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Experimental details
i. REDOR/REAPDOR experiments: Atomic spatial distribution and dipolar interaction strength were studied using rotational echo Double resonance (REDOR) studies. Applying π pulses on the influenced nuclei allows REDOR to restore dipolar interactions, averaged by MAS. A normalized REDOR (ΔS/S₀) REDOR curve was obtained as a function of dipole evolution time (NTr). All experiments used a 4 mm MAS probe at 12 kHz, with a saturation comb added before relaxation. The typical pulse sequence of Gullion and Schaefer, as modified by Chan and Eckert, was used in the 27Al{31P} REDOR experiments [1, 2]. For both the 27Al and 31P nuclei, the 180° pulse lengths were 8.5 µs. Moreover, the relaxation time was 1s. A short evolution time  was used to obtain the second dipolar moment, or  (S=27Al, I=31P), from the REDOR parabolic curve by using the following equation: 
                                                                                                           
ΔS/S0 = (S0 - S)/S0, where S0 and S are the signal intensities measured with and without dipolar recoupling effects. This ratio was calculated as a function of dipolar evolution time, denoted as NTr, where N indicates the number of rotor cycles and Tr denotes the length of the evolution period. The 31P{27Al} REAPDOR experiments were carried out using a pulse sequence developed by Garbow and Gullion [3]. In 31P{27Al} REAPDOR pulse sequence, for the 31P nuclei, a pulse length of 8.5 µs (180°) and a relaxation delay of 40 s were set. For 27Al, the recoupling pulse was 27.8 µs, corresponding to one-third of the rotor period, and the nutation frequency was set to 22.1 kHz, determined using a liquid sample of Al(NO3)3. Furthermore, the 27Al{1H} REDOR experiments employed the Gullion and Schaefer pulse sequence [3]. The relaxation time for 27Al{1H} REDOR was 1.0 s, and 180° pulse duration was 7.0 µs.
ii. 27Al{1H} 1D J-HMQC and 27Al{31P} J-HMQC: The 27Al{1H} 1D heteronuclear double quantum coherence (HMQC) experiment was performed utilizing a 4 mm magic angle spinning (MAS) probe operating at a rotation frequency of 12 kHz and a relaxation interval of 1.0 s, accompanied by saturation comb before the experiment. To detect heteronuclear J-coupling, the heteronuclear double quantum coherence was excited by two 90° pulses across the 27Al and 1H nuclei, each with a pulse length of 4 µs. This method directly detects bonding connectivity between Al and H nuclei, providing direct evidence of their chemical bonds [4]. WURST-enhanced 31P {27Al} J-HMQC tests were conducted to probe direct P-O-Al connectivity, utilizing a 4 mm MAS probe rotating at 12 kHz. The WURST-80 excitation pulse was utilized on the Al channel to enhance the sensitivity of the 31P{27Al} J-HMQC. The scan rate of the WURST-80 excitation pulse was synchronized with the spinning speed of 12 kHz. The pulse duration was fine-tuned to 250 µs, while the deviation from the central frequency was fine-tuned to ±350 kHz. The mixing period, denoted as 𝜏, for generating J-coupled double quantum coherence was optimized to 4.75 ֋s, during which the magnetization underwent evolution. The duration of the 90° pulses for 31P and 27Al nuclei was 4.25 µs and 10 µs, respectively. To ensure stable signal acquisition, a saturation comb pulse was added to the P channel before a relaxation period of 60 s.
iii. 27Al{27Al} 2D WURST 2Q-1Q (Double Quantum-One Quantum) correlation: The 27Al{27Al} 2D WURST 2Q-1Q correlation experiment was conducted to investigate the proximity between Al species [5]. In this experiment, the BR221 pulse technique developed by Wang et al. [6], was employed with WURST to increase signal intensity. Furthermore, this experiment was performed using a 4 mm MAS probe with a spinning rate of 12 kHz. Excitation and reconversion periods were set to 1666.7 µs. The 27Al pulse lengths at 90° and 180° were 14.5 µs and 29.0 µs, respectively. A saturation comb was used before a 1.0 s relaxation interval. Following the double transformation, the correlated signals in the F1 dimension are positioned half the total of their chemical shifts in the F2 dimension.
iv. 29Si{1H} CP MAS: This experiment examined the interaction between Si and H atoms. The experiment used the TPPM15 pulse scheme with a 160° pulse length of 4.44 µs on the H channel for decoupling during data acquisition. A relaxation delay of 1.0 s was applied and the nutation frequencies of 1H and 29Si were 90.9 and 32.2 kHz, respectively. The contact time was 3.0 ms, and the H power level underwent a linear ramp down from 90.9 kHz to a nutation frequency of 45.5 kHz.
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[image: ] Figure S1(a) shows normalized leaching at different immersion times. (b) Static 27Al NMR spectra of wet (green) and dry (blue) P-48h sample. (c) Static 29Si spectra of wet (green) and dry (blue) P-48h sample.


[image: ]Figure S2 presents the deconvoluted 27Al NMR spectra of pristine and corroded glass samples. 






[image: ][image: ]Figure S4 compares the 29Si NMR spectra of pristine, P-48h(b) at SA/V=38 m-1 and P-48h at SA/V=2018 m-1 of glass powder samples.
Figure S3(a, b) show the 27Al{1H} REDOR curves for the Al4 and Al6 units, while (c, d) present the corresponding 27Al{31P} 2D-HMQC spectra of samples B-48h and B-120h.







