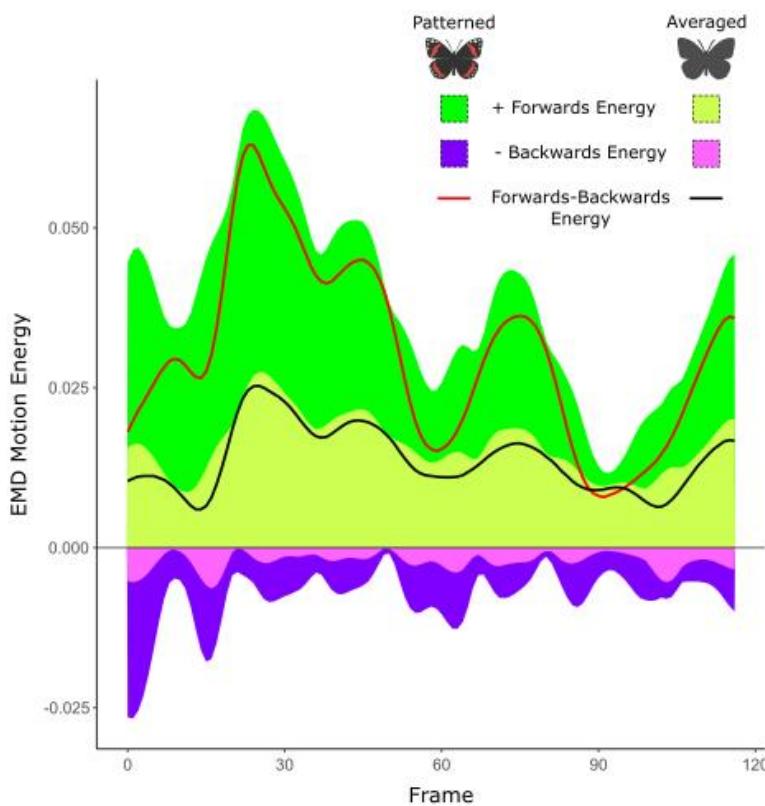


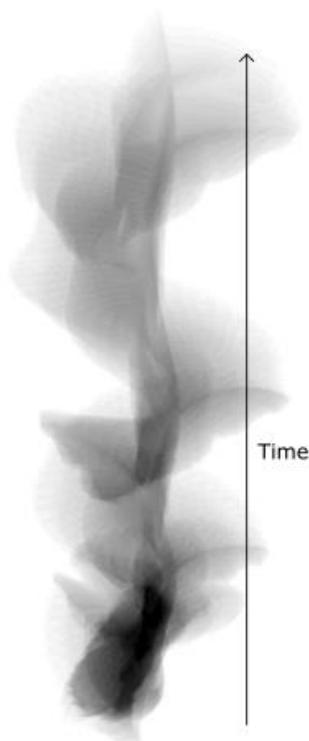
1 Supplementary Material

2 **Butterfly wing patterns create powerful illusory motion cues**

3


4 **Real butterfly take-off recordings**

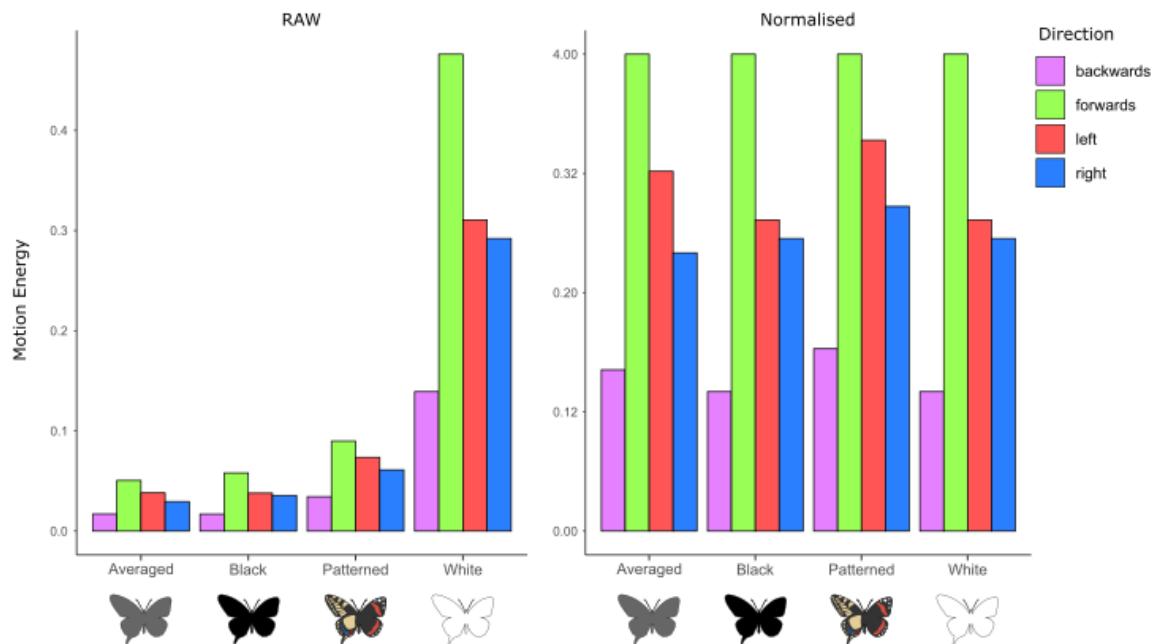
5


6 **Motion energy across frames**

7

a.

b.


8

9 **Supplementary Fig.1 | Motion energy and confusion across frames.** **a.** example motion forwards
10 and backwards motion energy level for a red admiral, *Vanessa atalanta*, in free flight with is natural
11 patterning and with its patterned averaged. Backwards energy is depicted as negative as it is an
12 opponent to forwards energy. Lines represent the forwards energy subtracted by the backwards
13 energy. The initial peak in forwards and backwards energy represents the point of takeoff for the
14 butterfly and is also when backwards energy is at its highest. Patterning increases the overall energy
15 compared to the unpatterned and increases the ratio of backwards energy in proportion to forwards
16 energy at multiple instances during flight. **b.** Shows the position of the butterfly across time, starting
17 from the bottom, by masking the butterfly for each frame, adding each frame together, and then
18 dividing by the number of frames. Note, as the butterfly does not fly in a straight line forwards and
19 backwards, energy will not always correspond with the heading of the butterfly.

20

21

22 **Ratios of energy across directions**

23

24 **Supplementary Fig.2 | Motion energy ratios**, depicts the average motion energy across all frames
 25 for all butterfly flights, with the different colour treatments. Energy is split into the four cardinal
 26 directions (backwards, forwards, left, and right). The left panel shows the raw average, while the right
 27 panel shows the energy divided by the greatest energy value across the four directions. Energy in
 28 general is higher for the white treatment compared to other treatments as the white is more
 29 contrasting against the background, followed by the patterned. Butterfly wing patterning overall
 30 increases the proportion of backwards, left, and right energy compared to forwards.

31

32 **Influence of patterning on motion confusion metrics**

33

34 **Forwards-Confusion**

35 **Supplementary Table 1 | Tukey posthoc test for real butterfly takeoff forwards-confusion**

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	0.079	0.007	9350	11.504	<0.001
Patterned vs Black	0.078	0.007	9350	11.478	<0.001
Patterned vs White	0.078	0.007	9350	11.472	<0.001
Averaged vs Black	0	0.007	9350	-0.026	1
Averaged vs White	0	0.007	9350	-0.032	1
Black vs White	0	0.007	9350	-0.006	1

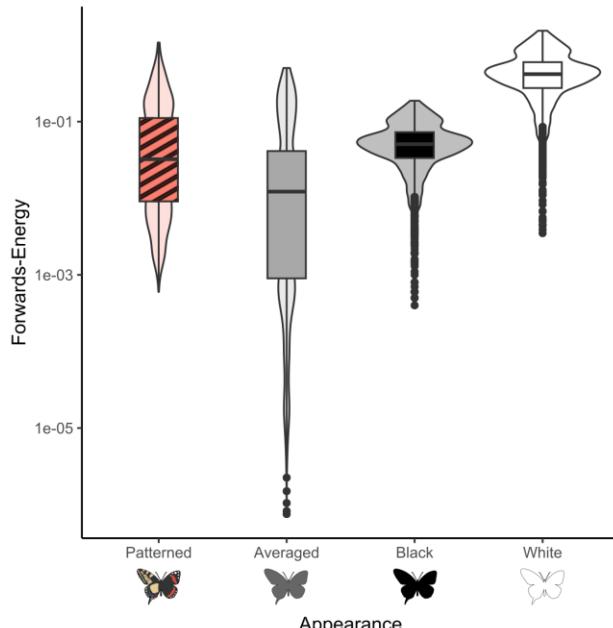
36

37 Sideways-Confusion38 **Supplementary Table 2 | Tukey posthoc test for real butterfly takeoff sideways-confusion**

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	0.044	0.005	9352	9.538	<0.001
Patterned vs Black	0.044	0.005	9352	9.538	<0.001
Patterned vs White	0.044	0.005	9352	9.538	<0.001
Averaged vs Black	0	0.005	9352	0.105	1
Averaged vs White	0	0.005	9352	0.104	1
Black vs White	0	0.005	9352	-0.001	1

39

40 Forwards-Energy


41 All butterfly pattern treatments were significantly different from one another for forwards-
 42 energy. On average butterflies with a higher contrast against the background (white) have
 43 increased forwards-energy. Patterning increases forwards-energy compared to averaged
 44 and produces marginally greater forwards energy than black, likely due to the white colours
 45 present on the different butterfly species. The averaged butterflies were significantly worse
 46 than all other pattern treatments.

47

48 **Supplementary Table 3 | Tukey posthoc test for real butterfly takeoff forwards-energy**

49

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	0.081	0.004	9362	22.286	<0.001
Patterned vs Black	0.010	0.004	9362	2.629	0.0426
Patterned vs White	-0.415	0.004	9362	-114.567	<0.001
Averaged vs Black	-0.071	0.004	9362	-19.658	<0.001
Averaged vs White	-0.496	0.004	9362	-136.854	<0.001
Black vs White	-0.424	0.004	9362	-117.196	<0.001

50

51

52 **Supplementary Fig.3 | Influence of patterning on forwards-energy**, boxplots with violins for
 53 forward energy across all frames for all 7 butterfly wing morphotypes with patterning, and without
 54 patterning (averaged, black, and white).

