===
Supplementary Analysis Code
Title: Conflict hotspot trajectories and immunization coverage in Nigeria:
A descriptive spatial analysis of ACLED and DHS data from 2010 to 2024
Version: 1.0
Date: 2025-10-06
Purpose: Reproduce data abstraction, preparation, and analyses used in the paper.
Notes:
- Relative paths only (no local machine paths).
- Inputs expected under ./raw_data; outputs written to ./output and subfolders.
How to run:
- Set working directory to project root (contains raw_data/).
- Run: source("Supplementary_Analysis_Nigeria_Conflict_DTP3_2010_2024_v1.0.R")
===

suppressPackageStartupMessages({
 pkgs <- c("sf","readr","readxl","dplyr","stringr","purrr","lubridate",
 "janitor","spdep","tmap","ggplot2","tidyr","tibble")
 need <- setdiff(pkgs, rownames(installed.packages()))
 if (length(need)) install.packages(need, quiet = TRUE)
 invisible(lapply(pkgs, require, character.only = TRUE))
})

---- Controls --
years_keep <- 2010:2024
z_cut <- 1.96 # Local Gi* hotspot threshold (use 1.64 for 90%)
violent_types <- c("Battles","Explosions/Remote violence",
 "Violence against civilians","Strategic developments")

---- Paths (relative only) ---
acled_path <- "raw_data/acled_nigeria.csv"
admin1_path <- "raw_data/ng_admin1.gpkg" # layer "gadm36_NGA_1"
dtp3_path <- "raw_data/dhs2018_dtp3_ng.csv" # (state_name, dtp3)

dir.create("output", showWarnings = FALSE)
dir.create("output/tables", showWarnings = FALSE)

---- Geography (ADM1) --
ng_admin1 <- sf::read_sf(admin1_path, layer = "gadm36_NGA_1") |>
 sf::st_make_valid() |>
 sf::st_transform(4326)

id_col <- if ("GID_1" %in% names(ng_admin1)) "GID_1" else names(ng_admin1)[1]
name_col <- if ("NAME_1" %in% names(ng_admin1)) "NAME_1" else names(ng_admin1)[2]

ng_admin1 <- ng_admin1 |>
 dplyr::mutate(
 admin1_id = .data[[id_col]],
 state_name = stringr::str_to_title(.data[[name_col]])
) |>
 dplyr::select(admin1_id, state_name, dplyr::everything())

---- Helper: ensure DTP3 CSV exists (derive from STATcompiler Excel if needed)
ensure_dtp3_csv <- function(dtp3_csv, ng_admin1_sf) {
 if (file.exists(dtp3_csv)) return(invisible(TRUE))

 # look for a STATcompiler Excel in raw_data/
 xls <- list.files("raw_data", pattern = "^STATcompiler.*\\.(xlsx|xls)$", full.names = TRUE)
 if (!length(xls)) {
 stop("Missing DTP3 CSV (", dtp3_csv, ") and no STATcompiler Excel found in raw_data/.")
 }
 xls <- xls[1] # take the first match

 # canonical state list from ADM1 (title case)
 name_col <- if ("NAME_1" %in% names(ng_admin1_sf)) "NAME_1" else names(ng_admin1_sf)[2]
 states_canon <- ng_admin1_sf |>
 sf::st_drop_geometry() |>
 dplyr::pull(!!name_col) |>
 stringr::str_to_title() |>
 unique() |>
 sort()

 # normalizer to match STATcompiler quirks to GADM names
 norm_state <- function(x) {
 x <- tolower(x)
 x <- gsub("^\\s*states\\s*:\\s*", "", x) # strip "States :"
 x <- gsub("\\(l2\\)$", "", x) # strip "(L2)"
 x <- gsub("^\\.+\\s*", "", x) # strip leading ".."
 x <- gsub("[^a-z]+", " ", x) # letters/spaces only
 x <- gsub("\\s+", " ", x)
 x <- trimws(x)
 x <- sub("^fct abuja$", "federal capital territory", x)
 x <- sub("^abuja fct$", "federal capital territory", x)
 x <- sub("^abuja$", "federal capital territory", x)
 x <- sub("^nassarawa$", "nasarawa", x) # Excel variant -> canonical
 x
 }
 canon_norm <- norm_state(states_canon)