               Table S1 presents nominal wt. % and with corresponding ICP-AES measurements in parenthesis.
	Glass
	Al2O3 wt. %
(±2%)
	P2O5 wt. %
(±2%)
	Na2O wt. %
(±2%)

	BAPS (pristine)
	4.61(4.72)
	15.12(14.49)
	18.51(18.95)


   





Table S2 normalized mass loss for elements present in BAPS glass.
	Time (hours)
	NL (g/m-2)

	 
	B (± 0.9)
	Na (± 1.2)
	P (± 0.7)
	Al (± 0.1)
	Si (± 0.1)

	2 h
	6.1
	4.6
	4.4
	0.1
	0.2

	4 h
	12.0
	9.1
	8.8
	0.3
	0.3

	12 h
	29.0
	22.6
	21.1
	0.3
	0.4

	48 h
	35.6
	27.8
	25.3
	0.2
	0.4






                               
                                          
                   Note: Errors in parenthesis represent the maximum standard deviation from duplicate experiments.

               
                                   

Table S3 includes the 31P fitting parameters of pristine glass and altered glass (P-48h, values in parenthesis).
	       Peaks
	 [ppm(±0.3)]
	FWHM [ppm (±0.3)]
	Area [% (±3)]

	
	3.0 (3.0)
	5.4 (5.4)
	5.3 (3.1)

	
	-3.1 (-2.7)
	7.4 (7.0)
	31.5 (27.9)

	
	      -8.0 (-8.5)
	8.5 (7.7)
	42.3 (53.5)

	
	-14.9 (-14.9)
	9.1 (9.1)
	21.2 (15.5)






                                   







Table S4 includes the fitting parameters of 11B units for pristine and corroded BAPS glass samples.
	Name
	unit
	[ppm (±0.3)]
	Area [% (±2)]

	

Pristine
	
	17.5
	36.3

	
	
	13.0
	5.0

	
	
	0.25
	5.3

	
	B4(1P)
	-0.4
	42.2

	
	B4(2P)
	-2.4
	11.1

	

P-2h
	
	17.5
	37.0

	
	
	13.4
	7.5

	
	
	0.3
	9.8

	
	B4(1P)
	-0.4
	36.0

	
	B4(2P)
	-2.4
	10.0

	

P-48h
	
	18.5
	39.92

	
	
	14
	4.71

	
	
	0.4
	15.4

	
	B4(1P)
	-0.35
	40.0

	
	B4(2P)
	-2.4
	4.9






Table S5 shows the isotropic chemical shift (δiso), quadrupolar coupling constant (CQ), the fraction of 27Al species (%), and the dipolar second moment M2 (Al-P) obtained from the 27Al {31P} REDOR spectra for both glass (pristine + corroded) and crystalline glass reference.
	[bookmark: _Hlk163031553]Samples
	Units
	     δiso
[ppm(±0.3)]
	  CQ
(MHz)
	Fraction
 [%(±2)]
	[bookmark: _Hlk152516096][bookmark: OLE_LINK11]M2 Al-P a
×106rad2/s2
	M2 Al-P b
×106rad2/s2

	Pristine
	Al(IV)I
	58.0
	4.3
	33.3
	3.4
	-

	
	Al(IV)II
	51.0
	4.7
	54.7
	
	

	
	Al(V)
	19.0
	4.7
	7.5
	
	

	
	Al(VI)
	-5.0
	3.9
	4.5
	
	

	P-2h
	Al(IV)I
	58.0
	4.3
	32.5
	2.7
	3.8

	
	Al(IV)II
	51.0
	4.7
	35.0
	
	

	
	Al(V)
	19.0
	4.7
	3.42
	
	

	
	Al(VI)
	-3.4
	3.9
	29.0
	
	

	
P-4h
	Al(IV)I
	58.5
	4.3
	34.2
	nm
	nm

	
	Al(IV)II
	51.3
	4.7
	19.9
	
	

	
	Al(V)
	19.0
	4.7
	1.0
	
	

	
	Al(VI)
	-3.2
	3.7
	44.8
	
	

	P-12h
	Al(IV)I
	59.3
	4.3
	35.5
	2
	3.5

	
	Al(IV)II
	51.2
	4.7
	3.0
	
	

	
	Al(V)
	19.0
	4.7
	0.5
	
	

	
	Al(VI)
	-3.2
	3.7
	61.0
	
	

	P-48h
	Al(IV)I
	59.6
	4.3
	35.5
	1.2
	4.1

	
	Al(IV)II
	-
	-
	-
	
	

	
	Al(V)
	19.0
	4.7
	0.4
	
	

	
	Al(VI)
	-2.9
	3.9
	64.1
	
	

	
	
	
	
	
	AlPO4(5.0)
	Al(PO3)3(4.7)



‘a’ and ‘b’ denote M2 for Al4-O-P and Al6-O-P units, respectively. While ‘nm’ denotes not measured.




 
Table S6 presents the normalized mass loss for the BAPS glass corroded for 48 hours at different SA/V values.
	SA/V (m-1)
	Normalize loss NL(g/m2)

	
	B (± 0.8)
	Na (± 0.9)
	P (± 1.0)
	Al (± 0.1)
	Si (± 0.1)

	2108
	35.6
	28.5
	24.3
	0.3
	0.4

	175
	38.4
	31.6
	27.9
	0.2
	1.5

	38
	38.0 
	31.4
	28.9
	0.2
	3.7
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