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1. Methodology

1.1. General Equation
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Diethyl 5-amino-3,7-bis(4-chlorophenyl)-4-oxo-3,4-dihydrophthalazine-1,6-dicarboxylate (3a).

Yellow crystals; yield (93%); mp: 238-240°C. IR (KBr): v =
3452, 3328 (NH2), 2960 (aliph. CH), 1720, 1704 (ester C=0)
cmL. IH NMR (400 MHz): & = 0.76 (t, 3H, J = 7.2 Hz, CH3),
1.29 (t, 3H, J = 7.2 Hz, CHs), 4.0 (g, 2H, J = 7.2 Hz, CH,), 4.36

(g, 2H, J = 7.2 Hz, CHy), 7.34 (d, J = 8.8 Hz, 2 Ar-H), 7.40 (s,
1 Ar-H), 7.56 (d, J = 8.4 Hz, 2 Ar-H), 7.60-7.66 (m, 4 Ar-H), 7.98 (br, 2H, NH,). 13C NMR (100 MHz):
¢ = 13.08 (CHs), 13.91 (CHs), 60.94 (CHy), 61.93 (CHy), 110.20 (C-6), 112.35 (C-4a), 115.25 (C-8),
128.34 (2 Ar-C), 128.48 (2 Ar-C), 128.75 (2 Ar-C), 129.38 (2 Ar-C), 129.84 (1 Ar-C), 132.73 (1 Ar-C),
132.98 (1 Ar-C), 136.61 (C-1), 139.68 (C-7), 139.78 (1 Ar-C), 146.74 (C-8a), 149.90 (C-5), 160.34
(C-4), 162.58 (C=0), 166.87 (C=0). MS: (El) m/z %: 526 (M*, 100), 451 (9), 372 (14), 302 (5), 282
(32), 256 (21), 199 (14), 111 (45). Anal. Calcd. for Cz6H21ClaN30s (526.37): C, 59.33; H, 4.02; C|,
13.47; N, 7.98%; Found: C, 59.44; H, 4.17; Cl, 13.37; N, 8.05%.

Diethyl 5-amino-3-(4-chlorophenyl)-7-(4-nitrophenyl)-4-oxo-3,4-dihydrophthalazine-1,6-

dicarboxylate (3b). Pale yellow crystals; yield (92%); mp:
225-227°C. IR (KBr): v = 3456, 3324 (NH,), 3108 (arom. CH),
2984 (aliph. CH), 1728, 1701 (ester C=0) cm™. 'H NMR

(600 MHz): 61 = 0.76 (t, 3H, J = 6.0 Hz, CHs), 1.29 (t, 3H, J =

6.0 Hz, CHs), 3.97 (q, 2H, J = 6.0 Hz, CH2), 4.36 (q, 2H, J =
6.0 Hz, CH,), 7.43 (s, 1 Ar-H), 7.60-7.66 (m, 6 Ar-H), 8.16 (br, 2H, NH.), 8.34 (d, J = 8.4 Hz, 2 Ar-H).



13C NMR (150 MHz): &c¢ = 13.51 (CHs), 14.41 (CH3), 61.57 (CH,), 62.47 (CH,), 111.39 (C-6), 112.78
(C-4a), 114.49 (C-8), 124.08 (2 Ar-C), 128.83 (2 Ar-C), 129.27 (2 Ar-C), 129.49 (2 Ar-C), 130.65
(1 Ar-C), 133.31 (1 Ar-C), 136.86 (C-1), 140.24 (C-7), 146.78 (C-8a), 147.52 (1 Ar-C), 148.33

(1 Ar-C), 150.92 (C-5), 160.80 (C-4), 163.03 (C=0), 167.03 (C=0). Anal. Calcd. for CasH21CIN4O7
(536.93): C, 58.16; H, 3.94; Cl, 6.60; N, 10.43%; Found: C, 58.03; H, 4.05; Cl, 6.50; N, 10.60%.