55

56 Motion confusion across European butterflies

57

58 **Butterfly phylogeny principal coordinates**

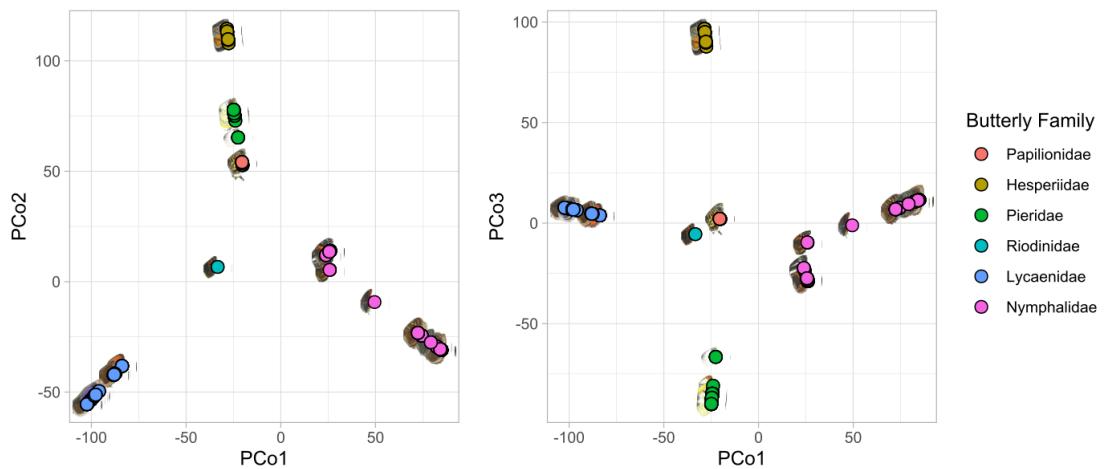
59

60 For our principal coordinates:

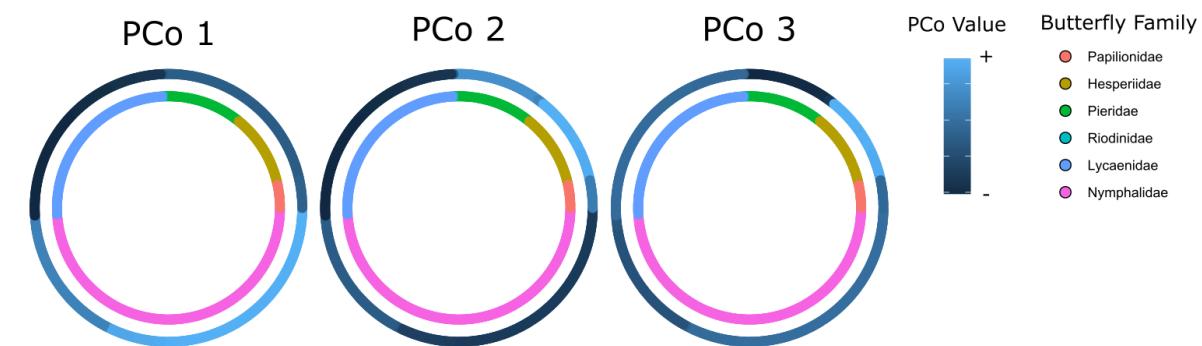
61

62 High PCo1 values corresponded with Nymphalids, predominantly Satyrinae, while low
 63 values corresponded with Lycaenidae.

64

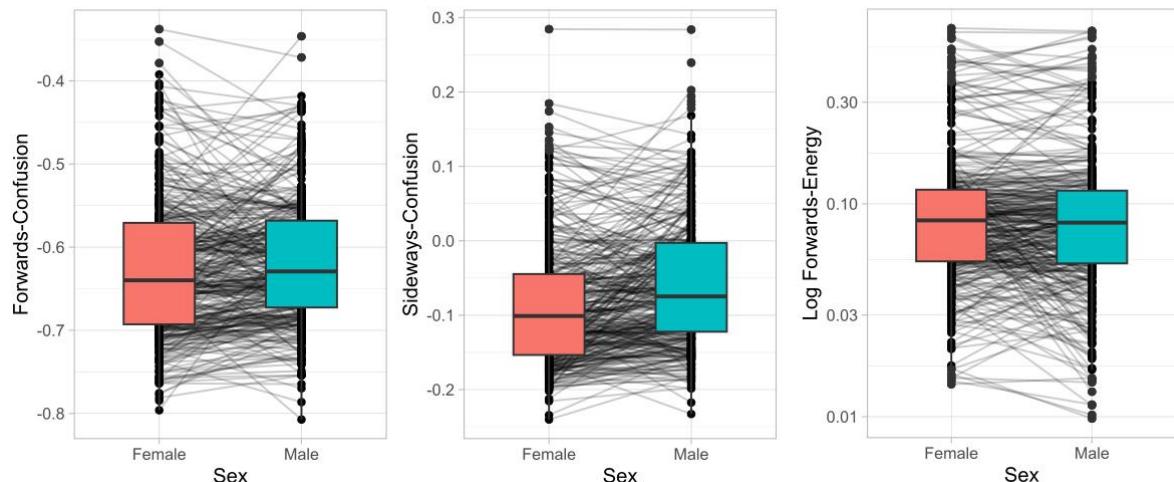

65 High PCo2 values corresponded with Hesperiidae and to a lesser extent Pieridae and
 66 Papilionidae, while low values corresponded with Lycaenidae and Nymphalidae.

67


68 High PCo3 values corresponded with Hesperiidae while low values corresponded with
 69 Pieridae. Intermediate values comprised all other families.

70

71 See Supplementary Fig. 4 and Fig. 5.


72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Supplementary Fig.5 | Circular phylogeny of PCo values, plots show the three principal coordinates (PCos) for the 6 European butterfly families in relation to the shorter phylogeny. Colour values for the inner circle denote the butterfly family and colour values for the outer circle denote the PCo value with lighter blue indicating positive values (+) and darker values denoting negative (-).

93 **Influence of sex on motion confusion metrics**

94

95 **Supplementary Fig.6 | Influence of sex on butterfly motion confusion for flapping flight**, each
96 plot shows a boxplot for each of the two sexes and points with lines linking members of the same
97 species.

98

99 Given that many butterfly species were illustrated as sexually dimorphic in appearance (358
100 of our 397 species) and males are frequently more contrasting in appearance than females,
101 we opted to compare our three motion confusion metrics between males and females (See
102 Supplementary Fig.6). To compare each sex we used linear mixed models with the motion
103 confusion metric as the response variable and the sex as the predictor variable with the
104 species binomial as a random effect.

105

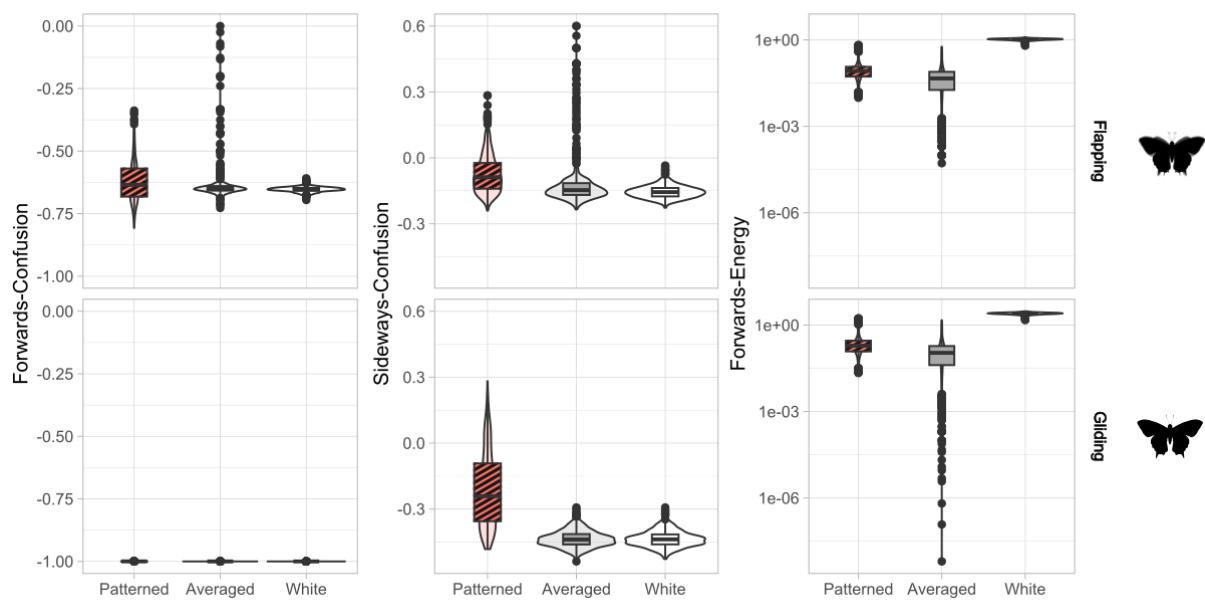
106 Males were found to have no significant difference in forwards-confusion (male vs female,
107 forwards-confusion: $\beta = 0.006$, t value₃₅₇ = 1.82, $p = 0.0696$), marginally lower forwards-
108 energy than females (male vs female, forwards-energy: $\beta = -0.057$, t value₃₅₇ = -2.073, $p =$
109 0.039), and significantly greater sideways confusion (male vs female, sideways-confusion: β
110 = 0.025, t value₃₅₇ = 6.49, $p < 0.001$).

111

112 **Influence of patterning and gliding on motion confusion metrics**

113

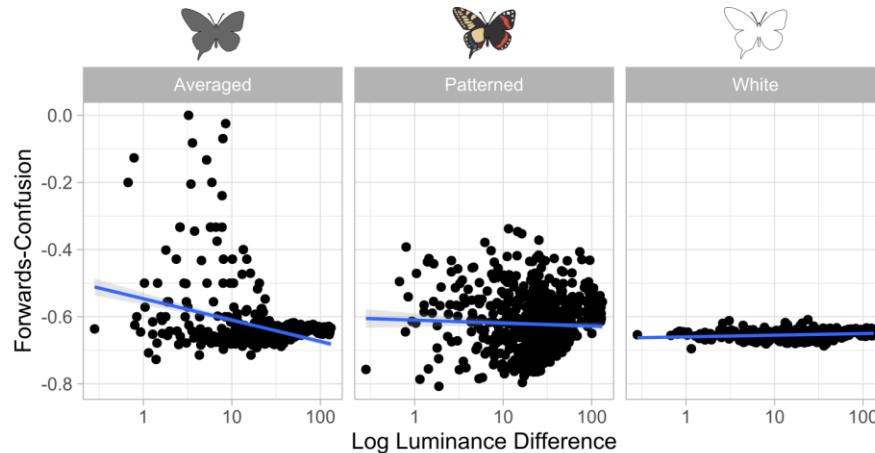
114 To confirm our results for the influence of patterning on motion confusion in butterflies for the
115 real butterfly takeoffs, we repeated our comparison of motion confusion measures for
116 butterflies with their natural wing patterns and those without their wing patterns (white and
117 averaged wing luminance). Numerous butterfly species, in particular larger species, undergo
118 periods of unpowered flight where the wings are held open in a glide. These periods of
119 differential patterns of biological motion are likely to influence the intensity of motion in


120 different directions and as a result motion confusion. As our 3D blender model allowed us to
121 render butterfly flights with and without flapping flight we also quantified how wing patterning
122 influenced the EMD when gliding (no flapping).

