G)l_&

Solving this system for Var(é)i} and Var((;)fé, we obtain
Var(G)l_j =2, Var(G)l_é = —/2.

Thus, the first row of Var(G)~! is
[2,-v/2,0,...,0].

The remainder of the proof straightforward and shows that the first row of the correction matrix A is

[r,o,...,o},
p

8= "B,
p

which implies that

In a similar manner, we can show that under our assumptions, when the interactions between g; and g, ; with
Zint; are included, the first 1+ z;,,; rows (corresponding to §; and §;Zn. ;) of Var(G)~! are [2,0, —/2,0, .., 0]



and [0,2,0, —+/2,0, ..,0]. This implies that the corresponding rows of the correction matrix A are [%, 0,..,0]
and [0, %, 0,..,0]. This, in turn, implies that

r
6 = 7ﬁc

P

and ,
o= -9..

1)

Hence both the child’s PGI effect and its interactions with z;,;; will be attenuated by a factor of %. This is
the result reported in the main text.

Therefore, we can compute the vector of corrected estimates 3,,,, = L [3(; for the individuals own PGI effect

and its interactions with z;,;. We can compute SE(3,,,,) by taking the square root of the diagonal elements
computed according to equation 36. Note that because the first 1 + z;,; rows of the

of matrix Var(B.opr)
correction matrix A have % in the main diagonal and the rest of elements in these rows are equal to zero,

the first 1+ z;,,; rows of A~! have $ in the main diagonal and the rest of elements in these rows are equal to
zero. This can be shown using the Laplace expansion and the adjugate method to compute the elements of
A~!. Hence, equation 36 implies that the first 1 + z;,; diagonal elements of Var(f)’co,.r) are the first 14 2+
diagonal elements of Var([i’é) multiplied by f—z, which implies that SE(8B,,,,) = fSE(BG) for child’s own
genetic effect and its interactions with the independent controls z;,; ;. Note that the correction of parental
genetic effect and its interactions with z;,; ; is more complex and requires additional information.

1.4 Assortative mating

A GWAS coeflicient is estimated by regressing y; on each genetic variant z;;. Thus, the GWAS coefficient
for variant j is f1; = v; + 0;(1 + Cov(wj, 2 i5)) + €;. This suggests that when there is assortative mating,
PGIs cannot be expressed as described in equation (6).

To analyse how the bias changes when there is assortative mating and how this bias is comparable to our
theoretically derived bias, we conduct a simple simulation under random and assortative mating.

We start by generating genomes of 2,000 biallelic, independent SNPs for two samples of size M € {15000, 24286}
individuals in the initial generation, assuming half are male and half are female. For the random mating
simulation, we randomly match each male with a female and simulate two offspring per pair under the laws
of Mendelian segregation assuming each SNP is inherited independently. We then generate a phenotype with
variance one according to Equation (1), where the effect sizes are drawn from mean-zero normal distribution
with variance such that the narrow-sense heritability is 0.2, the contribution of the parental component to
variance is 0.1, and the correlation of these two vectors of coefficients (which we refer to as the “Child-parental
effect correlation”) varies between zero and one.

For the assortive mating simulation, we add standard normal noise to the phenotype and match the males
and females according to their rank of the noisy phenotype such that the correlation of the mates for the
original phenotype is 0.5. Then, we simulate two offspring for each pair and calculate their phenotypes
using the same simulated self and and parental effect sizes as in the randomly mating generation. This is
repeated 100 times such that population is in equilibrium. In the final generation, we do not add noise to
the phenotype.

Next, for both simulations, we conduct a GWAS (not controlling for the parental genotypes) in a sample
of either 5,000 individulals (high p) or 14,286 indivduals (low p). These sample sizes were chosen because,
under the data generation procedure describe above, N = 5,000 corresponds to p = 1.7 and N = 14,286
corresponds to p = 3 in a randomly mating population where the child-parental effect correlation is zero.
We use the GWAS coefficients as SNP weights to build PGIs for the parents and the offspring in the residual
sample of 10,000 individuals. We then regress the PGI onto the phenotype in the prediction sample and
report the coefficient from this regression.

