

Supplementary Material for Manuscript “Genome-level
Constraint-Based Analysis of *Megasphaera* *sp.*
MJR8396C Reveals Dual Metabolic Roles in the
Human Gut”

1 Respiratory

The data sets and the code used to produce the material in the manuscript can be found on [here](#).

2 Medium for pFBA Simulations

Table 1: Selected medium for pFBA simulations for evaluating nutrient composition's role in growth and metabolite synthesis. The table denotes constraints for metabolites with exchange reactions, expressed in mmol/gDW/h.

	Gut Medium	AA-rich medium	Carbohydrates-rich medium
L-Glutamate	9	10	9
Mg	7	7	7
Phosphate	6	6	6
Cl-	5	5	5
L-Proline	5	10	5
Urate	4	4	4
Octadecenoate	4	4	4
Palmitate	4	4	4
L-Leucine	4	10	4
Na+	4	4	4
L-Aspartate	4	10	4
Sucrose	3	3	10
Glycine	3	10	3
L-Serine	3	10	3
L-Alanine	3	10	3
L-Valine	3	10	3
L-Lysine	3	10	3
L-Phenylalanine	2	10	2
L-Isoleucine	2	10	2
L-Threonine	2	10	2
L-Arginine	2	10	2
D-Glucose	2	2	10
CO2	100	100	100
H2O	100	100	100
CELB	100	100	100
H2	100	100	100
K+	100	100	100
Ca2+	100	100	100
H+	100	100	100
Deoxycholate	1	1	1
ocdca	1	1	1

Continued on next page

Table 1 – continued from previous page

	Gut Medium	AA-rich medium	Carbohydrates-rich medium
Myristic acid	1	1	1
Butyrate	1	1	1
Propionate	1	1	1
D-Fructose	1	1	10
Acetate	1	1	1
L-Tyrosine	1	10	1
L-Methionine	1	10	1
L-Histidine	1	10	1
Tetrahydrofolate	0.1	0.1	0.1
Ethanol	0.1	0.1	0.1
Pyridoxal	0.1	0.1	0.1
Xylitol	0.1	0.1	0.1
Thiamin	0.1	0.1	0.1
octanoate	0.1	0.1	0.1
Decanoate	0.1	0.1	0.1
L-Tryptophan	0.1	10	0.1
Sorbitol	0.1	0.1	10
D-Mannitol	0.1	0.1	10
LA ^{CT}	0.1	0.1	0.1
Galactose	0.1	0.1	10
Fe ²⁺	0.1	0.1	0.1
Cu ²⁺	0.1	0.1	0.1
PAN	0.1	0.1	0.1
L-Cysteine	0.1	10	0.1
BIOT	0.1	0.1	0.1
Fe ³	0.1	0.1	0.1
Maltose	0.1	0.1	10
Co ²⁺	0.1	0.1	0.1
Sulfate	0.1	0.1	0.1
Zn ²⁺	0.1	0.1	0.1
Mn ²⁺	0.1	0.1	0.1
Xylitol	0.1	0.1	10
Xylose	0	0	10
D-Mannose	0	0	10
Melibiose	0	0	10
L-Arabinose	0	0	10
D-Arabinose	0	0	10
Galactose	0	0	10
D-Mannose	0	0	10
D-Glucarate	0	0	10
Glycolate	0	0	10
Galacturonate	0	0	10