123

124 To compare the effects of patterning and gliding for each motion confusion metric we used
125 linear mixed models. The confusion metric was given as the response variable, and both the
126 pattern treatment (patterned, averaged, or white), the flight method (gliding or flapping) and
127 the interaction between them were used as predictor variables. The unique morphotype of
128 the butterfly was used as a random effect.

129


130 As with our real butterflies patterning increased motion confusion compared to the
131 unpatterned treatments, however motion confusion was in some instances higher for the
132 averaged butterflies when the butterflies near perfectly matched the background average
133 (See Supplementary Fig.7 and Table 4-6). Flapping flight was found to be integral to the
134 generation of forwards-confusion effects with the level of backward motion detected being
135 near zero in the absence of wing movement. Meanwhile gliding exacerbated the difference
136 between patterned and the unpatterned treatments for sideways-confusion and increased
137 the level of forward-energy across all treatments (given the reduction in movement in
138 alternative directions),but did not interact with patterning for forward-energy. Outliers for
139 flapping flight where averaged butterflies caused high degrees of forwards and sideways
140 motion confusion were due to instances where the butterflies matched the luminance of the
141 patternless background (See Supplementary Fig. 8).

142

143 **Supplementary Fig.7 | Influence of pattern and gliding on motion confusion metrics**, levels of
144 forwards-confusion, sideways-confusion, and forwards-energy for simulated butterfly flight when
145 flapping their wings (above) and when their wings are static (gliding). Butterflies were rendered either
146 with patterns, their averaged luminance or as white.

147

148

149 **Supplementary Fig.8 | Influence of background match on motion confusion metrics**, how does
150 log difference in luminance from the background influence motion confusion for the three pattern
151 treatments, averaged, patterned, and white.

152

153 **Supplementary Table 4 | Linear mixed model for forwards-confusion, gliding and pattern type**
154

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	-0.012	0.002	3780	-5.217	<0.001
Patterned vs White	-0.031	0.002	3780	-13.739	<0.001
Gliding vs Flapping	-0.378	0.002	3780	-167.952	<0.001
Patterned vs Average : Gliding	0.012	0.002	3780	3.635	<0.001
Patterned vs White : Gliding	0.031	0.002	3780	9.659	<0.001

155

156 **Supplementary Table 5 | Linear mixed model for sideways-confusion, gliding and pattern type**
157

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	-0.044	0.004	3780	-11.05	<0.001
Patterned vs White	-0.082	0.004	3780	-20.54	<0.001
Gliding vs Flapping	-0.143	0.004	3780	-35.51	<0.001
Patterned vs Average : Gliding	-0.177	0.004	3780	-31.21	<0.001

Patterned vs White : Gliding -0.140 0.004 3780 -24.55 <0.001

158

159 Supplementary Table 6 | Linear mixed model for forwards-energy, gliding and pattern type

160

Contrast	Estimate	SE	DF	T ratio	P value
Patterned vs Averaged	-0.991	0.046	3780	-21.658	<0.001
Patterned vs White	2.536	0.046	3780	55.412	<0.001
Gliding vs Flapping	0.862	0.046	3780	18.837	<0.001
Patterned vs Average : Gliding	-0.102	0.046	3780	-1.578	0.115
Patterned vs White : Gliding	0.018	0.046	3780	0.282	0.778

161

162

163

164

165

166

167

168

160

170

171

170

130

174 Empirical image analysis of butterfly wing patterning

175 To quantify the appearance of butterfly wings we used image statistics maps for the forewing
176 and hindwing to allow us to measure the mean, standard deviation, x-axis gradient, and y-
177 axis gradient of each statistic. For the gradients a positive gradient indicates an increase in
178 the map's value from left to right / top to bottom of the image, and a negative gradient
179 indicates a decrease. To illustrate how these maps work we provide examples for three
180 butterfly wings (See Supplementary Fig 8). For each map the largest spatial scale, s6, was
181 equivalent to $\frac{1}{4}$ the square root of the wings area in pixels.

182

183 For each butterfly, metrics are split between the forewing and hindwing, e.g. fw.pat.E.mean
184 is the mean energy for the forewing and hw.pat.VH.stdev is the variation in vertical horizontal

185 orientation for the hindwing. Pat stands for patterning measure and is used to distinguish
186 wing shape measures, .shp.

187

188 L = luminance, P =periodicity, VH = vertical-horizontal, OA = obtuse - acute, and DR =
189 directionality.

190

191 **Luminance map -**

192 Simply created by converting the image from sRGB to blue-tit double cone quantum catch.

193

194 **Periodicity map -**

195 For each pixel, periodicity is calculated as the weighted average spatial scale (S={s1,s2
196 ,...,s6}), where each scale is weighted by the absolute value of the difference of gaussian
197 (DoG) output. Higher periodicity (values closer to 1) indicate larger spatial scales.

198

199 px = pixel value

200 s = scale

201 $wS = \sum_{s \in S} \frac{abs(px)s}{s}$ = Weighted Sum

202 $E = \sum_{s \in S} abs(px)s$ = Total Energy

203 $Periodicity = \frac{wS}{E}$

204

205 **Energy map -**

206 For each pixel, energy is calculated as the sum absolute value of each pixel across spatial
207 scales (S={s1,s2,...,s6}).

208

209 px = pixel value

210 s = scale

211 $E = \sum_{s \in S} abs(px)s$ = Total Energy

212

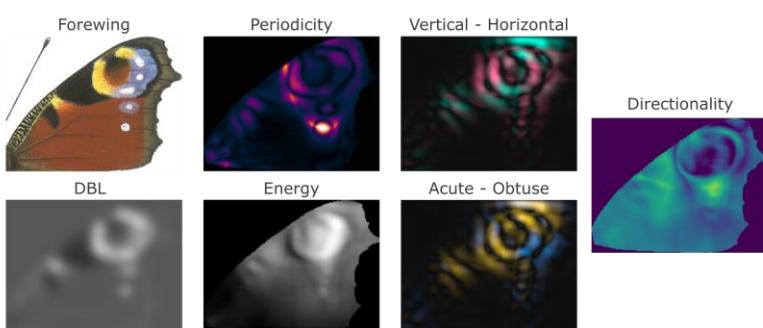
213 **VH, OA & Directionality maps-**

214 Unlike periodicity and energy, these metrics use Gabor filters at six orientations (0, 30, 60,
215 90, 120, and 150 degrees) but at the same six spatial scales as the DoG. These orientations
216 are then converted into spatial maps in four different directions by calculating the energy
217 across each orientation.

218

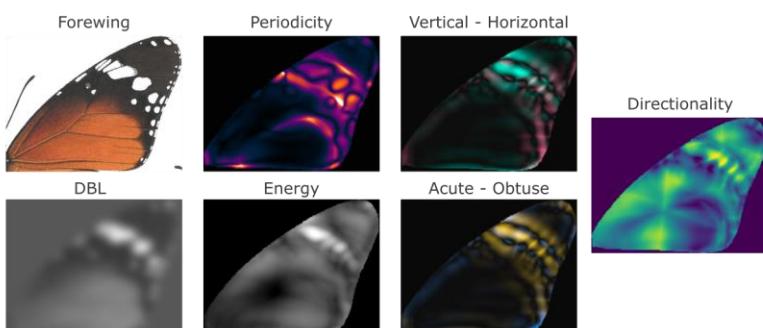
219 px = pixel value

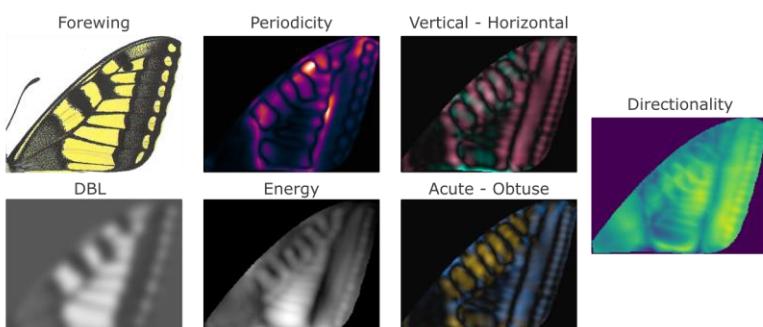
220


221 a = angle in radians

222

223 $V(0 \text{ degrees}) = \sum_{s \in S} \sin(a) * \text{abs}(px)s$
 224 $H(90 \text{ degrees}) = \sum_{s \in S} \cos(a) * \text{abs}(px)s$
 225 $A(135 \text{ degrees}) = \sum_{s \in S} \sin(a * \frac{\pi}{4}) * \text{abs}(px)s$
 226 $O(135 \text{ degrees}) = \sum_{s \in S} \cos(a * \frac{\pi}{4}) * \text{abs}(px)s$
 227 Then each image (V, H, A, O) is used to create the following image statistics map. VH where
 228 each pixel is the value for $V - H$, OA where each pixel is the value of $O - A$, and
 229 Directionality where each pixel is the value is $\sqrt{VH^2 + OA^2} - E$, with positive values being
 230 more directional.
 231


a. Peacock butterfly (*Aglais io*)


b. Plain tiger (*Danaus chrysippus*)

c. European swallowtail (*Papilio machaon*)

232
 233
 234 **Supplementary Fig.9 | Image statistics maps**, example image statistic maps for three different
 235 butterfly species. DBL, blue-tit cone catch for the wing downscaled so that the $\frac{1}{4}$ the wings area was
 236 64 pixels. Lighter values indicate lighter regions. Periodicity, a spatial scale map where brighter values

237 indicate higher spatial frequencies. Energy, brighter values indicate regions of greater internal
238 contrast from the rest of the wing. Vertical - Horizontal, shows VH where red values are more vertical
239 and green values are more horizontal. Acute - Obtuse, shows OA where yellow values are closer to
240 135 degrees and blue values are closer to 45 degrees. Directionality, where lighter yellower values
241 indicate more directional patterns.

242

243 **Random forests for motion confusion metrics**

244

245 See empirical image analysis of butterflies above for pattern variable denotation. Butterfly
246 phylogeny is given using principal coordinates (PCos) 1-3.

247

248 **Supplementary Table 7 | SHAP table for forwards-confusion.** Variables are ordered by absolute
249 mean SHAP value.