Diethyl 5-amino-7-(4-chlorophenyl)-4-oxo-3-(p-tolyl)-3,4-dihydrophthalazine-1,6-dicarboxylate

(3c). Yellow crystals; yield (91%); mp: 230-232°C. IR (KBr): v
=3422, 3304 (NH), 3148 (arom. CH), 2982 (aliph. CH), 1707
(ester C=0), 1645 (amide C=0) cm™. *H NMR (600 MHz): 64
=0.82 (t, 3H, J = 6.0 Hz, CH3), 1.28 (t, 3H, J = 6.0 Hz, CH3),

2.40 (s, 3H, CHs), 3.99 (q, 2H, J = 6.0 Hz, CH,), 4.36 (q, 2H, J
= 6.0 Hz, CH,), 7.34-7.36 (m, 4 Ar-H), 7.41 (s, 1 Ar-H), 7.46 (d, 2H, J = 6.0 Hz, Ar-H), 7.56 (d, 2H, J =
6.0 Hz, Ar-H), 8.0 (br, 2H, NH). 3C NMR (150 MHz): &¢ = 13.58 (CH3), 14.42 (CHs), 21.21 (CHa),
61.41 (CH,), 62.36 (CH,), 110.82 (C-6), 112.75 (C-4a), 115.39 (C-8), 126.82 (2 Ar-C), 128.92 (1 Ar-
C), 129.69 (2 Ar-C), 129.89 (1 Ar-C), 130.42 (1 Ar-C), 130.84 (1 Ar-C), 133.44 (1 Ar-C), 136.67 (C-1),
138.45 (1 Ar-C), 139.11 (C-7), 140.29 (C-8a), 147.19 (1 Ar-C), 150.45 (1 Ar-C), 151.17 (C-5), 163.19
(C-4), 164.23 (C=0), 167.43 (C=0). Anal. Calcd. for C27H24CIN3Os (505.96): C, 64.10; H, 4.78; Cl,
7.01; N, 8.31%; Found: C, 64.17; H, 4.91; Cl, 7.10; N, 8.25%.

Diethyl 5-amino-7-(3-nitrophenyl)-4-oxo-3-(p-tolyl)-3,4-dihydrophthalazine-1,6-dicarboxylate

(3d). Yellow crystals; yield (90%); mp: 238-240°C. IR (KBr): v =
3423, 3304 (NH2), 3149 (arom. CH), 2983 (aliph. CH), 1708
(ester C=0), 1645 (amide C=0) cm™. 'H NMR (400 MHz): 64 =
0.82 (t, 3H, J = 6.8 Hz, CHs), 1.29 (t, 3H, J = 7.2 Hz, CH3s), 2.40

(s, 3H, CHs), 3.99 (g, 2H, J = 7.2 Hz, CHa), 4.36 (q, 2H, J = 7.2 Hz,

CH,), 7.34 (d, 2H, J = 8.8 Hz, Ar-H), 7.40 (s, 1H, Ar-H), 7.56 (d, 2H, J = 8.8 Hz, Ar-H), 7.60-7.65 (m,
4 Ar-H), 7.97 (s, 2H, NH,). Anal. Calcd for C27H24N4O7: C, 62.79; H, 4.68; N, 10.85%; Found: C, 62.91;
H, 4.51; N, 11.00%.



Diethyl 5-amino-7-(4-fluorophenyl)-4-oxo-3-(p-tolyl)-3,4-dihydrophthalazine-1,6-dicarboxylate

(3e). Yellow crystals; yield (90%); mp: 218-220°C. IR (KBr): v =
3421, 3304 (NH.), 3148 (arom. CH), 2982 (aliph. CH), 1708
(ester C=0), 1644 (amide C=0) cm™. *H NMR (600 MHz): 1 =
0.81 (t, 3H, J = 6.0 Hz, CHs), 1.28 (t, 3H, J = 6.0 Hz, CHs), 2.40