Continued on next page

Table 1 – continued from previous page

	Gut Medium	AA-rich medium	Carbohydrates-rich medium
Galactonate	0	0	10

3 OptForce suggested interventions

Table 2: Must Decrease (mustL) Reactions

Reaction	Name	Equation
EX_cpd00036_e0	Succinate exchange	$\text{Succinate} \leftrightarrow$
EX_cpd00309_e0	XAN exchange	$\text{XAN} \leftrightarrow$
Bio1	Biomass	
rxn01637_c0	N2-Acetyl-L-ornithine:2-oxoglutarate aminotransferase	$\text{2-Oxoglutarate} + \text{N-Acetylornithine} \leftrightarrow \text{L-Glutamate} + \text{2-Acetamido-5-oxopentanoate}$
rxn02465_c0	N-acetyl-L-glutamate-5-semialdehyde:NADP+ 5-oxidoreductase (phosphorylating)	$\text{NADP} + \text{Phosphate} + \text{2-Acetamido-5-oxopentanoate} \leftrightarrow \text{NADPH} + \text{H}^+ + \text{n-acetylglutamyl-phosphate}$
rxn05319_c0	TRANS-RXNBWI-115401.ce.maizeexp.OH_OH	$\text{H}_2\text{O} \leftrightarrow \text{H}_2\text{O}$
rxn05636_c0	TRANS-RXN-207.ce	$\text{H}^+ + \text{Urate} \leftrightarrow \text{H}^+ + \text{Urate}$
rxn05683_c0	Butyrate transport via proton symport, reversible	$\text{H}^+ + \text{Butyrate} \leftrightarrow \text{H}^+ + \text{Butyrate}$

Table 4: Must Increase (mustU) Reactions

Reaction	Name	Equation
EX_cpd00001_e0	H2O exchange	H2O \downarrow - \downarrow
EX_cpd00009_e0	Phosphate exchange	P \downarrow - \downarrow
EX_cpd00027_e0	Glucose exchange	Glucose \downarrow - \downarrow
EX_cpd00300_e0	Urate exchange	C5H4N4O3 \downarrow - \downarrow
Rxn00178_c0	Acetyl-CoA:acetyl-CoA C-acetyltransferase	2 Acetyl-CoA \downarrow - \downarrow CoA + Acetoacetyl-CoA
Rxn00192_c0	acetyl-CoA:L-glutamate N-acetyltransferase	Acetyl-CoA + L-Glutamate \downarrow - \downarrow CoA + H+ + N-Acetyl-L-glutamate
Rxn00337_c0	ATP:L-aspartate 4-phosphotransferase	ATP + L-Aspartate \downarrow - \downarrow ADP + 4-Phospho-L-aspartate
Rxn00459_c0	2-phospho-D-glycerate hydro-lyase	2-Phospho-D-glycerate \downarrow - \downarrow H2O + Phosphoenolpyruvate
Rxn00541_c0	L-threonine acetaldehyde-lyase	L-Threonine \downarrow - \downarrow Glycine + Acetaldehyde
Rxn00692_c0	5,10-Methylenetetrahydrofolate:glycine hydroxymethyltransferase	H2O + Glycine + 5-10-Methylenetetrahydrofolate \downarrow - \downarrow L-Serine + Tetrahydrofolate
Rxn00802_c0	2-(Nomega-L-arginino)succinate arginine-lyase	L-Argininosuccinate \downarrow - \downarrow L-Arginine + Fumarate
Rxn01019_c0	Carbamoyl-phosphate:L-ornithine carbamoyltransferase	Ornithine + Carbamoylphosphate \downarrow - \downarrow Phosphate + H+ + Citrulline
Rxn01069_c0	O-phospho-L-homoserine phosphate-lyase	H2O + O-Phospho-L-homoserine \downarrow - \downarrow Phosphate + L-Threonine
Rxn01300_c0	ATP:L-homoserine O-phosphotransferase	ATP + L-Homoserine \downarrow - \downarrow ADP + H+ + O-Phospho-L-homoserine
Rxn01434_c0	L-Citrulline:L-aspartate ligase	ATP + L-Aspartate + Citrulline \downarrow - \downarrow PPi + AMP + 2 H+ + L-Argininosuccinate
Rxn01522_c0	xanthine:NAD+ oxidoreductase	H2O + NAD + XAN \downarrow - \downarrow NADH + H+ + Urate
Rxn01917_c0	ATP:N-acetyl-L-glutamate 5-phosphotransferase	ATP + N-Acetyl-L-glutamate \downarrow - \downarrow ADP + n-acetylglutamyl-phosphate
Rxn05202_c0	TRANS-RXN-206.ce	H+ + XAN \downarrow - \downarrow H+ + XAN
Rxn31312	'2-oxoglutarate synthase'	CoA + 2-Oxoglutarate + Oxidizedferredoxin \rightarrow CO2 + H+ + Succinyl-CoA + Reducedferredoxin

4 *In Silico* Simulation of Microbe-microbe Interactions

Table 6: Community constraints applied in FBA simulations to evaluate the cross-feeding potential of acetate and D-lactate within a community comprising *Bifidobacterium adolescentis* and *Megasphaera sp. MJR8396C*. These constraints are derived from individual simulations utilizing minimal medium and are specified for metabolites with exchange reactions, quantified in mmol/gDW/h.