250

Feature	Node purity	Mean SHAP \pm std dev
fw.pat.L.stdev	0.6014	0.0051 \pm 0.0109
fw.pat.E.mean	0.6713	0.0046 \pm 0.0101
hw.pat.VH.mean	0.3468	0.0042 \pm 0.0112
hw.pat.L.mean	0.5995	0.0038 \pm 0.0157
PCo3	0.1752	-0.0021 \pm 0.0054
fw.pat.VH.mean	0.4878	0.0019 \pm 0.0135
hw.shp.rough	0.1854	0.0018 \pm 0.0047
fw.pat.L.mean	0.2887	0.0014 \pm 0.0058
hw.pat.L.x	0.1802	0.0012 \pm 0.0046
fw.pat.E.x	0.2406	0.0012 \pm 0.0075
PCo1	0.1950	0.001 \pm 0.0031
hw.pat.P.mean	0.1343	-0.0005 \pm 0.0038

fw.pat.L.x	0.2393	-0.0003 ± 0.004
fw.col.by.mean	0.2451	0.0002 ± 0.0069
PCo2	0.1347	-0.0001 ± 0.0026

251

252 **Supplementary Table 8 | SHAP table for sideways-confusion.** Variables are ordered by absolute
253 mean SHAP value.

254

Feature	Node purity	Mean SHAP ± std dev
hw.pat.VH.mean	0.8423	0.0111 ± 0.0272
hw.pat.L.mean	1.1025	0.0054 ± 0.0234
body.length	0.3049	0.0024 ± 0.0104
fw.pat.L.mean	0.7927	0.002 ± 0.0161
hw.pat.P.stdev	0.3445	0.0018 ± 0.0066
hw.shp.rough	0.3436	0.0013 ± 0.0108
PCo3	0.1722	-0.0011 ± 0.0046
hw.pat.DR.mean	0.1333	0.0011 ± 0.0032
fw.pat.VH.mean	0.2764	0.0011 ± 0.0067
hw.pat.L.x	0.2066	0.0008 ± 0.0074
hw.pat.L.stdev	0.3355	0.0007 ± 0.0071
fw.shp.length	0.1267	-0.0001 ± 0.0022
hw.shp.length	0.1788	-0.0001 ± 0.0023
PCo2	0.2653	-0.0001 ± 0.0055

hw.pat.P.x 0.2025 0 ± 0.0048

255

256 **Supplementary Table 9 | SHAP table for forwards-energy.** Variables are ordered by absolute
257 mean SHAP value.

258

Feature	Node purity	Mean SHAP \pm std dev
hw.pat.L.mean	3.7952	0.0081 ± 0.0641
fw.pat.L.mean	2.5395	0.0052 ± 0.0396
fw.pat.E.mean	0.4418	0.0026 ± 0.0099
fw.pat.L.stddev	0.2084	0.0022 ± 0.0079
hw.pat.L.stddev	0.0936	0.0019 ± 0.0051
hw.pat.E.mean	0.0858	0.0011 ± 0.0047
PCo3	0.5321	0.001 ± 0.0057
fw.pat.L.x	0.6294	0.0007 ± 0.0071
hw.pat.P.x	0.0745	0 ± 0.0015

259

260

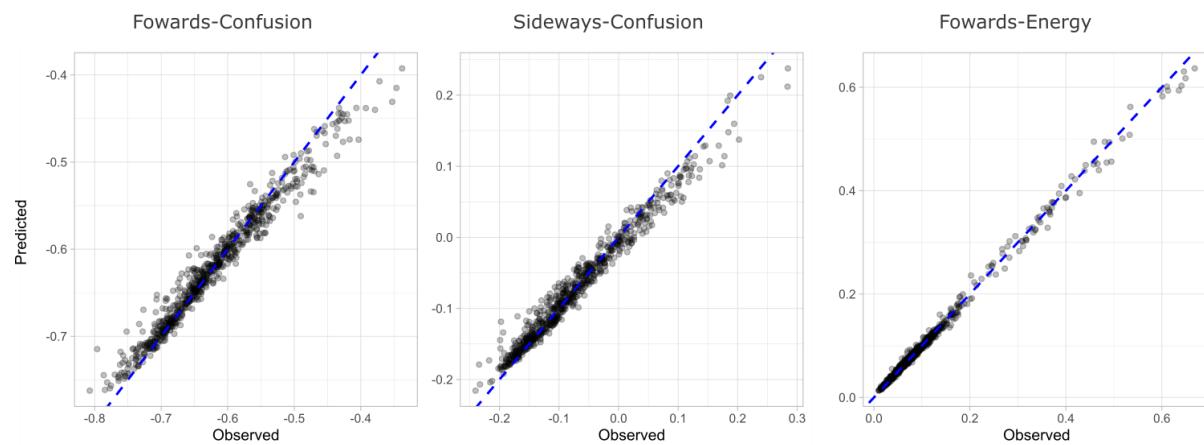
261

262

263

264

265


266

267 **Supplementary Fig.10 | SHAP values for motion confusion metrics**, the ranked SHAP values for
 268 the reduced forest tree for forwards-confusion, sideways-confusion, and forwards-energy. Positive
 269 values indicate instances where the feature increases the motion confusion metric and negative
 270 values indicate instances where the variable decreases it.

271

272

273

274

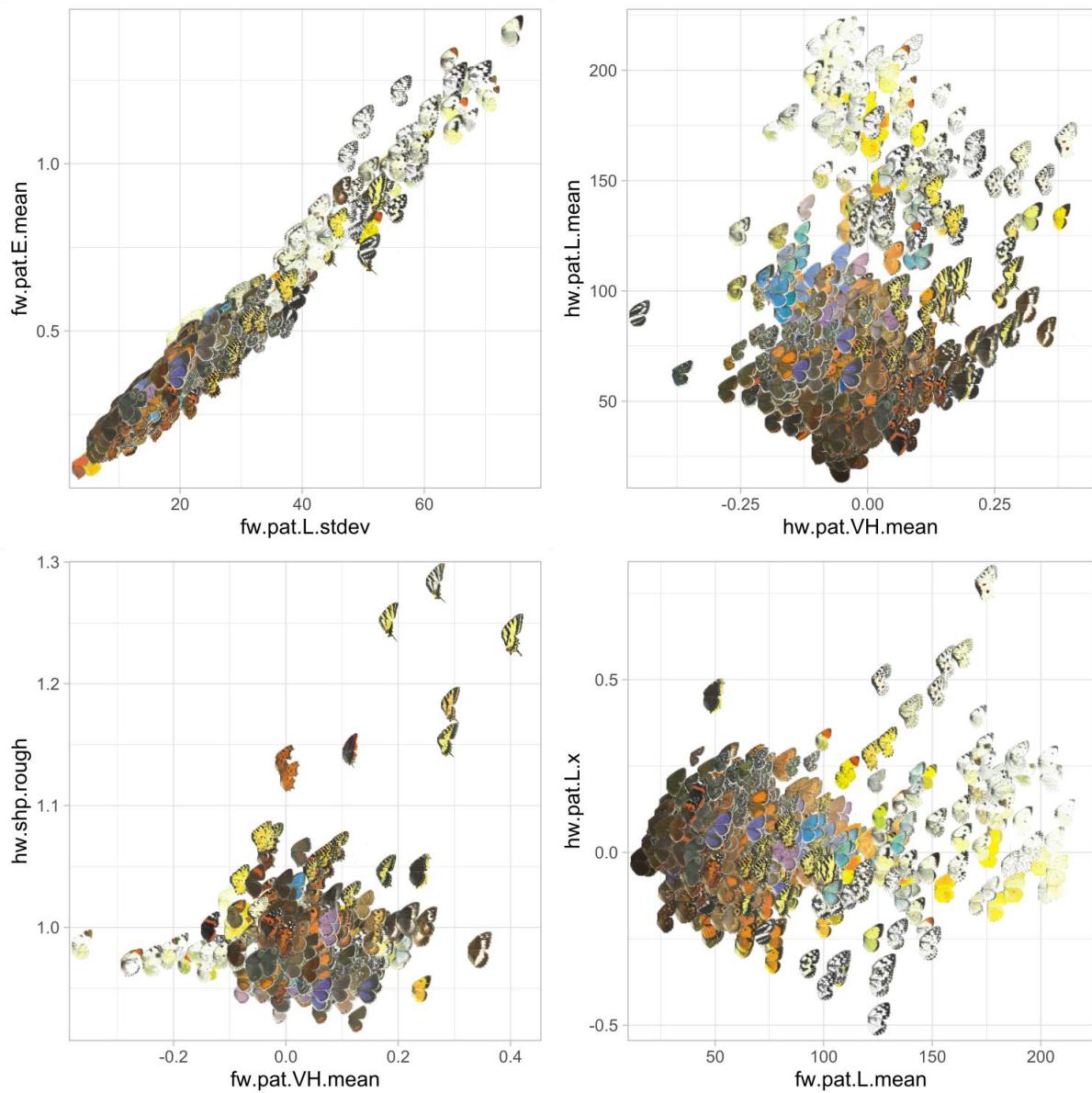
275

276 **Supplementary Fig.11 | Random forest accuracy plots**, the predicted motion confusion values
 277 against the observed motion confusion values for forwards-confusion, sideways-confusion and
 278 forwards-energy when using our reduced model.