Figure 1 presents the results from 10 replications of this simulation. The black markers represent the true
(i-e., observed) mean coefficient from the PGI regression for the Low p and High p setting as well as the
95% confidence intervals. The gray markers represent the theoretical expected attenuation derived above



under a model of random mating. If the GWAS sample size were infinite and there were no bias from the
parental effects, the estimated effect would be one. However, because sample sizes are finite, introducing
sampling error, and there is confounding from parental effects, the estimates are attenuated. In Panel (a),
we see that using data from our random-mating simulation, the theoretical attenuation is contained within
the confidence interval of the observed attenuation. However, in our assortative-mating simulation in Panel
(b), the attenuation is larger than predicted by our theoretical model, although the difference is small.

Figure 1: Attenuation factor of the individual’s PGI effect. Simulation under random and assortative mating
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The average values of the observed and theoretical attenuation factors, along with the 95% confidence intervals from 10
simulations for each set of parameters, are reported. The theoretical attenuation factor is calculated as Corr(assoc., causal)/p.

2 Polygenic Index Repository User Guide

In this guide, we summarize the key information regarding the construction of the Repository PGIs, lay
out some of the interpretational issues that are likely to arise as researchers begin to use PGIs from the
Repository, and outline how we suggest thinking through those issues. This version of the User Guide is
up to date as of the publication of ref.!®; the most up-to-date version is available on the SSGAC website:
https://www.thessgac.org/pgi-repository.

2.1 Summary information about Repository PGIs

Here, we provide a brief summary of how the PGIs were constructed (please see Methods for a more detailed
description). We refer the reader to the relevant tables where more information can be found.

2.1.1 Phenotype definitions and GWAS

The PGIs are based on meta-analyses of summary statistics from up to three sources: GWAS conducted
in 23andMe, Inc. and UKB (some of which are novel), and published GWAS. Supplementary Table 2 lists
the phenotype measures used in the new or updated UKB GWAS that we conducted ourselves, including
information on how repeated measures were handled and the sample size in each of the three UKB partitions.
Supplementary Table 7 lists the phenotype definitions and describes the association models for all novel or
published 23andMe GWAS, and for published GWAS, it cites the relevant publications. For phenotypes
included in the first release of the Repository whose UKB or 23andMe GWAS were not updated in the
current release, the corresponding information can be found in Supplementary Tables 5 and 6 in Becker et
al.10,

In order to avoid sample overlap between the GWAS and Repository datasets, we conducted multiple versions
of the GWAS meta-analysis for each phenotype (so as to have, for each dataset, a version of the meta-analysis
that excludes that dataset). Supplementary Table 11 lists all GWAS meta-analyses used as inputs for the
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PGIs. The “Repository datasets meta-analysis is used to make PGIs for” column shows which meta-analysis
the SNP weights come from for each Repository dataset.

2.1.2 PGI construction

The PGIs were made using SBayesR® applied to the overlapping variants between each input GWAS meta-
analysis and 2,865,810 pruned common variants from the full UKB European-genetic-ancestry dataset for
which LD estimates were made available by Lloyd-Jones et al.®. The inclusion criterion was that the
“expected” out-of-sample predictive power of a PGI be greater than 1%. The expected predictive power was
calculated from the results of the largest GWAS meta-analysis available for that phenotype!®. The expected
predictive power of each PGI (including the ones not included in the Repository because they did not pass
the cutoff of 1%) are shown in Supplementary Table 11. Notably, even though the ezpected predictive power
of each PGI is greater than 1%, in many instances, the actual predictive power of the PGI in a particular
dataset may be less than 1%.

2.1.3 PC construction

As part of the Repository, we also release 20 principal components (PCs) based on the genome-wide data
in each of the participating cohorts. The primary purpose of the release is to make them available for users
who wish to use them as controls for population stratification. In order to make the PCs, we first restricted
the samples to individuals of European genetic ancestries and removed markers with imputation accuracy
less than 70% or minor allele frequency less than 1%, as well as markers in long-range LD blocks (provided
by the plinkQC R package!®). We then pruned all SNPs that survived these filters using a 1Mb rolling
window (incremented in steps of 5 variants) and an 72 threshold of 0.1. Next, we calculated the pairwise
relatedness between all individuals in our full sample and generated a sample of conventionally unrelated
individuals by dropping one individual from each pair of individuals with an estimated relatedness greater
than 0.05 as calculated by in Plink1.9'7. We then estimated the first 20 PC loadings in this sample of
approximately unrelated individuals. Finally, we projected all individuals in the sample— including both
members of related pairs—onto these loadings to compute their corresponding PCs.