	Community constraints	<i>Bifidobacterium adolescentis</i> constraints	<i>Megasphaera sp.</i> constraints
Pyridoxal	0.003947	-	0.003947
Riboflavin	0.010331	0.010331	-
PAN	0.010331	0.010331	-
Nicotinamide	0.010331	0.010331	-
Thiamin	0.009112	0.005165	0.003947
Tetrahydrofolate	0.015496	0.015496	-
MN2+	0.014588	0.007294	0.007294
Zn2+	0.014588	0.007294	0.007294
Cu2+	0.014588	0.007294	0.007294
Ca2+	0.014588	0.007294	0.007294
Cl-	0.014588	0.007294	0.007294
Mg	0.014588	0.007294	0.007294
fe3	0.014588	0.007294	0.007294
K+	0.014588	0.007294	0.007294
Fe2+	0.022482	0.007294	0.015188
L-tryptophan	0.063239	0.063239	-
L-tryosine	0.128856	0.128856	-
L-Phenylalanine	0.204458	0.204458	-
L-Histidine	0.089931	-	0.089931
ocdca	0.16789	0.084654	0.083236
L-cysteine	0.2	0.1	0.1
L-Lysine	0.32575	-	0.32575
L-Leucine	0.510908	-	0.510908
Phosphate	3.261986	2.255919	1.006067
D-Glucose	2	-	2
L-Arginine	2	-	2
L-Methionine	2	1	1
Glycine	3	-	3
L-Alanine	3	-	3
L-Serine	3	-	3
Sucrose	3	-	3
L-aspartate	4	-	4
L-Threonine	4	2	2
Urate	4	-	4

Continued on next page

Table 6 – continued from previous page

	Community constraints	<i>Bifidobacterium adolescentis</i> constraints	<i>Megasphaera</i> sp. constraints
L-Glutamate	9	9	9
CELB	100	100	-
Co2+	0	0.007294	0.007294
Acetate	-	-	100
D-Lactate	-	-	100

5 Pairwise interactions

Organisms can exert positive, negative, and neutral effects on each other. Negatively, competition (-/-) diminishes the functioning of both species involved, whereas amensalism (-/0) harms one species while the other remains unaffected. Conversely, on the positive side, parasitism (+/-) benefits one member at the expense of the other, commensalism (+/0) benefits one member while having no effect on the other, and mutualism (+/+) benefits both species involved. By using a similar approach to *Heinken et al.*, pairwise interactions were simulated for *Megasphaera* sp. *MJR8396C* and *Bifidobacterium adolescentis*. The pairwise interactions were assessed across various media to determine their susceptibility to nutrient availability. The simulated media included a gut medium, an amino acid-rich medium, a carbohydrate-rich medium, as well as adaptations of a Western diet and a high-fiber diet, sourced from *Magnusdottir et al.*. The results are given in Table 7. Across all media except the amino acid-rich medium, the interaction exhibited amensalism, characterized by *Bifidobacterium*'s growth remaining hardly affected while the growth rate of *Megasphaera* sp. *MJR8396C* dropped to almost negligible levels. However, for the interaction involving the amino acid-rich medium, a parasitic relationship emerged. Here, the growth of *Megasphaera* sp. *MJR8396C* increased significantly while *Bifidobacterium*'s growth decreased, suggesting that *Megasphaera* sp. *MJR8396C* prospers at the expense of *Bifidobacterium*.

