References
1.Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).
2.Boland, O. M., Blackwell, C. C., Clarke, B. F. & Ewing, D. J. Effects of Ponalrestat, an Aldose Reductase Inhibitor, on Neutrophil Killing of Escherichia Coli and Autonomic Function in Patients With Diabetes Mellitus. Diabetes 42, 336–340 (1993).
3.Awadallah, F. M., El-Eraky, W. I. & Saleh, D. O. Synthesis, vasorelaxant activity, and molecular modeling study of some new phthalazine derivatives. Eur. J. Med. Chem. 52, 14–21 (2012).
4.Asif, M. Pharmacological Activities of Various Phthalazine and Phthalazinone Derivatives. Chem. Int. 5, 97–108 (2019).
5.Napoletano, M. et al. The synthesis and biological evaluation of a novel series of phthalazine PDE4 inhibitors I. Bioorg. Med. Chem. Lett. 10, 2235–2238 (2000).
A
6.Meanwell, N. A. The pyridazine heterocycle in molecular recognition and drug discovery. Med. Chem. Res. 32, 1853–1921 (2023).
A
7.Leiro, J. M., Álvarez, E., Arranz, J. A., Cano, E. & Orallo, F. Antioxidant activity and inhibitory effects of hydralazine on inducible NOS/COX-2 gene and protein expression in rat peritoneal macrophages. Int. Immunopharmacol. 4, 163–177 (2004).
8.Boraei, A. T. A. et al. Design and synthesis of new phthalazine-based derivatives as potential EGFR inhibitors for the treatment of hepatocellular carcinoma. Bioorg. Chem. 85, 293–307 (2019).
9.Elmeligie, S. et al. Design and synthesis of phthalazine-based compounds as potent anticancer agents with potential antiangiogenic activity via VEGFR-2 inhibition. J. Enzyme Inhib. Med. Chem. 34, 1347–1367 (2019).
A
10.El-Helby, A. G. A. et al. Design, Synthesis, In Vitro Anti-cancer Activity, ADMET Profile and Molecular Docking of Novel Triazolo[3,4-a]phthalazine Derivatives Targeting VEGFR-2 Enzyme. Anticancer Agents Med. Chem. 18, 1184–1196 (2018).
11.Mylari, B. L. et al. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem. 34, 108–122 (1991).
12.Hashash, M. A. & El Synthesis of Novel Series of Phthalazine Derivatives with Antibacterial and Antifungal Evaluation. J. Chem. Eng. Process. Technol. 5, 4–9 (2014).
13.Sangshetti, J. et al. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem. 27, 3979–3997 (2019).
14.Liu, D. C., Gong, G. H., Wei, C. X., Jin, X. J. & Quan, Z. S. Synthesis and anti-inflammatory activity evaluation of a novel series of 6-phenoxy-[1,2,4]triazolo[3,4-a]phthalazine-3-carboxamide derivatives. Bioorg. Med. Chem. Lett. 26, 1576–1579 (2016).
A
15.Gabriel, S. & Neumann, A. Ueber Derivate des Phtalazins und Isoïndols. (I). Ber Dtsch. Chem. Ges. 26, 521–527 (1893).
16.Amin, K. M., Barsoum, F. F., Awadallah, F. M. & Mohamed, N. E. Identification of new potent phthalazine derivatives with VEGFR-2 and EGFR kinase inhibitory activity. Eur. J. Med. Chem. 123, 191–201 (2016).
17.El-Helby, A. G. A. et al. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg. Chem. 103, 104233 (2020).
A
18.Suh, S. E., Barros, S. A. & Chenoweth, D. M. Triple aryne–tetrazine reaction enabling rapid access to a new class of polyaromatic heterocycles. Chem. Sci. 6, 5128–5132 (2015).
19.Zhang, M. Advances in the Direct Amination of Azole C-H Bonds. Synthesis 3408–3417 (2011). (2011).
20.Hartwig, J. F. Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Acc. Chem. Res. 41, 1534–1544 (2008).
21.Shin, K., Kim, H., Chang, S. & Transition-Metal-Catalyzed, C. N. Bond Forming Reactions Using Organic Azides as the Nitrogen Source: A Journey for the Mild and Versatile C–H Amination. Acc. Chem. Res. 48, 1040–1052 (2015).
22.Bariwal, J. & Van der Eycken, E. C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 42, 9283–9303 (2013).