 # read sheet 1 as text; build a row string per row; hunt for a 0–100 column
 df <- readxl::read_excel(xls, sheet = 1, col_types = "text") |> janitor::clean_names()
 if (!nrow(df)) stop("STATcompiler workbook has no rows on sheet 1: ", basename(xls))

 # score columns for "0..100 numeric content" to pick a value column
 score_pct <- function(v) {
 x <- suppressWarnings(as.numeric(v)); sum(is.finite(x) & x >= 0 & x <= 100)
 }
 scores <- sapply(df, score_pct)
 if (all(scores == 0)) stop("Could not find a 0–100 percentage column in the STATcompiler sheet.")
 val_col <- names(scores)[which.max(scores)]

 # build a single search string per row
 row_str <- apply(df, 1, function(r) stringr::str_squish(tolower(paste(r, collapse = " "))))

 # extract a DTP3 % per state
 out <- lapply(states_canon, function(st) {
 terms <- tolower(st)
 if (st == "Federal Capital Territory") terms <- c(terms, "fct abuja", "abuja fct", "abuja")
 pats <- paste0("\\b", terms, "\\b", collapse = "|")
 hit <- grep(pats, row_str, perl = TRUE)
 if (!length(hit)) return(NULL)
 v <- suppressWarnings(as.numeric(df[[val_col]][hit[1]]))
 if (!is.finite(v) || v < 0 || v > 100) return(NULL)
 tibble::tibble(state_name = st, dtp3 = v)
 })
 dtp3_2018 <- dplyr::bind_rows(out)

 if (!nrow(dtp3_2018)) {
 stop("Failed to parse any state-level DTP3 values from STATcompiler Excel: ", basename(xls))
 }

 # harmonize to GADM spelling used in the shapefile
 dtp3_2018 <- dtp3_2018 |>
 dplyr::mutate(state_name = dplyr::recode(state_name,
 "Nasarawa" = "Nassarawa"))

 readr::write_csv(dtp3_2018, dtp3_csv)
 invisible(TRUE)
}

Create DTP3 CSV if absent, then proceed unconditionally
ensure_dtp3_csv(dtp3_path, ng_admin1)

---- ACLED abstraction + preparation --
acled <- readr::read_csv(acled_path, show_col_types = FALSE) |>
 janitor::clean_names()
Soft-rename common ACLED headers if needed
soft_rename <- function(df, want, pattern) {
 if (!want %in% names(df)) {
 cand <- grep(pattern, names(df), ignore.case = TRUE, value = TRUE)[1]
 if (!is.na(cand)) df <- dplyr::rename(df, !!want := dplyr::all_of(cand))
 }
 df
}
acled <- acled |>
 soft_rename("event_type", "^event_?type$") |>
 soft_rename("event_date","^event_?date$") |>
 soft_rename("longitude", "^lon(gitude)?$") |>
 soft_rename("latitude", "^lat(itude)?$")
acled <- acled |>
 soft_rename("event_type", "^event_?type$") |>
 soft_rename("event_date","^event_?date$") |>
 soft_rename("longitude", "^lon(gitude)?$") ||
 soft_rename("latitude", "^lat(itude)?$") |>
 dplyr::mutate(
 event_date = as.Date(event_date),
 year = if (!"year" %in% names(acled)) lubridate::year(event_date) else as.integer(year)
) |>
 dplyr::filter(!is.na(longitude), !is.na(latitude)) |>
 dplyr::filter(year %in% years_keep)

if ("event_type" %in% names(acled)) {
 acled <- acled |> dplyr::filter(event_type %in% violent_types)
}

---- Join ACLED points to states; aggregate to state-year --------------------
acled_sf <- sf::st_as_sf(acled, coords = c("longitude","latitude"), crs = 4326, remove = FALSE)
acled_join <- sf::st_join(acled_sf, ng_admin1[, c("admin1_id","state_name")], left = FALSE)

state_year <- acled_join |>
 sf::st_drop_geometry() |>
 dplyr::count(admin1_id, state_name, year, name = "events") |>
 dplyr::arrange(year, state_name)

years <- sort(unique(state_year$year))