(s, 3H, CHs), 3.99 (g, 2H, J = 6.0 Hz, CH,), 4.36 (g, 2H, J = 6.0
Hz, CH,), 7.34-7.36 (m, 4 Ar-H), 7.41 (s, 1 Ar-H), 7.46 (d, 2H, J = 6.0 Hz, Ar-H), 7.56 (d, 2H, J = 6.0
Hz, Ar-H), 8.0 (br, 2H, NH,). Anal. Calcd. for C27H24FN3Os (489.50): C, 66.25; H, 4.94; F, 3.88; N,
8.58%; Found: C, 66.19; H, 5.02; F, 3.77; N, 8.70%.

Diethyl 5-amino-3-(2-chlorophenyl)-7-(4-chlorophenyl)-4-oxo-3,4-dihydrophthalazine-1,6-

dicarboxylate (3f). Yellow crystals; yield (92%); mp: 235-
cl
237°C. IR (KBr): v = 3422, 3305 (NH), 3150 (arom. CH), 2982
(aliph. CH), 1708 (ester C=0), 1644 (amide C=0) cm™. *H NMR

(600 MHz): 6 = 0.83 (t, 3H, J = 6.0 Hz, CHs), 1.28 (t, 3H, J= 6.0

Hz, CHs), 4.01 (g, 2H, J = 6.0 Hz, CH2), 4.36 (q, 2H, J = 6.0 Hz,
CH,), 7.37 (d, 2H, J = 8.0 Hz, Ar-H), 7.42 (s, 1 Ar-H), 7.46-7.58 (m, 4 Ar-H), 7.72 (s, 2 Ar-H), 7.93 (br,
2H, NH3). Anal. Calcd. for C26H21CI2N30s5 (526.37): C, 59.33; H, 4.02; Cl, 13.47; N, 7.98%; Found: C,
59.25; H, 4.14; Cl, 13.60; N, 7.92%.

Diethyl 5-amino-3-(2-chlorophenyl)-7-(4-fluorophenyl)-4-oxo-3,4-dihydrophthalazine-1,6-

dicarboxylate (3g). Yellow crystals; yield (90%); mp: 248-
250°C. IR (KBr): v = 3454, 3332 (NH), 2997, 2902 (aliph. CH),
1722 (ester C=0), 1708 (ester C=0), 1682 (amide C=0) cm™.

IH NMR (600 MHz): 85 = 0.77 (t, 3H, J = 6.0 Hz, CH3), 1.27 (t,

3H, J = 6.0 Hz, CHs), 3.98 (g, 2H, J = 6.0 Hz, CH2), 4.35 (g, 2H, J
= 6.0 Hz, CH,), 7.46 (s, 1 Ar-H), 7.58-7.60 (m, 2 Ar-H), 7.64 (d, 2H, J = 6.0 Hz, Ar-H), 7.72-7.74 (m,
2 Ar-H), 8.13 (br, 2H, NH.), 8.35 (d, 2H, J = 12.0 Hz, Ar-H). 13C NMR (150 MHz): &c = 13.53 (CH3),
14.39 (CHs), 61.56 (CH,), 62.60 (CH,), 110.92 (C-6), 113.12 (C-4a), 114.94 (C-8), 124.11 (3 Ar-C),
128.92 (1 Ar-C), 129.53 (2 Ar-C), 130.43 (1 Ar-C), 130.62 (1 Ar-C), 131.48 (1 Ar-C), 131.61 (1 Ar-C),
137.35 (C-1), 138.87 (C-7), 147.02 (1 Ar-C), 147.58 (C-8a), 148.24 (1 Ar-C), 150.77 (C-5), 160.52



(C-4), 162.87 (C=0), 166.90 (C=0). Anal. Calcd. for CagH21CIFN30s (509.92): C, 61.24; H, 4.15; Cl,
6.95; F, 3.73; N, 8.24%; Found: C, 61.15; H, 4.31; Cl, 6.85; F, 3.61; N, 8.17%.

