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Abstract

This document presents the computation of the mass and stiffness matrices for
2-manifolds in R3, using natural local coordinate charts such as cylindrical or
spherical coordinates.

1 Introduction and notations

Here, we aim to detail the computation of

Mii = ⟨ψi, 1⟩L2(M), Fij = ⟨∇ψi,∇ψj⟩L2(M),

which are the entries of the mass matrix (with mass lumping) and the stiffness matrix,
respectively. Here, we focus on the case of 2-dimensional manifolds embedded in R3,
which is the situation detailed in the article. Anisotropies are taken into account in
the local coordinates of the manifold (M, g), for instance using cylindrical coordinates
(θ, z) for a cylinder, or spherical coordinates (θ, ϕ) for a sphere.

The manifold is triangulated, and for each triangle we introduce the following
associated shapes, illustrated in Figure 1:

• the curved triangle T on the manifold,
• the polyhedral approximation T , which is a flat triangle embedded in R3,
• the reference triangle T0 ⊂ R2, whose corner points are (1, 0), (0, 1), and (0, 0).
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Fig. 1 The three representations of a triangle: the reference triangle T0, the flat triangle T ⊂ R3,
and the curved triangle T ⊂ M. The mappings FT and LT connect them.

These shapes are connected by the following functions

• The function FT : T0 → T , which maps a point with barycentric coordinates in T0
to the corresponding point in the flat triangle T .

• The function LT : T → T , which maps a point in the flat triangle T to the
corresponding point in the curved triangle T ⊂ M.

Let T denote the set of all triangles T . For a node cj , we define

T (j) = {T ∈ T : cj is one of the vertices of T }.

Consider a triangle T with vertices cj1 , cj2 , cj3 , where (j1, j2, j3) ∈ {1, . . . ,m}3.
We denote by 1 ≤ kj ≤ 3 the index such that j = jkj . For instance, if j1 = 12, then
k12 = 1.

With these notations, the affine mapping from the reference triangle T0 to T is

FT (y1, y2) = cj3 +MT

(
y1
y2

)
, MT = (cj1 − cj3 , cj2 − cj3) ∈ R3x2 (1)

Moreover, for j ∈ {j1, j2, j3}, the restriction of the basis function ψj to T is

ψj|T = p
(kj)
0 ◦ F−1

T ◦ L−1
T , (2)

where p
(k)
0 is the standard basis polynomial on T0 which takes value 1 at vertex k:

p
(k)
0 (y1, y2) =

{
yk, if k ∈ {1, 2},

1− y1 − y2, if k = 3.

2 Computation of the integrals

For a given curved triangle T , we define xT = F−1
T ◦L−1

T that associates a point in T
to the barycentric coordinates in T0. Then, (T , xT ) defines a coordinates chart.
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The integral of a function f over M can be split into a sum of integrals over each
triangle T :

∫
M
fdµg =

∑
T ∈T

∫
T
fdµg =

∑
T ∈T

∫
T0

f ◦ LT ◦ FT (y)|GxT (LT ◦ FT (y))|
1
2 dy,

whereGxT (·) is the matrix tensor at a given point ofM expressed in the coordinate
chart (T , x).

In practice, the matrix tensor GxT is assumed to be constant across each triangle:

∀T ∈ T ,∀s ∈ T ,GxT (s) = GT .

2.1 Computation of Mii

Mii =
∑

T ∈T (i)

∫
T0

ψi ◦ LT ◦ FT (y)|GxT (LT ◦ FT (y))|
1
2 dy

=
∑

T ∈T (i)

∫
T0

p
(ki)
0 |GxT (LT ◦ FT (y))|

1
2 dy

=
∑

T ∈T (i)

|GT |
1
2

∫
T0

p
(kj)
0 dy

=
∑

T ∈T (i)

|GT |
1
2

6

2.2 Computation of Fij

Fij =
∑

T ∈T (i)

∫
T

(
∇xT ψi(s)

)⊤[
GxT (s)

]−1∇xT ψj(s) dµg,

where the gradient with respect to the coordinates (T , xT ) is given by

∇xT ψi(s) = ωki ,

with ωk the k-th canonical vector of R2 for k ∈ {1, 2}, and ω3 = −ω1 − ω2.
Then,

Fij =
∑

T ∈T (i)

∫
T
ω⊤

ki

[
GxT (s)

]−1
ωkjdµg

=
∑

T ∈T (i)

ω⊤
ki

[
GT

]−1
ωkj

∫
T0

|GxT (LT ◦ FT (y))|
1
2 dy

=
∑

T ∈T (i)

1

2
ω⊤

ki

[
GT

]−1
ωkj |GT | 12
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3 Matrix tensor defined in the natural local
coordinates charts

The objective here is to define GxT (s) from a representative matrix Gy expressed in
another coordinate chart (T , y).

