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Abstract

This document presents the computation of the mass and stiffness matrices for
2-manifolds in R3, using natural local coordinate charts such as cylindrical or
spherical coordinates.

1 Introduction and notations

Here, we aim to detail the computation of

Mi; = (i, 1) L2, Fij = (Vi Vbi) 2 (m),

which are the entries of the mass matrix (with mass lumping) and the stiffness matrix,
respectively. Here, we focus on the case of 2-dimensional manifolds embedded in R?,
which is the situation detailed in the article. Anisotropies are taken into account in
the local coordinates of the manifold (M, g), for instance using cylindrical coordinates
(0, z) for a cylinder, or spherical coordinates (6, ¢) for a sphere.

The manifold is triangulated, and for each triangle we introduce the following
associated shapes, illustrated in Figure 1:

® the curved triangle 7 on the manifold,
® the polyhedral approximation T, which is a flat triangle embedded in R?,
e the reference triangle Ty C R?, whose corner points are (1,0), (0,1), and (0,0).
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Fig. 1 The three representations of a triangle: the reference triangle Tp, the flat triangle 7' C R3,
and the curved triangle 7 C M. The mappings Fpr and L7 connect them.
These shapes are connected by the following functions

® The function Fr : Ty — T, which maps a point with barycentric coordinates in T
to the corresponding point in the flat triangle T'.

® The function Ly : T — 7T, which maps a point in the flat triangle T to the
corresponding point in the curved triangle 7 C M.

Let .7 denote the set of all triangles 7. For a node c;, we define
FU) = {T € 7 : ¢; is one of the vertices of T}.
Consider a triangle 7 with vertices ¢;,,cj,, cj,, where (j1,J2,Jj3) € {1,...,m}>.
We denote by 1 < k; < 3 the index such that j = ji,. For instance, if j; = 12, then

k1o = 1.
With these notations, the affine mapping from the reference triangle Ty to 7 is

FT(ylay2) = Cj, + MT (z;) 5 MT = (le — Cjs, Cj, — Cj3) c R?)JEZ (1)
Moreover, for j € {j1,j2, j3}, the restriction of the basis function ¢; to T is

k; _ _
Y= o Fplo LY, (2)

where pgk) is the standard basis polynomial on Ty which takes value 1 at vertex k:

Yk ifke {172}a

pg)k)(yhyz) = .
1—y1 —yo, ifk=3.

2 Computation of the integrals

For a given curved triangle 7, we define z = F Lo L;l that associates a point in 7
to the barycentric coordinates in Ty. Then, (7, x7) defines a coordinates chart.



The integral of a function f over M can be split into a sum of integrals over each
triangle T :

/M flpg =3 /de/“‘g =Y | foLroFr(y)|G' (Lro Fr(y))|zdy,

TeT Teg /1o
where G*7 (+) is the matrix tensor at a given point of M expressed in the coordinate
chart (7, ).
In practice, the matrix tensor G*7 is assumed to be constant across each triangle:

VT € 7,¥s € T,G"7 (s) = Gr.

2.1 Computation of M;;

M= " | wioLroFr(y)|G™ (Ly o Fr(y))|dy

Teg® ' To
— (kl) xT 1
= > | o IG" (Lr o Fr(y))|2dy
Teg@ ' To
= > |GT|%/ Py dy
TeT® To
- G2
TeTg®

2.2 Computation of Fj;
T _
Fij = Z /T(Vw%‘(s)) [G"7(s)] 1V$ij(s)d”9’

TeT®
where the gradient with respect to the coordinates (7, z7) is given by

VIT wz (S) = Wk,

with wy, the k-th canonical vector of R? for k € {1,2}, and w3 = —w; — wo.
Then,

Fij = Z /rwzz [GIT(S)} 71wkjd,ug
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3 Matrix tensor defined in the natural local
coordinates charts

The objective here is to define G*7 (s) from a representative matrix GY expressed in
another coordinate chart (7, y).

Here, y denotes spherical coordinates in the case of the sphere, or cylindrical coor-
dinates when studying a cylinder, thus providing interpretable representative matrices
GY.

More generally, we consider y of the form

y=Vod,

where ® is the natural injection into R3, and ¥ : R? — R2? represents the change of
coordinates (for instance, from Cartesian coordinates in R3 to spherical coordinates).
Following [1], we have

G (s)=J

yox;l

(2(5)) " G¥(8) Jyopm (2(5)),

where Jyoa:;_l (sc(s)) denotes the Jacobian matrix of y o x}l evaluated at z(s).

We have

Jyoz;l (.I(S)) = J\Iloq)oLTOFT (I(S))
= Jy (P o Ly o Fr(z(s))) Jeorr (Fr(2(s))) Jrr (2(8))
= Ju (2(8)) JaoL, (Fr(2(8))) JFs (2(8)) -

For sufficiently fine triangulations, we can approximate ® o Ly by the identity map,
i.e. ® o Ly ~ Id. Then in the following we consider

Tyoust (2(8)) = Ju (2(5)) Jpy (2(s)).-

Then, we obtain
Gr =M} Jy (1) GYJy (T) My (3)
with G¥% the constant approximation of G¥(s) on T, Jy (T') the Jacobian matrix of
U evaluated at the barycenter of T, and My is the Jacobian of Fr (see Equation 1).
Typically, the matrix GyT can be represented as a local deformation of the manifold
in the chosen coordinate chart (spherical or cylindrical) by combining a rotation and
a diagonal scaling. More precisely,

v p( 0 i T
G7 =R(07) -+ RO7)",
0 py

where

cosf —sinfOr
R(0r) =
(67) (sin 01 cosbr )



is the rotation matrix by an angle 7, and p], pJ > 0 are local scaling factors along
the principal directions.

3.1 Specific case of the sphere
On the sphere, the change of coordinates ¥ is defined as

[22 1 o2
Uy(x,y,2) =(0,¢), with 6= arctan (%M)Jrkg(z), ¢ = arctan (%)Jrl%(x,y),

where 6 € [0, 7] is the polar angle (from the z-axis), ¢ € [0, 27) is the azimuthal angle
in the xy-plane, ky and k, are piecewise constant functions to adjust for the correct
quadrant.

Then the Jacobian matrix is

Tz Yz \x2 + g2

Jo, = | @222y @y 2V aR 1y eyt s
Y T 0
:C2_|_y2 x2+y2

3.2 Specific case of the cylinder

The change of coordinates W5 from 3D Cartesian coordinates to cylindrical coordinates
is defined by

Uo(z,y,2) =(0,2), 6O =arctan (%) +ko(z,y), 2=z,

where 0 € [0, 27) is the azimuthal angle around the cylinder, kg is a piecewise constant
function to adjust for the correct quadrant, and z is the height along the cylinder’s
axis.

The Jacobian matrix of W, is

~o e O
Jy, (z,y,2) = 0' 0‘ )
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