Diethyl 5-amino-7-(4-chlorophenyl)-4-oxo-3-phenyl-3,4-dihydrophthalazine-1,6-dicarboxylate

(3h). Yellow crystals; yield (90%); mp: 222-224°C. IR (KBr): v =
3459, 3334 (NH,), 2991 (aliph. CH), 1722 (ester C=0), 1705
(ester C=0), 1644 (amide C=0) cm™. *H NMR (600 MHz): 61 =

0.82 (t, 3H, J = 6.0 Hz, CHs), 1.29 (t, 3H, J = 6.0 Hz, CH3), 4.0 (q,

2H, J = 6.0 Hz, CH), 4.36 (q, 2H, J = 6.0 Hz, CH), 7.35 (d, 2H, J =
12.0 Hz, Ar-H), 7.42 (s, 1 Ar-H), 7.47-7.60 (m, 8H, 6 Ar-H and NH2), 7.65 (d, 1H, J = 6.0 Hz, Ar-H).
Anal. Calcd. for C26H22CIN3Os (491.93): C, 63.48; H, 4.51; Cl, 7.21; N, 8.54%; Found: C, 63.38; H,
4.59; Cl, 7.08; N, 8.65%.

Diethyl  5-amino-7-(4-nitrophenyl)-4-oxo-3-phenyl-3,4-dihydrophthalazine-1,6-dicarboxylate

(3i). Pale yellow crystals; yield (93%); mp: 226-228°C. IR (KBr):
v = 3422, 3305 (NH.), 3150 (arom. CH), 2982 (aliph. CH), 1708
(ester, C=0), 1644 (amide C=0) cm™. 'H NMR (600 MHz): &4 =
0.76 (t, 3H, J = 6.0 Hz, CHs), 1.28 (t, 3H, J = 6.0 Hz, CH3), 3.98 (q,

2H, J = 6.0 Hz, CH3), 4.36 (g, 2H, J = 6.0 Hz, CH;), 7.45 (s,
1 Ar-H), 7.49 (s, 1 Ar-H), 7.55-7.62 (m, 8H, 6 Ar-H and NH,), 8.35 (d, 2H, J = 6.0 Hz, 2 Ar-H).
13C NMR (150 MHz): &¢ = 13.52 (CH3), 14.42 (CH3), 61.48 (CHa), 62.43 (CH2), 111.49 (C-6), 112.72
(C-4a), 114.30 (C-8), 124.09 (2 Ar-C), 127.06 (2 Ar-C), 128.95 (1 Ar-C), 129.30 (2 Ar-C), 129.50
(2 Ar-C), 130.72 (1 Ar-C), 136.58 (C-1), 141.49 (C-7), 146.71 (C-8a), 147.51 (1 Ar-C), 148.42
(1 Ar-C), 150.97 (C-5), 160.88 (C-4), 163.12 (C=0), 167.06 (C=0). Anal. Calcd. for Cz6H22N407
(502.48): C, 62.15; H, 4.41; N, 11.15%; Found: C, 62.24; H, 4.35; N, 11.29%.

Diethyl  5-amino-7-(3-nitrophenyl)-4-oxo-3-phenyl-3,4-dihydrophthalazine-1,6-dicarboxylate

(3j). Yellow crystals; yield (93%); mp: 242-244°C. IR (KBr): v =
3423, 3317 (NHz), 3100 (arom. CH), 1742 (ester, C=0), 1727
(ester, C=0) 1662 (amide C=0) cm™. *H NMR: 64 = 0.82 (t, 3H,
J=6.0Hz, CHs), 1.29 (t, 3H, J = 6.0 Hz, CHs), 3.99 (q, 2H, /= 6.0

Hz, CH2), 4.36 (q, 2H, J = 6.0 Hz, CH2), 7.34-7.36 (m, 4 Ar-H), 7.4




(s, 1 Ar-H), 7.46 (m, 2 Ar-H), 7.56 (d, 2H, J = 12 Hz, Ar-H), 7.66 (s, 1 Ar-H), 8.0 (br, 2H, NH;). Anal.
Calcd. for C6H22N407 (502.48): C, 62.15; H, 4.41; N, 11.15%. Found: C, 62.08; H, 4.54; N, 11.09%.