Table 7: Growth rates of *Bifidobacterium adolescentis* and *Megasphaera* sp. *MJR8396C* in different media and their interactions.

Medium	Paired Growth	Paired Growth	Single Growth	Single Growth	Interaction
	B.	M.	B.	M.	
Gut Medium	1.402	0.001	1.403	1.114	Amensalism
Amino Acid-Rich Medium	0.075	5.864	4.472	2.056	Parasitism
Carbohydrate Rich Medium	1.402	0.001	1.403	1.114	Amensalism
Western Diet	1.402	0.001	1.403	1.114	Amensalism
High Fiber Diet	1.402	0.001	1.403	1.114	Amensalism

Table 9: Additional Western Diet (WD) and High Fiber diet (HF) medium for pairwise interaction simulations, adapted from Magnúsdóttir et al. and adjusted to gut medium. The table denotes constraints for metabolites with exchange reactions, expressed in mmol/gDW/h.

Metabolite	WD adjusted to GM	HF adjusted to GM
H2O	100	100
Phosphate	6	6
CO2	100	100
L-Glutamate	9	9
D-Glucose	10	2
Acetate	1	1
MN2+	0.1	0.1
Glycine	3	3
Zn2+	0.1	0.1
L-Alanine	3	3
L-Lysine	3	3
L-aspartate	4	4
SO4	0.1	0.1
L-Arginine	2	2
L-Serine	3	3
Cu2+	0.1	0.1
L-Methionine	1	1
Ca2+	100	100
L-tryptophan	0.1	0.1
L-Phenylalanine	2	2
H+	100	100
L-tryosine	1	1
Sucrose	10	3
D-fructose	10	1
L-cysteine	0.1	0.1
Tetrahydrofolate	0.1	0.1
Cl-	5	5
Glycerol	10	0
BIOT	0.1	0.1
D-ribose	10	0.1
L-Leucine	4	4
Galactose	10	0.1
L-Histidine	1	1
L-Proline	5	5
Nicotinamide	0.1	0.1
D-Mannose	10	0.1
Propionate	1	1
Co	0.1	0.1
Xylose	10	0.1
L-valine	3	3

Continued on next page

Continued from previous page

Metabolite	WD adjusted to GM	HF adjusted to GM
CELB	100	100
L-Threonine	2	2
Maltose	10	0.1
K+	100	100
LAUT	0.1	0.1
Butyrate	1	1
Palmitate	4	4
Pyridoxal	0.1	0.1
Riboflavin	0.1	0.1
L-Arabinose	10	0.1
Mg	7	7
Urate	4	4
Thiamin	0.1	0.1
Xylitol	0.1	0.1
D-Mannitol	10	0.1
L-Isoleucine	2	2
Ethanol	0.1	0.1
L-Rhamnose	10	0.1
Sorbitol	0.1	0.1
PAN	0.1	0.1
L-Fucose	10	0.1
Na+	4	4
ocdca	1	1
Decanoate	0.1	0.1
Glycocholate	1	1
beta-lactose	10	0.1
Chemodeoxycholate	1	1
Deoxycholate	1	1
Taurocholate	1	1
Melibiose	10	0.1
Taurochenodeoxycholate	1	1
Glycochenodeoxycholate	1	1
octanoate	10	0.1
Myristic Acid	1	1
Fe2+	0.1	0.1
Fe3	0.1	0.1
H2	100	100
hexadecenoate	10	0.1
octadecenoate	10	4
tetradecenoate	10	0.1
starch (n=27)	10	0.1
starch (n=19)	0.1	10

6 BacArena

In addition, BacArena simulations were utilized to deepen the understanding of interaction mechanisms between *Megasphaera sp. MJR8396C* and *Bifidobacterium adolescentis* within a standard gut medium and an amino-acid-enriched medium. The simulations spanned a 24-hour period, providing insight into the growth dynamics of the microbial communities. Figures 1 and 2 present the resulting growth curves and the associated variations in metabolite concentrations throughout the simulation.