23.Munín, J., Santana, L., Uriarte, E., Borges, F. & Quezada, E. A comparative synthesis of 6-benzyl-2,3-dihydroimidazo[2,1-a]phthalazine and 2H-7-benzyl-3,4-dihydropyrimido[2,1-a]phthalazine. Tetrahedron Lett. 56, 828–830 (2015).
24.Dong, C., Liao, Z., Xu, X. & Zhou, H. A New Pathway for Phthalazine Derivatives via Metal-Free Cyclization of ortho ‐Alkynylphenyl Ketones and Hydrazine. J. Heterocycl. Chem. 51, 1282–1286 (2014).
25.Brachet, E., Marzo, L., Selkti, M., König, B. & Belmont, P. Visible light amination/Smiles cascade: access to phthalazine derivatives. Chem. Sci. 7, 5002–5006 (2016).
26.De Abreu, M., Selkti, M., Belmont, P. & Brachet, E. Phosphoramidates as Transient Precursors of Nitrogen-Centered Radical Under Visible-Light Irradiation: Application to the Synthesis of Phthalazine Derivatives. Adv. Synth. Catal. 362, 2216–2222 (2020).
27.Suchand, B. & Satyanarayana, G. Palladium-Catalyzed Acylation Reactions: A One‐Pot Diversified Synthesis of Phthalazines, Phthalazinones and Benzoxazinones. European J. Org. Chem. 2233–2246 (2018). (2018).
28.Marandi, A., Kolvari, E., Gilandoust, M. & Zolfigol, M. A. Immobilization of –OSO3H on activated carbon powder and its use as a heterogeneous catalyst in the synthesis of phthalazine and quinoline derivatives. Diam. Relat. Mater. 124, 108908 (2022).
29.Tantiwatcharothai, S. & Prachayawarakorn, J. Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. Int. J. Biol. Macromol. 135, 133–140 (2019).
30.Goswami, M., Dutta, A., Paul, P. & Nongkhlaw, R. Recent Developments on Catalyst-Free, Visible-Light-Triggered Synthesis of Heterocyclic Scaffolds and Their Mechanistic Study. ChemistrySelect 6, 9684–9700 (2021).
31.Qu, C. et al. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J. Org. Chem. 87, 12921–12931 (2022).
32.Ghosh, T., Santra, S., Zyryanov, G. V. & Ranu, B. C. Recent Developments on the Synthesis of Oxygen- and Sulfur-containing Heterocycles and their Derivatives under Visible Light Induced Reactions. Curr. Top. Med. Chem. 25, 124–140 (2025).
33.Kärkäs, M. D., Porco, J. A. & Stephenson, C. R. J. Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 116, 9683–9747 (2016).
34.Hoffmann, N. Photochemical Reactions as Key Steps in Organic Synthesis. Chem. Rev. 108, 1052–1103 (2008).
35.Rong, Q., Zhang, Z., Meng, J., Wang, F. & Liu, Z. Q. A catalyst- and solvent-free visible-light-promoted bromination and chlorination of tertiary C(sp 3)–H bonds. Org. Chem. Front. 12, 786–792 (2025).
36.Almatroudi, A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. Biology 14, 165 (2025).
37.Liu, D., Lu, Y., Li, Z., Pang, X. & Gao, X. Quorum Sensing: Not Just a Bridge Between Bacteria. Microbiologyopen 14, e70016 (2025).
38.Pinto, R. M., Soares, F. A., Reis, S., Nunes, C. & Van Dijck, P. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front. Microbiol. 11, 952 (2020).
39.Ceresa, C. et al. Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Staphylococcus spp. Biofilms Molecules. 24, 3843 (2019).
40.Isticato, R. & Ricca, E. Spore Surface Display. In The Bacterial Spore; ASM Press: Washington, DC, USA, ; pp. 349–366 ISBN 9781683670780. (2016).
41.Li, X. H. & Lee, J. H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 55, 753–766 (2017).
42.Khalil, E. G., Berghot, M. & Gouda, M. Design, synthesis and antibacterial activity of new phthalazinedione derivatives. J. Serbian Chem. Soc. 76, 329–339 (2011).
43.Salvi, V. K., Bhambi, D., Jat, J. L. & Talesara, G. L. Synthesis and antimicrobial activity of some 2-[1-(4-oxo-3,4-dihydrophthalazine-1-yl)alkyl]-1H-isoindole-1,3(2H)-dione and their imidoxy derivatives. Arkivoc 133–140 (2007). (2006).