279

280

281


282

283

284

285

286

287

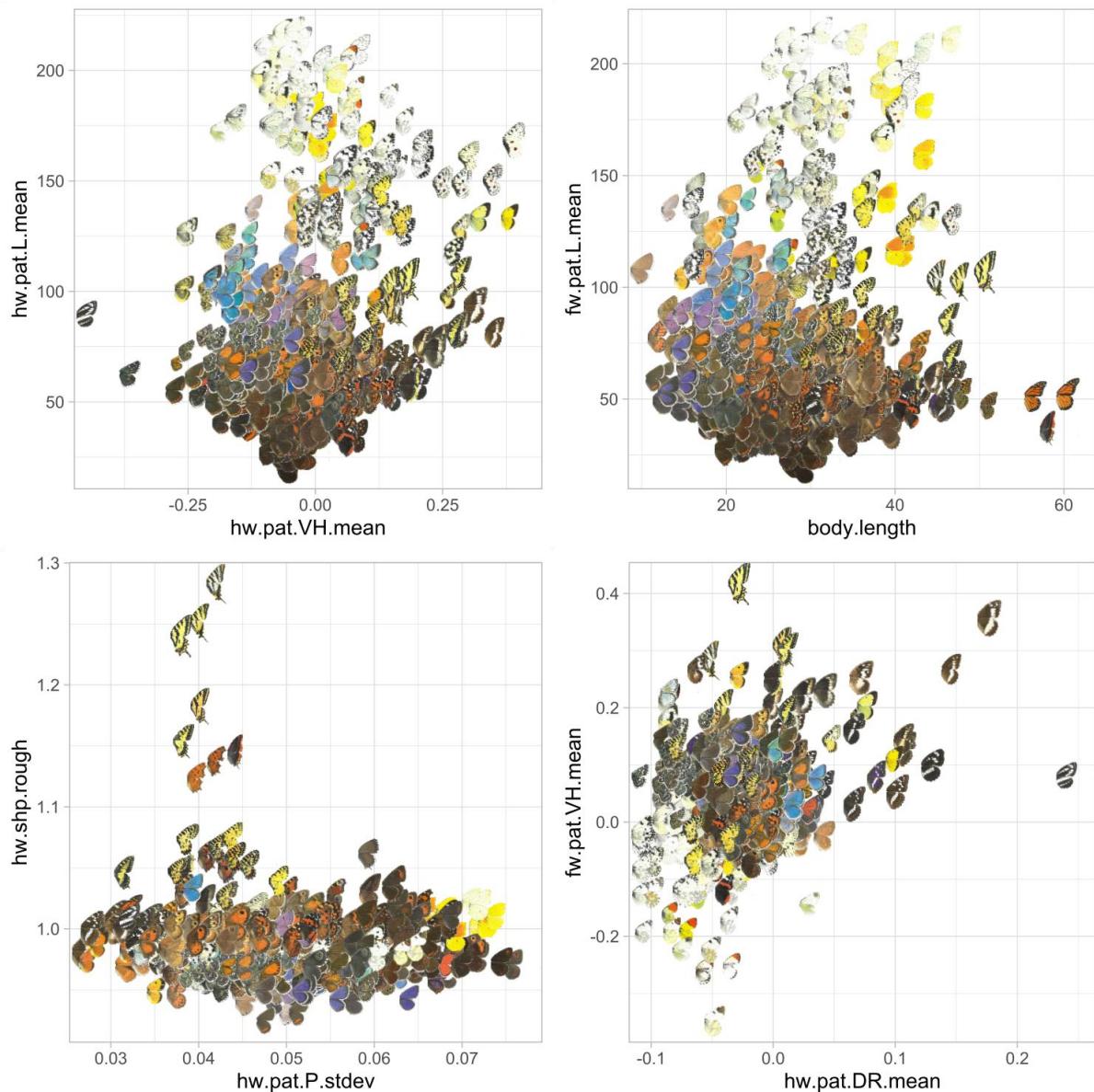
288

289 **Supplementary Fig.12 | SHAP features for forwards-confusion**, shows the top 8 SHAPs for
 290 forwards-confusion not including PCos. Each point shows the wing images for the specific butterfly at
 291 that point.

292

293

294


295

296

297

298

299

300

301

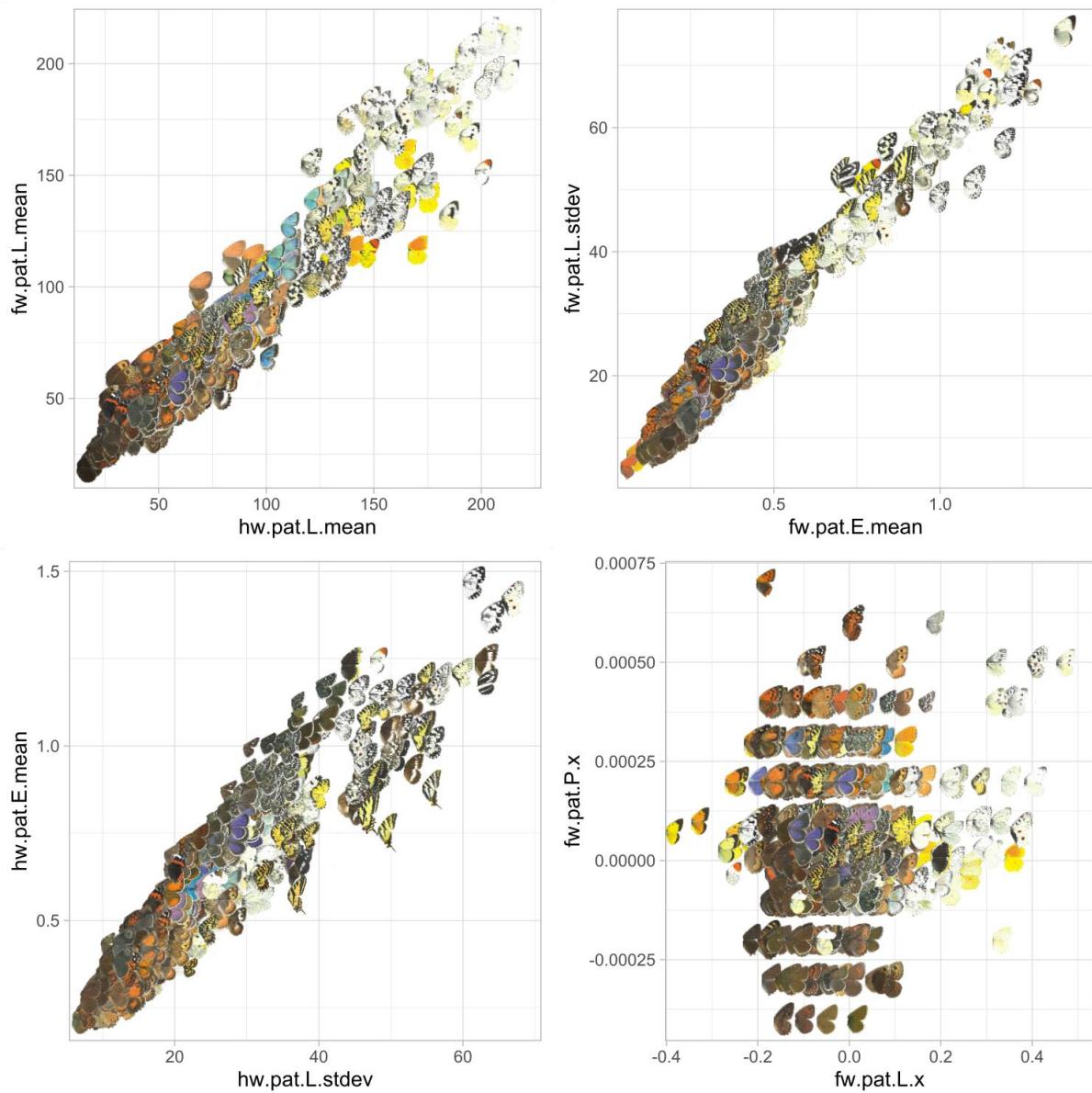
302 **Supplementary Fig.13 | SHAP features for sideways-confusion**, shows the top 8 SHAPs for
 303 sideways-confusion not including PCos. Each point shows the wing images for the specific butterfly at
 304 that point.

305

306

307

308


309

310

311

312

313

314
 315
 316 **Supplementary Fig.14 | SHAP features for forwards-energy**, shows the top 8 SHAPs for forwards-
 317 confusion not including PCos. Each point shows the wing images for the specific butterfly at that point.
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327

328 **Butterfly artificial evolution with genetic algorithms**

329

330 **Butterfly pattern generation**

331

332 Butterfly wing pattern generation was derived from the pattern generator included in the

333 CamoEvo toolbox v2.0 https://github.com/GeorgeHancock471/CamoEvo-v2.0-2022_Plugins.

334 This system uses reaction-diffusion patterns to generate biologically relevant patterns that

335 can be evolved under different selection pressures.

336

337 The pattern generator was modified to allow for separate generation of pattern dimensions

338 for the forewing, hindwing and body using masks (see supplementary Fig.15), to add a sin

339 convolution function with different strengths to create eye spot like patterns, two separate

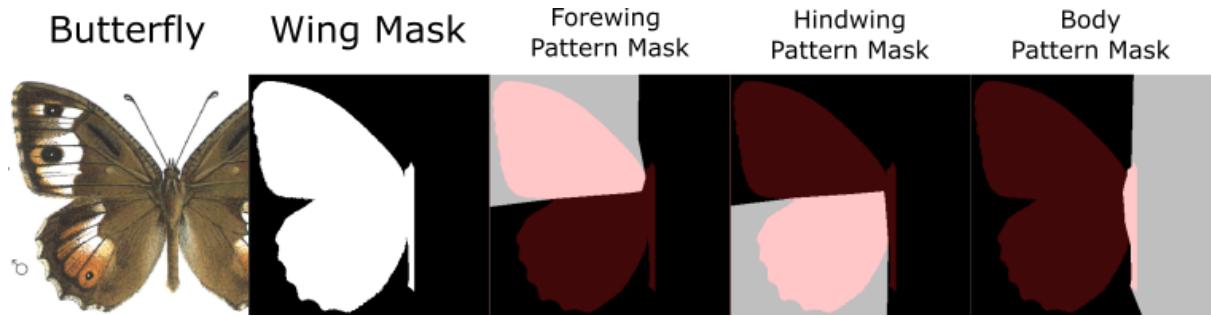
340 colours for the maculation and the background (note butterflies were achromatic for this

341 experiment), and to produce asymmetric edge enhancement patterns (see supplementary

342 Table 10 for full trait list.

343

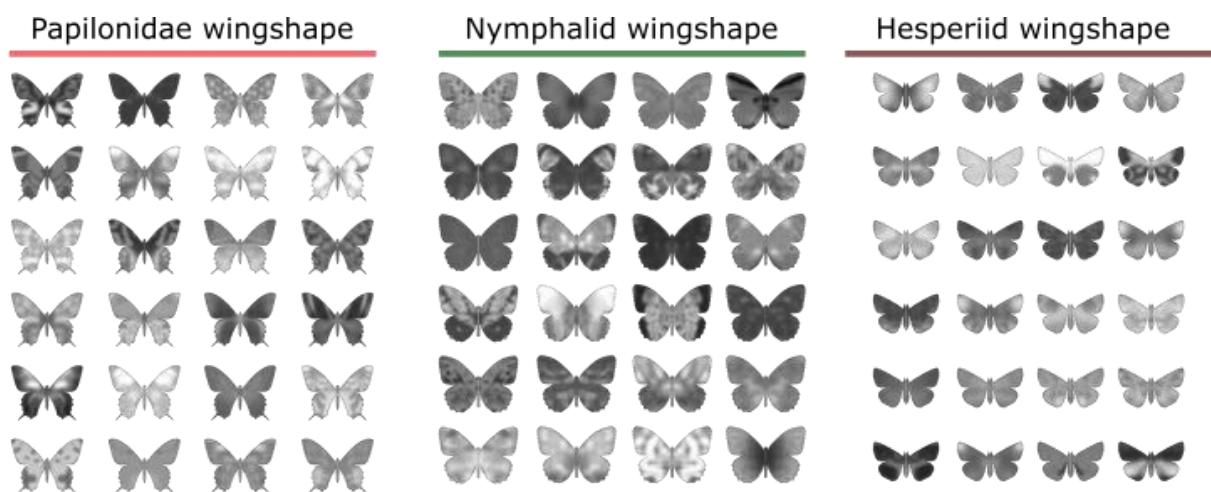
344 **Supplementary Table 10 | Gene function table for butterfly pattern generator**