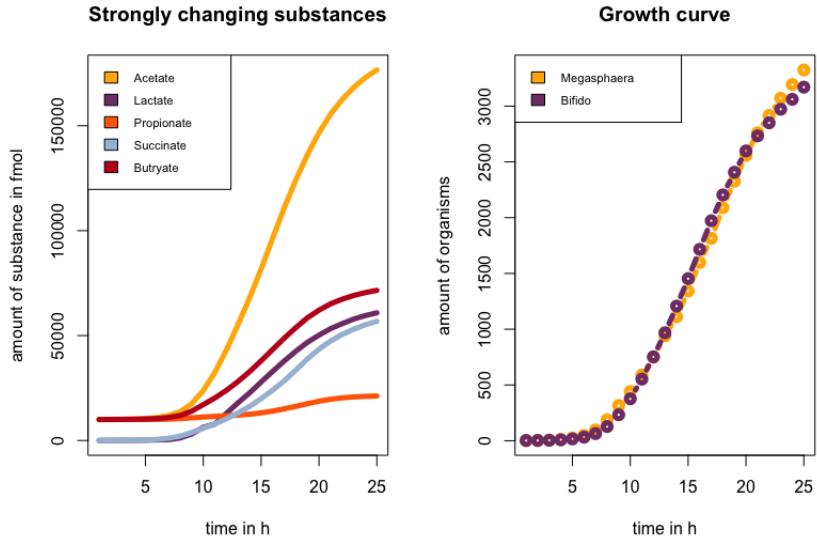


Figure 1: BacArena simulations conducted for *Megasphaera MJR8396C* and *Bifidobacterium adolescentis* across a 24-hour period using gut medium.

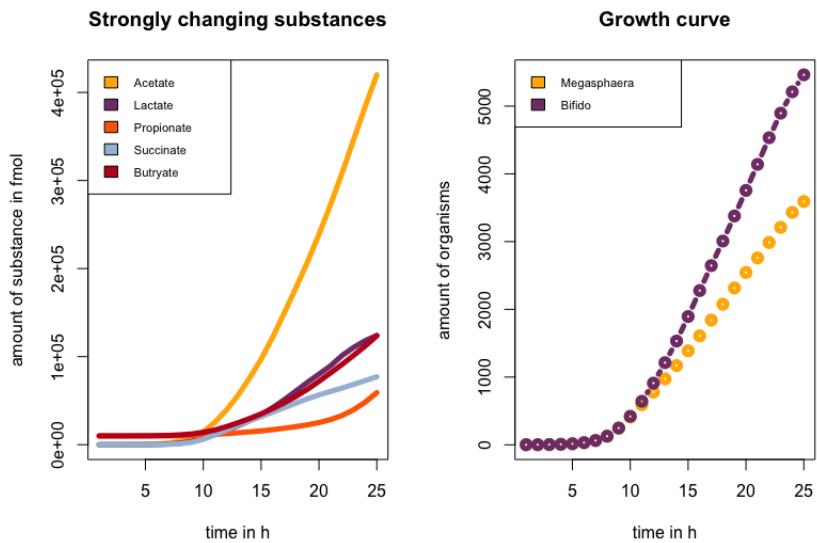


Figure 2: BacArena simulations conducted for *Megasphaera MJR8396C* and *Bifidobacterium adolescentis* across a 24-hour period using amino acid-rich medium.

Both *Megasphaera* sp. *MJR8396C* and *Bifidobacterium adolescentis* demonstrated growth, as evidenced by the growth curves showing logarithmic or exponential phases typical in nutrient-rich environments. In the gut medium, both organisms exhibited similar growth patterns; however, in the amino acid-rich medium, *Bifidobacterium*'s abundance slightly increased. The temporal profiles of lactate and butyrate production were observed to mirror each other, suggesting a synchronized pattern across the different media. Particularly in an amino acid-enriched medium, these production pathways seemed more closely aligned, with notable increases in lactate production coinciding with a higher presence of *Bifidobacterium* organisms. Acetate production was consistently high in both media types. Additionally, the presence of amino acids was associated with increased levels of lactate, propionate, succinate, and butyrate, reflecting enhanced microbial activity.