In HRS, we re-labeled the PCs in sets of five in order to address identifiability concerns. Therefore, it is only
possible to infer from the variable name of a PC if it is one of the first five PCs (PC 1-5), one of the next
five PC (PCs 6-10), etc.

2.1.4 Genotyping, imputation, and phenotype definitions in Repository datasets

Details on genotyping and imputation of the Repository datasets are listed in Supplementary Table 6.
Supplementary Table 14 lists the phenotype definitions for the subset of these datasets that we used to
validate our PGlIs, excluding UKB. The phenotype definitions for UKB can be found in Supplementary
Table 2.

2.1.5 Predictive power of Repository PGIs in validation datasets

Supplementary Table 3 shows the observed predictive power of the Repository PGIs in our three validation
datasets, together with 95% confidence intervals obtained using a bootstrap with 1000 repetitions. For
phenotypes that were included in the first release of the Repository, the table also shows the predictive
power of the first release PGIs for comparison.

2.2 Interpretational considerations

In this section, we lay out some of the interpretational issues that are likely to arise as researchers begin to
use PGIs from the Repository, and we outline how we suggest thinking through those issues. The executive
summary is as follows:

1. The methodologies used to conduct the GWAS and to construct the SNP weights jointly determine
the additive SNP factor that is proxied for by the PGI.

11



2. These methodologies, together with the PGI phenotype, determine the relative importance of various
potential confounds to a causal interpretation of PGI associations. In most applications, researchers
should control for PCs (which are available from the datasets, along with the PGIs, as part of the
Repository).

3. Whether and which confounds should be highlighted (or can be safely ignored) depends on the appli-
cation.

4. Currently, the best way to cleanly identify causal effects is to conduct a family-based PGI study (where
the analysis controls for the parental PGI, constructed from either measured or imputed parental
genotypes). While the results of such a study have a causal interpretation, the correct interpretation
is subtle, and the results will generally underestimate the causal effects of genetic variants. In the
absence of clean identification of causal effects, researchers should highlight the potential confounds to
a causal interpretation.

5. In interpreting PGI associations (whether causal or not), it is important to keep in mind that genetic
effects can operate through environmental mechanisms, and these mechanisms may be modifiable.
For this reason, researchers should be cautious about using terminology such as “genetic endowment”
that can connote genetic determinism. Researchers should remind readers of the potential role of
environmental mechanisms in explaining PGI associations.

The following subsections, numbered 1 through 5, provide more detail on the points above. In addition to
attending to these interpretational issues, we urge users of the Repository to conduct power calculations
prior to undertaking analyses; to pursue analyses only if they are adequately powered; and, when feasible,
to preregister planned analyses (along with the power calculations).

We note that the GWAS from which the Repository PGIs are constructed were conducted in samples of
European genetic ancestries (where “European genetic ancestry” is operationalized differently depending
on the study but almost always involves sample restrictions based on the genetic PCs; e.g., for our UKB
GWAS, see the “UKB GWAS” subsection of Section II in Methods). Due to the limited portability of such
GWAS results to other ancestries, for the PGIs released to participating datasets, the current version of the
Repository is restricted to individuals of European genetic ancestries, as defined by how their genetic PCs
cluster together with those classified as having EUR-genetic-ancestry in the 1000 Genomes Project (see the
“Subject-level QC” subsection of Section I in Methods).