345

Gene Label	Function
dim_for_xcp	Forewing reaction diffusion pattern x coordinate
dim_for_ycp	Forewing reaction diffusion pattern y coordinate
dim_for_wdt	Forewing reaction diffusion pattern selection width
dim_for_asr	Forewing reaction diffusion pattern selection aspect ratio
dim_for_agl	Forewing reaction diffusion pattern rotation
dim_hnd_xcp	Hindwing reaction diffusion pattern x coordinate
dim_hnd_ycp	Hindwing reaction diffusion pattern y coordinate
dim_hnd_wdt	Hindwing reaction diffusion pattern selection width
dim_hnd_asr	Hindwing reaction diffusion pattern selection aspect ratio

dim_hnd_agl	Hindwing reaction diffusion pattern rotation
dim_bod_xcp	Body reaction diffusion pattern x coordinate
dim_bod_ycp	Body reaction diffusion pattern y coordinate
dim_bod_wdt	Body reaction diffusion pattern selection width
dim_bod_asr	Body reaction diffusion pattern selection aspect ratio
dim_bod_agl	Body reaction diffusion pattern rotation
ptn_grd_cvr	Pattern area cover
ptn_grd_sig	Pattern gradient blur
ptn_grd_hgt	Pattern gradient radius
ptn_grd_xps	Pattern gradient x coordinate
ptn_grd_yps	Pattern gradient y coordinate
ptn_grd_sin	Pattern sin convolution, used to produce eye spot like patterns
ptn_bil_sub	Asymmetry noise subtraction before min = 0, for symmetrical patterns just adds noise to pattern shape.
ptn_bil_sig	Asymmetry noise blurring gaussian sigma, for symmetrical patterns just adds noise to pattern shape.
ptn_bil_int	Asymmetry noise intensity level, for symmetrical patterns just adds noise to pattern shape.
ptn_edg_sig	Wing edge, gaussian blur sigma of mask used to shape pattern to wing edge
ptn_edg_rto	Wing edge, ratio between positive and negative
ptn_edg_dfm	Wing edge, reform intensity
eem_int_lvl	Edge enhancement internal intensity level

eem_int_sig	Edge enhancement internal gaussian blur
eem_int_exp	Edge enhancement internal expansion level
eem_int_xst	Edge enhancement internal x offset
eem_int_yst	Edge enhancement internal y offset
eem_ext_lvl	Edge enhancement external intensity level
eem_ext_sig	Edge enhancement external gaussian blur
eem_ext_exp	Edge enhancement external expansion level
eem_ext_xst	Edge enhancement external x offset
eem_ext_yst	Edge enhancement external y offset
col_mc1_lmv	Maculation colour L* 1
col_mc1_rgv	Maculation colour a* 1
col_mc1_byv	Maculation colour b* 1
col_mc2_lmv	Maculation colour L* 2
col_mc2_rgv	Maculation colour a* 2
col_mc2_byv	Maculation colour b* 2
col_bg1_lmv	Background colour L* 1
col_bg1_rgv	Background colour a* 1
col_bg1_byv	Background colour b* 1
col_bg2_lmv	Background colour L* 2
col_bg2_rgv	Background colour a* 2


col_bg2_byv	Background colour b* 2
grd_mac_hgt	Maculation colour gradient radius
grd_mac_sig	Maculation colour gradient sigma
grd_mac_sin	Maculation colour gradient sin
grd_mac_agl	Maculation colour gradient angle
grd_bgd_hgt	Background colour gradient radius
grd_bgd_sig	Background colour gradient sigma
grd_bgd_sin	Background colour gradient sin
grd_bgd_agl	Background colour gradient angle
grd_blr_mac	Background colour gradient radius
spk_nm1_lgt	Speckling 1 light intensity
spk_nm1_drk	Speckling 1 dark intensity
spk_nm1_sig	Speckling 1 gaussian blur
spk_nm1_ycd	Speckling 1 y coordinate
spk_nm2_lgt	Speckling 2 light intensity
spk_nm2_drk	Speckling 2 dark intensity
spk_nm2_sig	Speckling 2 gaussian blur
spk_nm2_ycd	Speckling 2 y coordinate

347

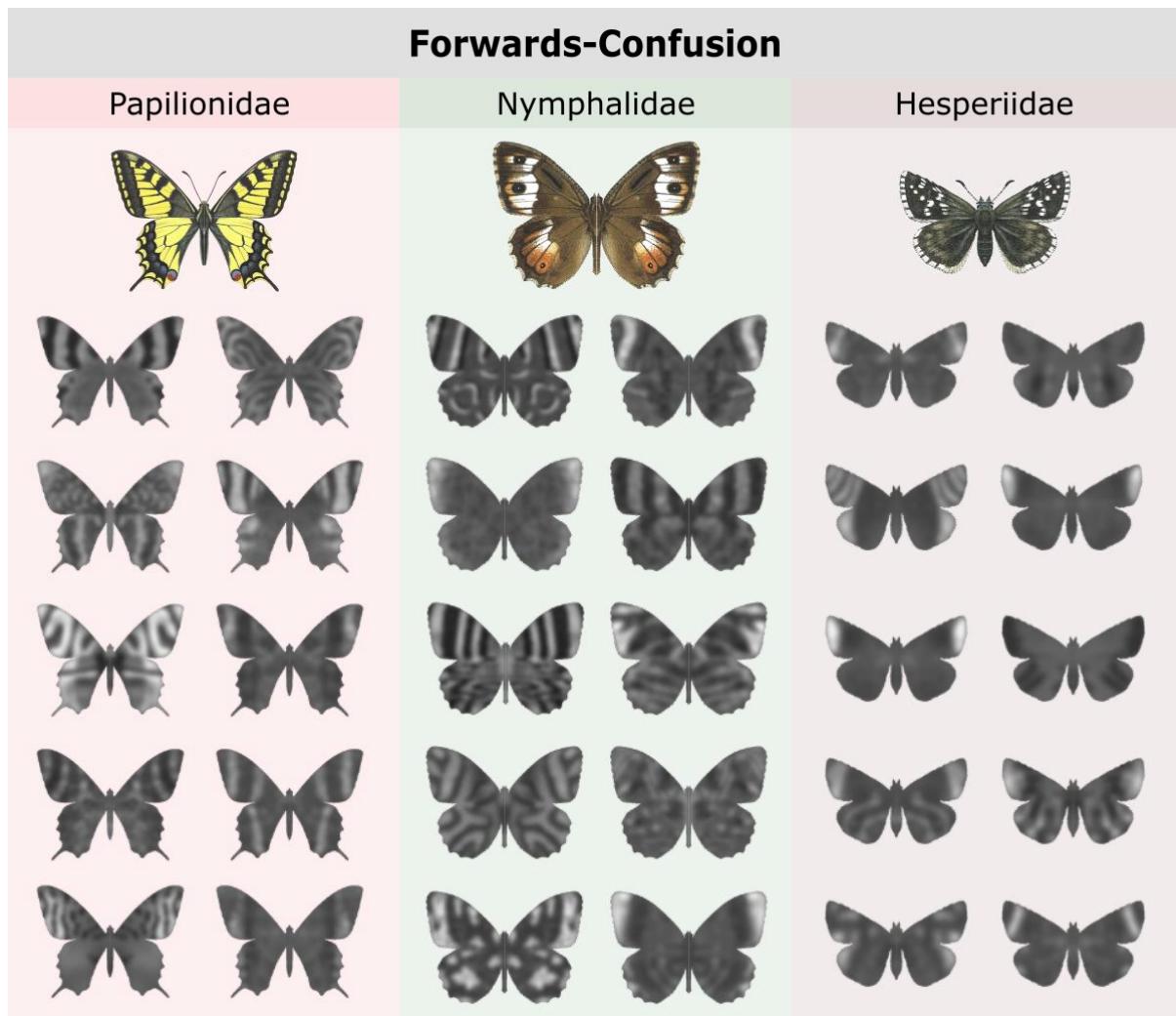
348 **Supplementary Fig.15 | Butterfly wing shape extraction**, shows how the wing shape masks and
 349 pattern area masks were made for a butterfly using a nymphalid as an example. First the wing was
 350 masked and then an area was drawn for the forewing, hindwing and body pattern. Red overlay shows
 351 the butterfly wing mask over the mask areas. White indicates a region where patterns are contained
 352 within.

353

354

355

356 **Supplementary Fig.16 | Example wing patterns**, shows one whole population (N=24) for each of
 357 the three butterfly wing shapes used. All patterns are from the first generation (generation=0) where
 358 each of the genes is randomly generated in a uniform distribution from 0-1 for each gene.


359

360

361 **ImageGA settings**

362 0
 363 custom
 364 24
 365 20
 366 uniform
 367 fraction
 368 0.6667
 369 0.3333
 370 0
 371 0.001

372 0.005
373 0.005
374 0.33
375 0.001
376 0.005
377 0.005
378 0.33
379 0
380 0
381 0
382 0
383 0
384 0
385 0.1
386 true
387 true
388 true
389 random
390 1
391 incomplete
392 ranked_choice
393 random
394 none
395
396
397 **Evolved butterfly phenotypes**
398