1.2. Antimicrobial screening

1.2.1. Microorganisms, Culture Conditions, and Compound Preparation

Antimicrobial testing was performed against clinically multi-resistant isolated strains of S.
aureus, K. pneumoniae, P. aeruginosa, and C. albicans, obtained from the Microbiology
Laboratory, Faculty of Pharmacy, Minia University. Bacterial strains were cultured in tryptic soy
broth (TSB), and C. albicans was cultured in Sabouraud dextrose broth (SDB). Cultures were
incubated at 37°C for 24 hours and adjusted to a 0.5 McFarland standard. A series of synthesized
polyfunctionally substituted phthalazine derivatives (3a-j) were evaluated. Each compound was
dissolved in dimethyl sulfoxide (DMSO) to prepare 2 mg/mL stock solutions and subsequently
filtered using 0.22 um filters. Working concentrations were prepared by serial dilution in sterile

distilled water prior to testing.

1.2.2. Antimicrobial Susceptibility Testing

The agar well diffusion method was performed to assess the antimicrobial activity. Mueller-
Hinton agar (MHA) plates for bacteria and Sabouraud dextrose agar (SDA) plates for fungi were
inoculated with standardized microbial inocula. Six millimetres wells were punched and filled with
20 uL of each compound. Ciprofloxacin (20 pg/mL) and fluconazole (20 pg/mL) served as
reference antibiotics for bacterial and fungal strains, respectively, while DMSO was used as a
negative control. The plates were incubated overnight at 37°C, and inhibition zone diameters were

measured.

1.2.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum
Bactericidal/Fungicidal Concentration (MBC/MFC)

The Minimum Inhibitory Concentration (MIC) values were determined using the broth
microdilution method. Two hundred microliters of each phthalazine derivative solutions were
added to the first column of a 96-well microtiter plate, followed by serial two-fold dilutions across
the row, resulting in final concentrations ranging from 200 to 0.82 pg/mL. Each well received 10
pL of bacterial or fungal inoculum suspension. Columns 11 and 12 served as microbial growth and

broth sterility controls respectively. Plates were incubated at 37°C for 24 hours. The MIC was
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defined as the lowest concentration of an antimicrobial agent that completely inhibits the visible
growth of a microorganism. All data were reported as the mean of three independent experiments,
each performed in duplicate. The Minimum Bactericidal and Fungicidal Concentrations (MBC and
MFC) were determined polystyrene microplates by streaking samples from each MIC well onto
agar plates. The lowest concentration at which no visible microbial growth was observed after

incubation, indicating bactericidal or fungicidal activity.

1.2.4. Biofilm Inhibition Assay

The antibiofilm activity of the phthalazine compounds was investigated using the crystal violet
staining method in 96-well flat-bottom [1]. Each well was loaded with 180 uL of TSB
supplemented with 1% glucose, 10 uL of microbial inoculum, and 10 uL of test compound.
Negative control wells received an equivalent volume of DMSO. Following static incubation at
37°C for 24 hours, non-adherent cells were removed by washing with phosphate-buffered saline
(PBS, pH 7.2). Plates were air-dried and biofilms were fixed with 99% methanol for 15 minutes.
Wells were then stained with 0.5% crystal violet for 30 minutes, washed with distilled water to
remove excess stain, and air-dried. The bound dye was solubilized using 95% ethanol and
absorbance was measured at 570 nm using a microplate reader.

The biofilm inhibition percentage was calculated using the following formula:
% Inhibition = [(OD control — OD treated) / OD control] x 100

All experiments were performed in triplicate and repeated independently three times.