2.2.1 GWAS and SNP-Weight Methodologies and the Additive SNP Factor

In the Supplementary Methods section 6 of Becker et al.'?, we showed how the set of control variables used

in a GWAS affects the additive SNP factor proxied for by a PGI. The choice of controls, however, is just
one of many dimensions of GWAS methodology. A change to any of these dimensions is likely to result in
a different additive SNP factor (with a different interpretation). For example, it is increasingly common for
researchers to conduct association analyses using mixed-linear models rather than OLS'8!%. Since mixed-
linear models often produce estimates that are more robust to stratification, the additive SNP factor will be
akin to that generated by an OLS-based GWAS with some additional controls for stratification. Knowledge
of the methodology of the GWAS underlying a particular PGI is therefore often a necessary first step for
understanding what additive SNP factor a specific PGI is proxying for. For example, the methodologies
underlying the GWASs we conducted in UKB for the PGIs in the Repository are described in the “UKB
GWAS” subsection of Section II in Methods. Information about the association models in the 23andMe
GWASs can be found in Supplementary Table 6 of Becker et al. (2021)'° and Supplementary Table 7 of the
current paper.

The SNP-weight methodology can matter, as well. For example, our Repository PGI SNP-weights are
calculated from the GWAS results using ~ 2.9 million pruned common variants from the full UKB European-
genetic-ancestry (N a450,000) data set from Lloyd-Jones et al.®, which primarily capture common genetic
variation. If SNP weights were instead calculated based on results from SNPs that capture a different mix
of common and rare genetic variation, then the additive SNP factor corresponding to that PGI would have
a different interpretation: it would be the best linear predictor based on that set of SNPs.
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2.2.2 Potential Confounds to a Causal Interpretation

It is increasingly understood that standard GWAS approaches with a limited set of controls — for example,
sex, age, and up to 10 PCs, as in most of the GWASs underlying the Repository PGIs — generate PGIs
that can be subject to a number of confounds to a causal interpretation2°-23, For example, PGIs for educa-
tional attainment derive a substantial share of their overall predictive power from their positive association
with rearing environment. In behavior-genetic parlance, this positive correlation arises due to the vertical
transmission of the parental phenotypes (parents’ phenotypes impact their children’s phenotypes). In recent
molecular-genetic research, this source of positive gene-environment correlation has been labeled “genetic
nurture” 2! or “parental indirect effects”; we refer to them as “parental genetic effects.” These effects can be
further exacerbated by assortative mating at the genetic level.

As another example, when the PCs are estimated in a small sample, they are often not very accurate proxies
for ancestry. Failure to adequately control for genetic ancestry gives rise to “population stratification” 2*:
because the PGI is correlated with ancestry, which in turn is correlated with ethnicity and regional back-
ground, it picks up cultural or environmental factors that are correlated with these factors. In many empirical
applications, the goal is to estimate an association that is net of any such cultural and environmental con-
founds. In such cases, it may be possible to mitigate concerns that the underlying GWAS may have relied
on inaccurate ancestry controls by including a richer-than-usual set of environmental controls in the analysis
of the PGIL.

Indeed, in most applications (that cannot exploit family data to control for parental PGIs), researchers should
include PCs in the set of controls. When estimating PGI-by-environment interactions, researchers should
additionally control for interactions between PCs and the “environment” variable?®. For these purposes,
dataset-specific PCs are made available as part of the Repository. However, it is important to recognize
and acknowledge that the PCs are not fully accurate measures of ancestry, so even after controlling for PCs,
residual confounding almost surely remains.

The relevance of potential confounds could vary across phenotypes For example, parental genetic
effects are much smaller for height than educational attainment. Although the noisiness of PCs as measures
of ancestry in a given sample is the same across phenotypes, the noisiness is likely to be substantially more
problematic for educational attainment than for height because finer ancestral distinctions (which require
more PCs to capture) probably matter for the social and environmental factors that influence educational
attainment. More generally, it seems likely that potential confounds to a causal interpretation matter more
for PGIs for social and behavioral phenotypes than for PGIs for more biologically proximal phenotypes.

20,22,23

2.2.3 Importance of Confounds Depends On the Application

The degree to which potential confounds to a causal interpretation matter depends on how the PGI is
used. For example, if a PGI is used as a control variable to increase precision for a randomized treatment
evaluation 2527, then the goal is simply to use controls that absorb as much residual variance as possible
(and avoid controlling for any variables realized after the randomized intervention). Since the PGI is simply
being used as a predictive variable, its interpretation is irrelevant in that case. As a contrasting example,
consider the illustrative application in Becker et al.'® that tests how much parental education mediates the
predictive power of the PGI for educational attainment. There, the PGI should be understood as capturing
some of the parental genetic effects and ancestry associations with education. In most applications, the
potential confounds do matter and should be highlighted.