Here, y denotes spherical coordinates in the case of the sphere, or cylindrical coor-
dinates when studying a cylinder, thus providing interpretable representative matrices
Gy.

More generally, we consider y of the form

y = Ψ ◦ Φ,

where Φ is the natural injection into R3, and Ψ : R3 → R2 represents the change of
coordinates (for instance, from Cartesian coordinates in R3 to spherical coordinates).

Following [1], we have

GxT (s) = Jy◦x−1
T

(
x(s)

)⊤
Gy(s) Jy◦x−1

T

(
x(s)

)
,

where Jy◦x−1
T

(
x(s)

)
denotes the Jacobian matrix of y ◦ x−1

T evaluated at x(s).

We have

Jy◦x−1
T

(
x(s)

)
= JΨ◦Φ◦LT ◦FT

(x(s))

= JΨ (Φ ◦ LT ◦ FT (x(s))) JΦ◦LT
(FT (x(s))) JFT

(x(s))

= JΨ (Φ(s)) JΦ◦LT
(FT (x(s))) JFT

(x(s)) .

For sufficiently fine triangulations, we can approximate Φ◦LT by the identity map,
i.e. Φ ◦ LT ≈ Id. Then in the following we consider

Jy◦x−1
T

(
x(s)

)
= JΨ (Φ(s)) JFT

(x(s)) .

Then, we obtain
GT = M⊤

T JΨ (T )
⊤
Gy

T JΨ (T )MT (3)

with Gy
T the constant approximation of Gy(s) on T , JΨ (T ) the Jacobian matrix of

Ψ evaluated at the barycenter of T, and MT is the Jacobian of FT (see Equation 1).
Typically, the matrix Gy

T can be represented as a local deformation of the manifold
in the chosen coordinate chart (spherical or cylindrical) by combining a rotation and
a diagonal scaling. More precisely,

Gy
T = R(θT )

(
ρT1 0

0 ρT2

)2

R(θT )
⊤,

where

R(θT ) =

(
cos θT − sin θT

sin θT cos θT

)

4



is the rotation matrix by an angle θT , and ρ
T
1 , ρ

T
2 > 0 are local scaling factors along

the principal directions.

3.1 Specific case of the sphere

On the sphere, the change of coordinates Ψ1 is defined as

Ψ1(x, y, z) = (θ, ϕ), with θ = arctan
(√x2 + y2

z

)
+kθ(z), ϕ = arctan

(y
x

)
+kϕ(x, y),

where θ ∈ [0, π] is the polar angle (from the z-axis), ϕ ∈ [0, 2π) is the azimuthal angle
in the xy-plane, kθ and kϕ are piecewise constant functions to adjust for the correct
quadrant.

Then the Jacobian matrix is

JΨ1 =


xz

(x2 + y2 + z2)
√
x2 + y2

yz

(x2 + y2 + z2)
√
x2 + y2

−
√
x2 + y2

x2 + y2 + z2

− y

x2 + y2
x

x2 + y2
0

 .

3.2 Specific case of the cylinder

The change of coordinates Ψ2 from 3D Cartesian coordinates to cylindrical coordinates
is defined by

Ψ2(x, y, z) = (θ, z), θ = arctan
(y
x

)
+ kθ(x, y), z = z,

where θ ∈ [0, 2π) is the azimuthal angle around the cylinder, kθ is a piecewise constant
function to adjust for the correct quadrant, and z is the height along the cylinder’s
axis.

The Jacobian matrix of Ψ2 is

JΨ2(x, y, z) =

(
− y

x2+y2
x

x2+y2 0

0 0 1

)
.
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