1.3. Computational Methodology

1.3.1. DFT Strategy

Calculations were carried out using the 6-311G(d,p) basis set within the Gaussian 09 software
suite [2]. Molecular electrostatic potential (MEP) mapping was performed to pinpoint key
nucleophilic and electrophilic regions in the optimized structure. The most stable conformer and
its electronic excitation properties were visualized using Chemcraft [3] and VMD [4] to elucidate
its electronic characteristics. Harmonic vibrational frequencies computed at the 6-311G(d,p) level
were  scaled using a  factor of 0967, as recommended by  NIST

(https://cccbdb.nist.gov/vibscalejustx.asp) [5], to correct for anharmonic effects. 'H and *C NMR

spectra were computed using the Gauge-Including Atomic Orbital (GIAO) method within the DFT
framework [6]. Time-Dependent Density Functional Theory (TD-DFT), a widely adopted

7
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approach for simulating UV/vis absorption spectra and characterizing electronic excitation states
in various molecular systems [7], was employed in this study. The TD-DFT calculations were
conducted using the Conductor-like Polarizable Continuum Model (CPCM) to simulate solvent

effects in DMSO.

Further topological analyses were executed using Multiwfn software [8], including reduced
density gradient (RDG) and non-covalent interaction (NCI) analyses, alongside the electron
localization function (ELF), to thoroughly characterize the intramolecular interactions and bonding
nature within the heterocyclic framework [9].

The quantum chemical reactivity parameters for all the designed systems were computed
following geometric optimization. These parameters were evaluated using the HOMO and LUMO

energy values, based on the equations provided as the following [10,11].

Energy Gap (AE) = ELumo- Enomo (1)
Ionization potential (I) = - Enomo (2)
Electron affinity (A) = - ELumo 3)
Hardness (1) = (I-A)/2 4)
Chemical potential (p) = - (I+A)/2 (5)
Softness (o) = 1/1 (6)
Electronegativity (%) = -(Enomo + ELumo)/2 (7)
Electrophilicity () = p?/2n (8)

1.3.2. Molecular Docking methodology

The molecular docking procedure followed a well-established protocol to ensure reliable and
reproducible results [12,13]. Docking simulations for the investigated heterocyclic compounds
were conducted using AutoDock Vina software [14]. Post-docking analysis and visualization of
ligand—protein interactions were carried out using Discovery Studio
(https://www.3ds.com/products-services/biovia/). The selected receptors S. aureus (ID:2XCT)
[15] and human CYP51 (ID: 3LD6) [16] were obtained from the Protein Data Bank

(https://www.rcsb.org/). Protein preparation involved the removal of water molecules and non-

essential atoms, adding polar hydrogen atoms, and assigning partial atomic charges. The ligand

and protein files were converted into the PDBQT format for docking. Active site coordinates were


https://www.3ds.com/products-services/biovia/
https://www.rcsb.org/

determined, and a grid box was defined with dimensions of 40 x 40 x 40 A and a grid spacing of
0.375 A. The grid centers were set at coordinates (x = 21.348, y = 24.336, z = 79.243) for 2XCT
and (x =42.348,y =-0.623, z=-1.711) for 3LD6. The Genetic Algorithm (GA) was employed as

the docking search method to predict optimal binding conformations [17].

2. Spectral Data
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Figure 1. 'H NMR spectrum of compound 3a.



Eanr
1

—077
—0.76
—0.75

F3E+08

r3E+08

F3E+08

-2E+08

F2E+08

F2E+08

-2E+08

F2E+08

F1E+08

F1E+08

F1E+08

F8E+07

F6E+07

F4E+07

F2E+07

o

F-2E+07

39
398
—3.05

395

F2ZE+08

F2E+08
F2E+08

F2E+08

FlE+08

F1E+08

F1E+08
F1E+08

F1E+08

F9E+07

FBE+07

F7E+07

[F6E+07

FSE+07
4E+07
F3E+07

F2E+07

F1E+07

]