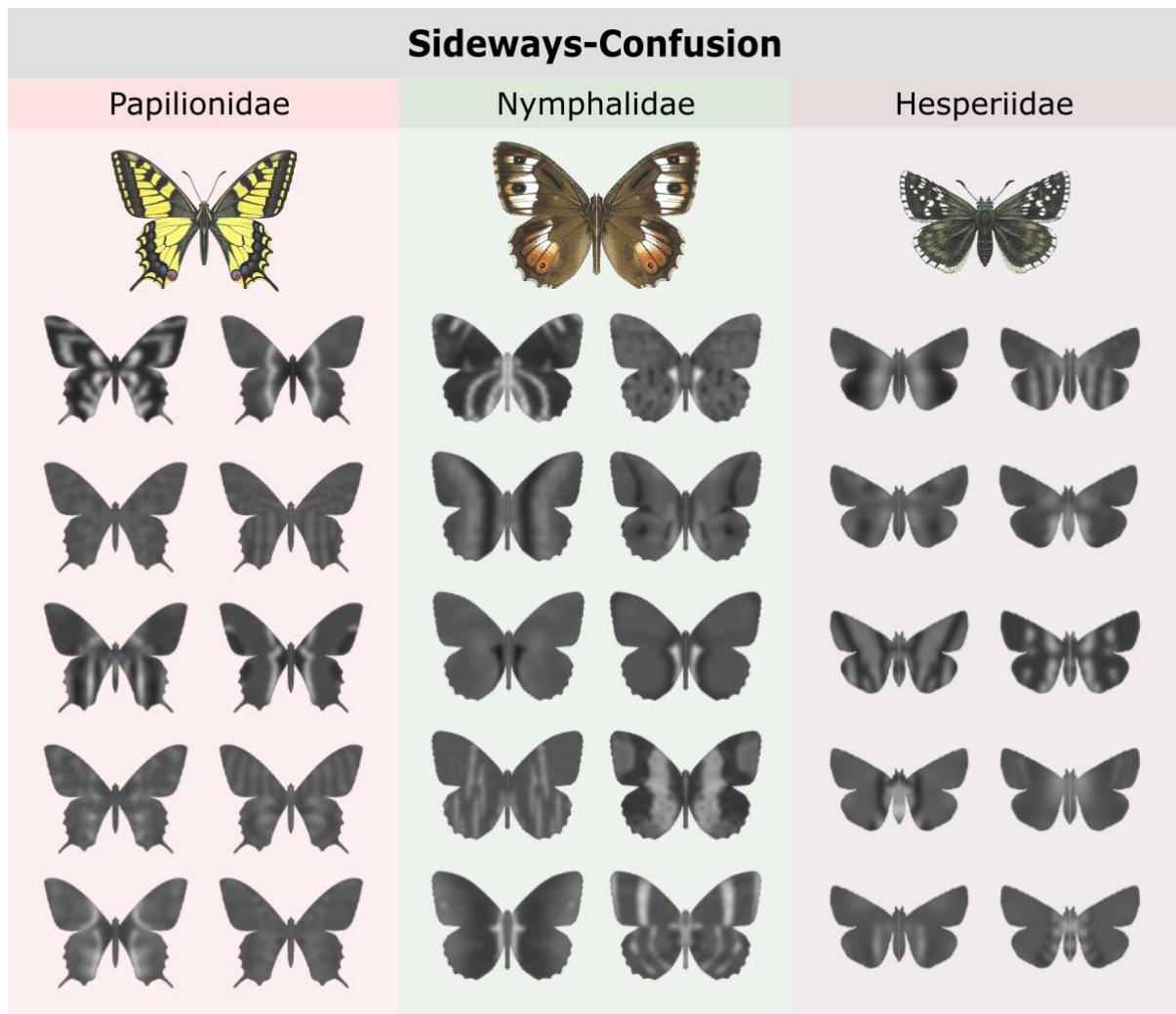
399

400

401 **Supplementary Fig.17 | Forwards-Confusion evolved butterflies**, showing one individual for each
402 population evolved for forwards-confusion from the final generation (generation=20) and separated by
403 the three wing shapes.

404

405


406

407

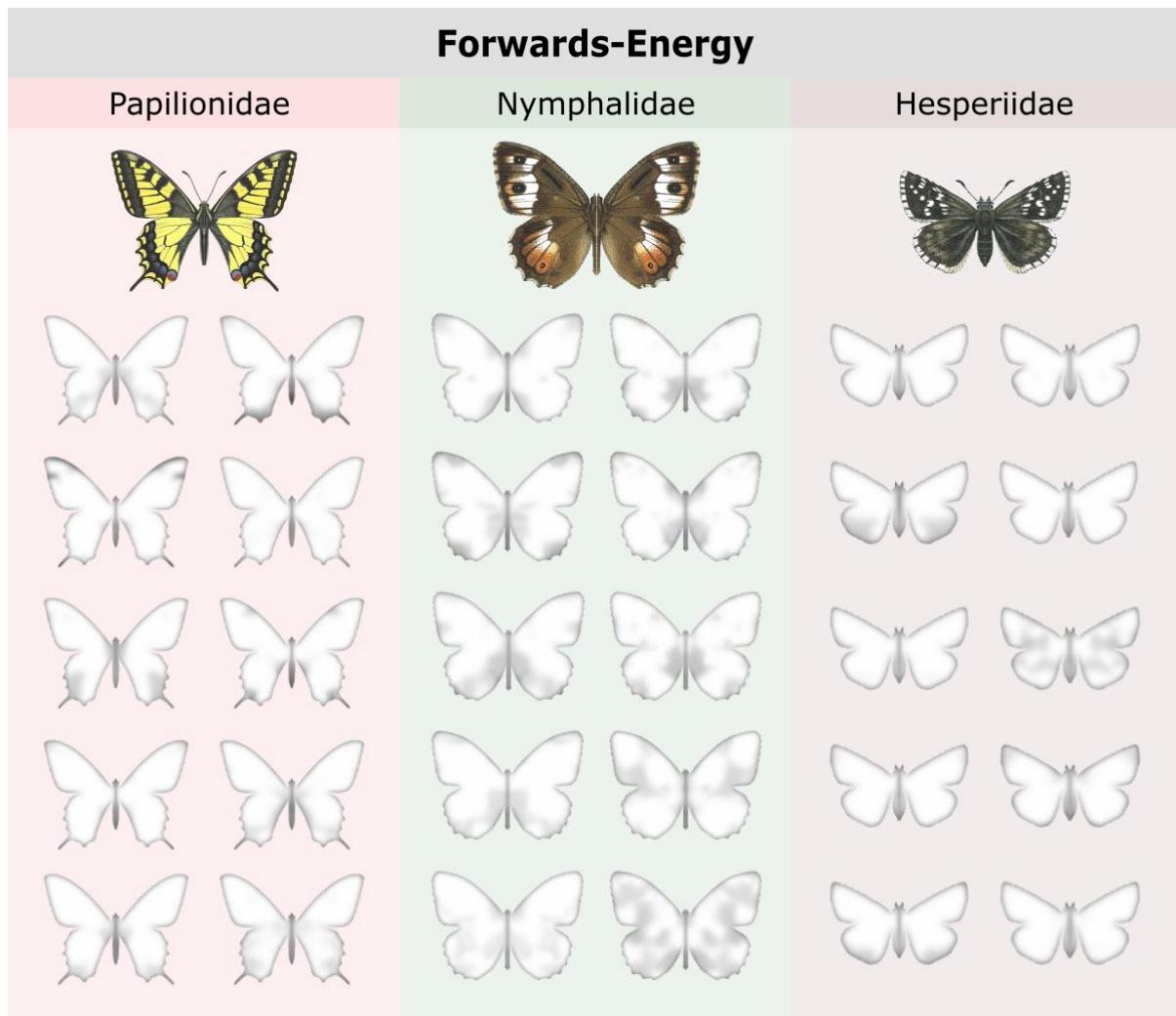
408

409

410

411

412


413 **Supplementary Fig.18 | Sideways-Confusion evolved butterflies**, showing one individual for each
414 population evolved for sideways-confusion from the final generation (generation=20) and separated
415 by the three wing shapes.

416

417

418

419

420

421 **Supplementary Fig.19 | Forwards-Energy evolved butterflies**, shows one individual for each
 422 population evolved for forwards-energy from the final generation (generation=20) and separated by
 423 the three wing shapes.

424

425

426

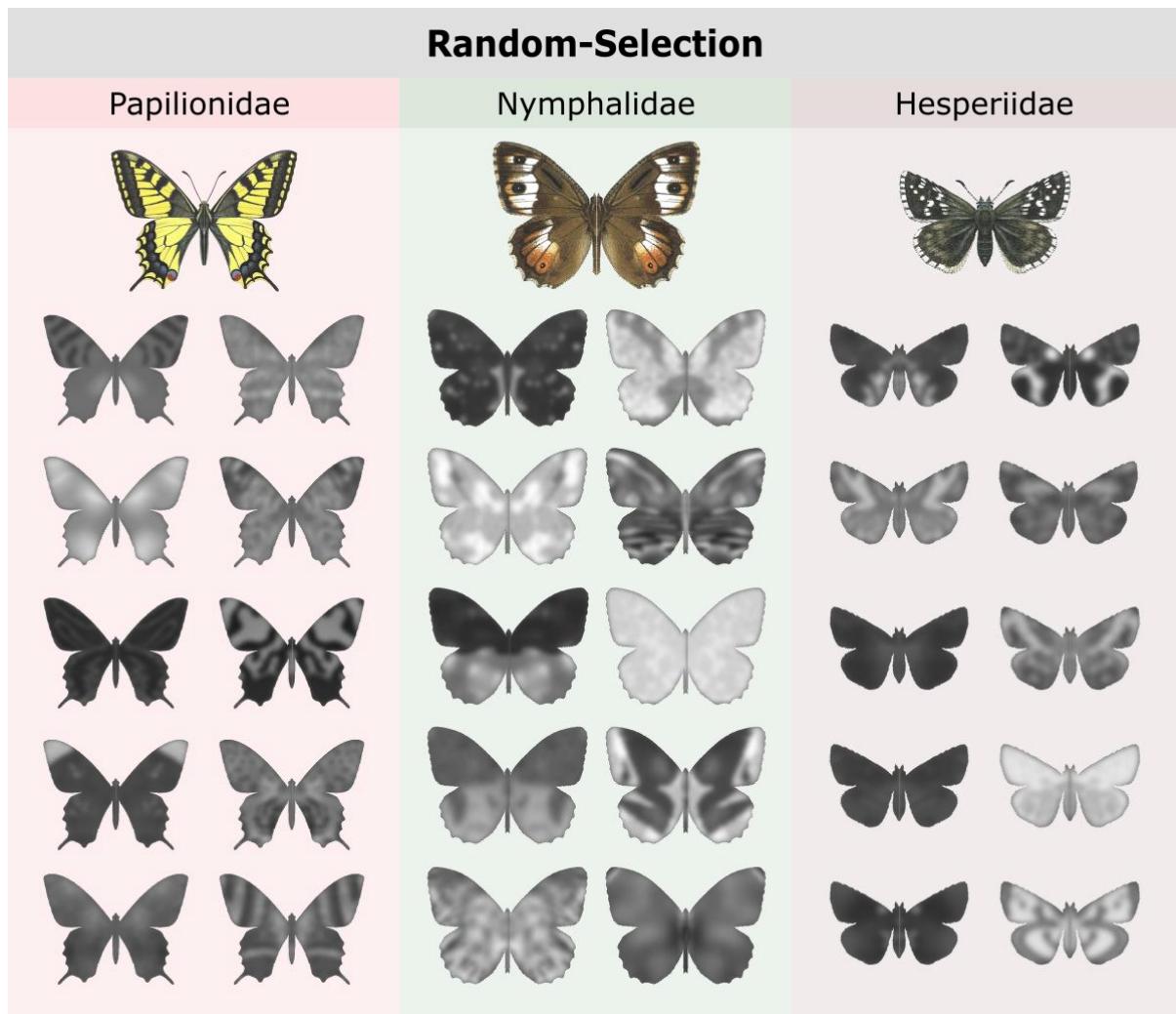
427

428

429

430

431


432

433

434

435

436

437

438

439 **Supplementary Fig.20 | Random-Selection evolved butterflies**, showing one individual for each
440 population evolved with randomised fitness values from the final generation (generation=20) and
441 separated by the three wing shapes.