2.2.4 Identifying Causal Effects of Genetic Variants Using a Family-Based PGI Study

The cleanest way to identify the causal effects of a PGI is to control for the parental PGI (which may be
constructed from either parental genotypes that are directly measured or imputed from other genotyped
family data, such as sibling data). This empirical strategy exploits a natural experiment: conditional on a
pair of biological parents, genetic inheritance is random. A robustly estimated non-zero estimate in a family-
based PGI study from a large and attrition-free sample would provide strong evidence of causal effects of
genetic variants. However, the causal interpretation of this estimate is nuanced because there is no single,
well-defined thought experiment that corresponds to changing the value of the PGI, since changing different
genotypes that have different effects could generate the same change in the PGI. The correct interpretation
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of the coefficient estimate is a weighted average of treatment effects from hypothetical experiments that
randomly modify, at conception, the genotypes of the causal SNPs responsible for the predictive power of
the PGI'2.

The additive SNP factors corresponding to the PGIs in the Repository are not the best linear predictors
conditional on a pair of biological parents (because the GWAS underlying the SNP weights do not control
for the biological parents’ genotypes). The PGIs proxying for additive SNP factors that would be the best
linear predictors for such a family-based analysis would be PGIs constructed from GWAS that control for
parental genotypes (or from GWAS in sibling samples that control for family fixed effects, although these
GWAS estimates would be biased if siblings’ genotypes have causal effects on an individual’s phenotype).
Unfortunately, to date genotyped family-based samples have been too small to produce reliable “within-
family PGIs.” The Repository does not yet contain any such PGIs. Ultimately, however, when genotyped
family-based samples become sufficiently large, the resulting within-family PGIs will be more predictive for
family-based analyses than PGIs constructed from currently-standard (between-family) GWAS.

2.2.5 Genetic Effects Can Operate Through Environmental Mechanisms

We urge researchers who use PGIs in their research to be mindful of three important issues of interpretation
for the causal effects of a PGI. First, a PGI could exert its effects through the environment?®. Consider a
PGI for BMI2®. Suppose a family-based association analysis yields unambiguous evidence of a within-family
association between the PGI and BMI. Even though the family-based design provides strong support for a
causal interpretation, this does not imply that the SNPs in the PGI must be influencing BMI through some
narrowly physiological mechanism. In principle, the sibling differences in BMI could arise because of sibling
differences in genes that influence the proneness to eat sweets, exercise habits, or myriad other behaviors
with downstream effects on BMI. PGIs for seemingly “biological” phenotypes can thus have a substantial
behavioral component. A PGI for lung health may similarly derive predictive power from SNPs that influence
lung health very indirectly, through smoking habits2%:30,

Second and relatedly, it is therefore a fallacy to assume that any genetic sources of heterogeneity captured by
a PGI are immutable—or even at least harder to modify than environmental sources of heterogeneity. Indeed,
the possibility of identifying modifiable mechanisms through which PGIs exert some of their effects motivates
some of the research using PGIs3'32. To continue the BMI example, the widespread replacement of sugar
by low-calorie sweeteners or better behavioral tools for avoiding temptation could eliminate or reduce the
effect of the PGI on BMI. Because of these issues, we urge researchers to avoid describing PGIs as “genetic
endowments” or other terms that may, however inadvertently, promote the common misunderstanding that
genes are a resource that is easily separable from choices made in light of that resource.

Third, because the additive genetic factor is defined conditional on the GWAS phenotype, population, and
environment, the same PGI may have different predictive power in different samples if there are differences in
the phenotype measure, population sampled, the sampling methodology, or the environmental context. For
example, the research participants from the UKB were recruited through the mail and had a 5.5% response
rate. Those that responded to the recruitment mailers were more healthy and more educated than the UK
population as a whole3?34. Because UKB participants make up a large fraction of the discovery sample for
many phenotypes, it may be that the PGI from this Repository does not correspond to a PGI that would
be produced from a representative sample or a sample of individuals not from the UK.
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