44.Johnson, C. R. et al. Phthalazinone inhibitors of inosine-5′-monophosphate dehydrogenase from Cryptosporidium parvum. Bioorg. Med. Chem. Lett. 23, 1004–1007 (2013).
45.Glišić, B. Đ. et al. Copper(ii) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa. RSC Adv. 6, 86695–86709 (2016).
46.Zaheer, Z., Khan, F. A. K., Sangshetti, J. N., Patil, R. H. & Lohar, K. S. Novel amalgamation of phthalazine–quinolines as biofilm inhibitors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett. 26, 1696–1703 (2016).
A
47.Hassan Nazmy, M. et al. Controlled microwave-assisted reactions: A facile synthesis of polyfunctionally substituted phthalazines as dual EGFR and PI3K inhibitors in CNS SNB-75 cell line. Bioorg. Chem. 122, 105740 (2022).
A
48.Jaraph-Alhadad, L. A. et al. Cerium (IV) ammonium nitrate (CAN) promoted reaction: A selective synthesis of 2-arylbenzimidazoles via reaction of o-phenylenediamine and arylidene malononitriles at ambient temperature. Arkivoc vii, 202311963 (2023).
A
49.Elkamhawy, A. et al. Visible-light-assisted base-catalyzed, one-pot synthesis of highly functionalized cinnolines. Green. Process. Synth. 12, 20230121 (2023).
A
50.Mekheimer, R. A. et al. New s-Triazine/Tetrazole conjugates as potent antifungal and antibacterial agents: Design, molecular docking and mechanistic study. J. Mol. Struct. 1267, 133615 (2022).
A
51.Abdelkhalik, M. M., Alnajjar, A., Ibrahim, S. M., Raslan, M. A. & Sadek, K. U. A Simple and Efficient Multicomponent Synthesis of Novel Pyrazole, N-aminopyridine and Pyrazolo[3,4-b]Pyridine Derivatives in Water. J. Phys. Chem. Biophys. 14, 1000371 (2024).
52.Elnagdi, M. H., Abdelrazek, F. M., Ibrahim, N. S. & Erian, A. W. Studies on alkylheteroaromatic compounds. The reactivity of alkyl polyfunctionally substituted azines towards electrophilic reagents. Tetrahedron 45, 3597–3604 (1989).
53.Sadek, K. U., Shaker, R. M., Elrady, M. A. & Elnagdi, M. H. A novel method for the synthesis of polysubstituted diaminobenzonitrile derivatives using controlled microwave heating. Tetrahedron Lett. 51, 6319–6321 (2010).
54.Parr, R. G. & Weitao, Y. Density-Functional Theory of Atoms and Molecules; International Series of Monographs on Chemistry; Oxford University Press, ; ISBN 9780199878727. (1989).
55.Fayed, T. A., Gaber, M., Abu El-Reash, G. M., El‐Gamil, M. M. & Structural DFT/B3LYP and molecular docking studies of binuclear thiosemicarbazide Copper (II) complexes and their biological investigations. Appl. Organomet. Chem. 34, 1–20 (2020).
56.Yu, J., Su, N. Q. & Yang, W. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au. 2, 1383–1394 (2022).
57.Elbadawy, H. A., Ali, A. E. D., Elkashef, A. A., Foro, S. & El-Sayed, D. S. Zinc(II)‐facilitated nucleophilic addition on N‐(4‐chlorophenyl) carbon hydrazonoyl dicyanide and hybrid complex formation: X‐ray, spectral characteristics, DFT, molecular docking, and biological studies. Appl. Organomet. Chem. 36, e6793 (2022).
58.Saleh, G., Gatti, C., Lo Presti, L. & Contreras-García, J. Revealing Non‐covalent Interactions in Molecular Crystals through Their Experimental Electron Densities. Chem. Eur. J. 18, 15523–15536 (2012).
59.Emara, M. M. et al. Electronic and structural perturbations of microporous ZIF-67 nanoparticles and Cr(VI) molecule during adsorptive water decontamination unveiled by experimental and quantum computational investigations. J. Mol. Liq. 390, 123042 (2023).
60.Alkhafaji, A. A. et al. Recent perspective on polymeric Semimetal (Si, Ge and As) and nonmetal (N and P) doped C70-Fullerene system: Comparative electronic, dynamic behavior and chemotherapy docking with ADMET analysis. J. Organomet. Chem. 1022, 123417 (2024).