442

443

444

445

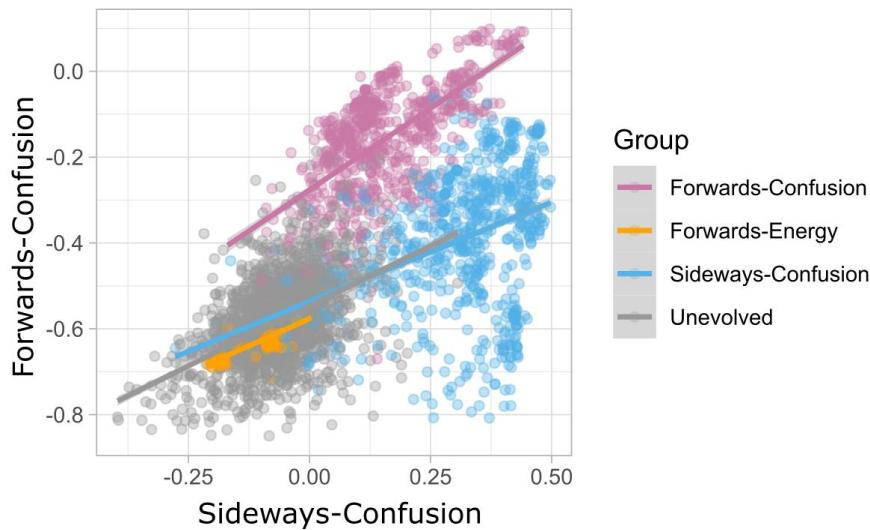
446

447

448

449

450

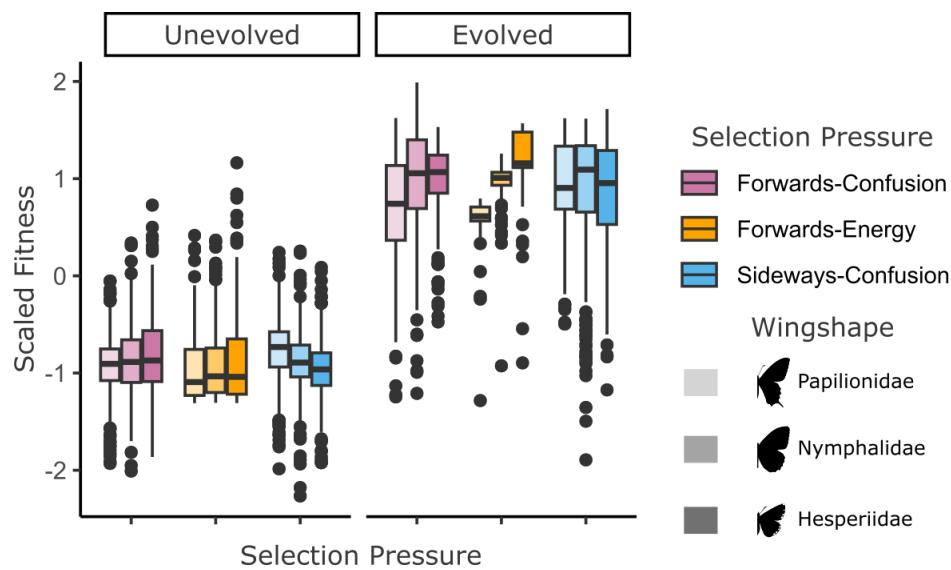

451

452

453

454 **Influence of treatment on motion confusion metrics**

455



456

457 **Supplementary Fig.21 | Forwards- and sideways-confusion correlation**, shows the linear
458 regression plot for forwards- and sideways-confusion for the unevolved generation 0 butterflies and
459 the final generation 20 for the three different evolution treatments. Butterflies under random-selection
460 were excluded as they weren't measured for EMD.

461

462

463

464 **Supplementary Fig.22 | Change in fitness between start and end**, shows the scaled (mean = 0,
465 std dev = 1) fitness for the three evolution treatments for the three evolution treatments and separated
466 by wingshape. Left to right and with decreasing luminance are the three wing shapes (Papilionidae,
467 Nymphalidae, and Hesperiidae)

468

469 Butterflies significantly improved in fitness across generations for all non-random treatments
470 when tested using a linear model with scaled fitness as the response variable and

471 generation (start and end) as the predictor variable (end vs start, $\beta = 1.788675$, t value =
472 185.2, SE = 0.010, $p < 0.001$). Butterflies under random-selection were excluded as they
473 weren't measured for EMD.

474

475 **PCA loadings**

476

477 **Supplementary Table 11 | Ordered image pattern feature loadings for PC1 and PC2 variables**
478 **are sorted by their absolute contribution. PC1 is primarily pattern contrast on the forewing and**
479 **hindwing and PC2 is primarily pattern orientation and**

PC1		PC2	
Feature	Loading	Feature	Loading
fw.pat.DR.stdev	0.268563	hw.pat.OA.x	-0.29989
hw.pat.E.mean	0.267379	hw.pat.VH.x	0.282803
fw.pat.E.mean	0.264071	fw.pat.VH.x	0.278714
fw.pat.VH.stdev	0.263816	hw.pat.OA.stdev	0.258527
fw.pat.OA.stdev	0.263306	fw.pat.L.mean	-0.25602
hw.pat.L.stdev	0.262894	fw.pat.DR.x	0.23709
fw.pat.L.stdev	0.262455	fw.pat.DR.mean	0.23574
hw.pat.VH.stdev	0.258653	hw.pat.DR.stdev	0.209364
hw.pat.DR.stdev	0.258521	fw.pat.P.stdev	0.207509
hw.pat.E.stdev	0.255711	hw.pat.L.mean	-0.20327
fw.pat.E.stdev	0.254993	hw.pat.E.x	0.201842
hw.pat.OA.stdev	0.245247	hw.pat.VH.stdev	0.200999
fw.pat.L.mean	0.181333	fw.pat.L.x	-0.1738
hw.pat.L.mean	0.180075	fw.pat.E.mean	-0.16771
fw.pat.L.x	0.15633	fw.pat.L.stdev	-0.1601
fw.pat.P.stdev	-0.13928	fw.pat.OA.mean	-0.1536
hw.pat.P.stdev	-0.13533	hw.pat.E.stdev	0.151398
hw.pat.P.mean	-0.12265	fw.pat.VH.mean	0.140332

fw.pat.P.mean	-0.12035	hw.pat.E.mean	0.139249
hw.pat.DR.mean	-0.05912	hw.pat.DR.mean	0.12115
fw.pat.E.x	0.055724	hw.pat.DR.x	0.118256
fw.pat.DR.x	0.055361	hw.pat.L.x	0.117725
fw.pat.VH.x	0.0539	hw.pat.P.mean	-0.11541
hw.pat.P.x	0.049861	fw.pat.P.mean	0.114024
hw.pat.OA.mean	-0.04717	fw.pat.E.x	0.112363
hw.pat.OA.x	-0.04444	fw.pat.DR.stdev	-0.09109
fw.pat.DR.mean	-0.04351	fw.pat.OA.stdev	-0.09089
hw.pat.DR.x	0.041132	fw.pat.OA.x	-0.09034
hw.pat.VH.x	0.037225	fw.pat.E.stdev	-0.07976
fw.pat.VH.mean	0.033612	hw.pat.L.stdev	0.070147
hw.pat.L.x	-0.02826	hw.pat.VH.mean	-0.06782
fw.pat.P.x	0.025351	hw.pat.P.stdev	0.062152
fw.pat.OA.x	0.02347	fw.pat.VH.stdev	-0.03231
hw.pat.E.x	0.021196	hw.pat.DR.y	-0.02788
fw.pat.OA.mean	0.01417	fw.pat.OA.y	0.018925
hw.pat.VH.y	0.01213	hw.pat.P.x	-0.01756
hw.pat.E.y	0.009363	hw.pat.E.y	-0.01744
hw.pat.L.y	-0.00881	hw.pat.P.y	0.012326
fw.pat.VH.y	-0.00772	fw.pat.E.y	0.010222
fw.pat.DR.y	-0.00724	hw.pat.OA.mean	-0.00961
fw.pat.L.y	0.002425	hw.pat.VH.y	-0.00776
fw.pat.OA.y	-0.00219	fw.pat.P.x	0.007445
hw.pat.OA.y	-0.0021	hw.pat.OA.y	-0.00628
fw.pat.E.y	-0.00138	fw.pat.P.y	-0.00521
hw.pat.VH.mean	-0.00134	fw.pat.VH.y	-0.00456

fw.pat.P.y	0.001317	fw.pat.DR.y	-0.0044
hw.pat.DR.y	-0.00032	fw.pat.L.y	0.004068
hw.pat.P.y	-0.00031	hw.pat.L.y	-0.00308

480

481 **Pairwise comparison table**

482

483 **Supplementary Table 12 | Tukey posthoc test for real pairwise comparisons between**
484 **butterflies (GA generated natural) and all naturally occurring butterflies**

Contrast	Estimate	SE	DF	T ratio	P value
Nature vs Unevolved	-0.10241	0.000996	2847828	-102.792	<.0001
Nature vs Forwards-Confusion	0.05566	0.00461	2847828	12.066	<.0001
Nature vs Sideways-Confusion	-0.00096	0.00416	2847828	-0.231	0.9999
Nature vs Forwards-Energy	-0.12157	0.00447	2847828	-27.212	<.0001
Nature vs Random-Selection	-0.06167	0.00454	2847828	-13.589	<.0001
Unevolved vs Forwards-Confusion	0.15806	0.00455	2847828	34.742	<.0001
Unevolved vs Sideways-Confusion	0.10145	0.00409	2847828	24.813	<.0001
Unevolved vs Forwards-Energy	-0.01916	0.0044	2847828	-4.353	0.0002
Unevolved vs Random-Selection	0.04074	0.00447	2847828	9.105	<.0001
Forwards-Confusion vs Sideways-Confusion	-0.05662	0.00608	2847828	-9.308	<.0001
Forwards-Confusion vs Forwards- Energy	-0.17723	0.0063	2847828	-28.14	<.0001
Forwards-Confusion vs Random- Selection	-0.11733	0.00635	2847828	-18.481	<.0001
Sideways-Confusion vs Forwards-Energy	-0.12061	0.00597	2847828	-20.191	<.0001

Sideways-Confusion vs Random-Selection	-0.06071	0.00603	2847828	-10.074	<.0001
Forwards-Energy vs Random-Selection	0.0599	0.00624	2847828	9.593	<.0001

485

486