Hft
!
_,—"l"‘ \\‘7_
X
=
b=
. . : . . . . . : .
1.45 140 135 130 125 120 115 110  1.05  1.00
f1 (ppm)
588
e
AN
0. 0 cl
N -
]
,@/N
© NH; O
cl 2 \l
| ﬂ
il
| [ i
W {
S -
I—'—|
3
T T T T T T T T
455 4.50 2.45 4.40 4.35 4.30 4.25 4.20
1 (ppm)

F-1E+07

Figure 2. Expanded *H NMR of compound 3a.

10



RN S N VAN \/
Ll L lIIJ” N il ”
T T T T T T T T T
180 160 140 120 100 80 60 40 20 0 ppm
Figure 3. 3C NMR spectrum of compound 3a.
100 526.42
90
80 \
7o 0 o Cl
: Qr
5 60 M=
I
g M =0
2 50
8 Cl ~
= 40 M wt: 326.37 |
i
281.72
30
255 6T
20
198 .51 37198
10 45114
301.80 ' l
0 L 1[ a L_ l'i|l "
Ll L] I L] 1 L L] I L] T L] T I L] T L] T | L] T L] T l T T L] T . T Ll L] T | T 1
100 200 300 400 500 600 700 800 900 1000

miz

Figure 4. Mass spectrum of compound 3a.

11



500

4E+08
H4E+08
H4E+08
I-3E+08
F2E+08
F2E+08
2E+08
F1E+08
FSE+07

—SEE8 v gy

-0

e ——————_ L Y7}

68018 .
mn, PPEPE gz ace

00'LEE oL 196
SGELO

]
TR AT
S0 gz

fI[’.\la 8&2.
—__ TE09Zl g 47

TR OPET LLZIEL
= SEBIEL_ JO'EBEL | m.aw.

1000

STLEPL  jgaipL . 9’0
e N AT Lo

\ — T =—00'¢
L eac 26'0951 %“ < \H.r_ =10¢

e A 1T T

1500

6% —
%%

86°E .
T —_— — =—{6T

FEP —_— - =207
mﬂ.vw

2000

Wavenumbers {cm-1)

2500

P — — =00'T
Ll — FE-H6'S

85T

5 L8

B6ZVEZ g1 0gsz

Figure 5. IR spectrum of compound 3a.

3000

ZC'BTEE I
e

PrZSVE Q

3500

Q
T O
NH,

4000

BIUBHWSUBIL %

12

f1 (ppm)
Figure 6. 'H NMR spectrum of compound 3b.

13 12 11 10

14

15

16




T T T T T
180 160 140 120 100

T
200

PpPm

T
60 40

80

Figure 7. 3C NMR spectrum of compound 3b.

B ————
— boosL

< b oEs

——

w
&

=+ N o=
F & &

SO'6RE

so'sse

E9'AG6

——

< aLalol

—_—
p—

-
=08 80l 966601
—_— LLBELL

F:p344)

—

5 0L}

P —— T W = 4

—_—

f—

B

Sszerrl  seoLp

9L B8P

=

—SF £S5

[ e—

!
\

Nu,vlqm 9£8T
™ 9£°9687
I
==
. 5
.IU.ION e6T

M SL'B0LE

po

A
\
\

S bTbEEE
~——

C

S~ S5 9SHE

_ﬁft
M
|

.

w oo N o2 o W
= B B @ = = R

SIUETIWSURI] %

Zesl

9
—
—_—_ 1\ B1'Z65)
Ao mqm./

o~
=

0485k
FEBLLL

LZrig

PO ZPEL
(321
LEEBEL

LBBSS

B9 1041
S99'aZL)

=
=

@
@

w
@

3000 2500 2000 1500 1000 500
Wavenumbers {cm-1)

3500

4000

Figure 8. IR spectrum of compound 3b.
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