---- Spatial weights (queen) ---
ng_nb <- spdep::poly2nb(as(ng_admin1, "Spatial"))
ng_listw <- spdep::nb2listw(ng_nb, style = "W", zero.policy = TRUE)

---- Global Moran's I per year --
global_morans <- purrr::map_dfr(years, function(y) {
 dat <- ng_admin1 |>
 dplyr::left_join(dplyr::filter(state_year, year == y), by = c("admin1_id","state_name")) |>
 dplyr::mutate(events = tidyr::replace_na(events, 0)) |>
 dplyr::arrange(match(admin1_id, ng_admin1$admin1_id)) |>
 sf::st_drop_geometry()
 x <- scale(dat$events)[,1]
 mt <- spdep::moran.test(x, ng_listw, zero.policy = TRUE, alternative = "greater")
 tibble::tibble(
 year = y,
 morans_i = unname(mt$estimate[["Moran I statistic"]]),
 expected_i = unname(mt$estimate[["Expectation"]]),
 variance = unname(mt$estimate[["Variance"]]),
 p_value = mt$p.value,
 n_states = nrow(dat)
)
})
readr::write_csv(global_morans, "output/global_morans.csv")

---- Local Gi* per year + hotspot prevalence --------------------------------
gi_results <- list()
hotshare <- numeric(0)

for (y in years) {
 dat <- ng_admin1 |>
 dplyr::left_join(dplyr::filter(state_year, year == y), by = c("admin1_id","state_name")) |>
 dplyr::mutate(events = tidyr::replace_na(events, 0)) |>
 dplyr::arrange(match(admin1_id, ng_admin1$admin1_id))
 x <- scale(sf::st_drop_geometry(dat)$events)[,1]
 gi <- spdep::localG(x, ng_listw, zero.policy = TRUE)
 dat$gi_z <- as.numeric(gi)
 dat$hot_flag <- dplyr::case_when(
 dat$gi_z >= z_cut ~ "Hotspot",
 dat$gi_z <= -z_cut ~ "Cold spot",
 TRUE ~ "Neutral"
)
 gi_results[[as.character(y)]] <- dat |> sf::st_drop_geometry() |>
 dplyr::select(admin1_id, state_name, gi_z, hot_flag)
 hotshare <- c(hotshare, mean(dat$hot_flag == "Hotspot") * 100)
}

gi_tbl <- dplyr::bind_rows(lapply(names(gi_results), function(y){
 gi_results[[y]] |> dplyr::mutate(year = as.integer(y))
}))
readr::write_csv(gi_tbl, "output/local_gi_by_state_year.csv")

hot_trends <- tibble::tibble(year = years, hotspot_prevalence = hotshare)
readr::write_csv(hot_trends, "output/hotspot_trends.csv")

---- Figures ---
tmap::tmap_mode("plot")

Figure 1: Local Gi* panels (2010, 2014, 2018, 2024)
years_fig1 <- c(2010, 2014, 2018, 2024)
maps_list <- lapply(years_fig1, function(y){
 dat <- gi_results[[as.character(y)]]
 if (is.null(dat)) return(NULL)
 ng_admin1 |>
 dplyr::left_join(dat, by = c("admin1_id","state_name")) |>
 dplyr::mutate(year = y)
})
maps_list <- Filter(Negate(is.null), maps_list)
map_df <- do.call(rbind, maps_list) |>
 dplyr::mutate(hot_flag = factor(hot_flag, levels = c("Cold spot","Neutral","Hotspot")))

fig1 <- tm_shape(map_df) +
 tm_polygons(
 fill = "hot_flag",
 fill.scale = tm_scale(values = c("#2c7bb6","#d9d9d9","#d7191c")),
 col = "gray30", lwd = 0.3,
 fill.legend = tm_legend(title = "Gi* class")
) +
 tm_facets(by = "year", ncol = 2) +
 tm_layout(legend.outside = TRUE)

tmap::tmap_save(fig1, "output/figure_1_hotspots_panels.png", width = 2200, height = 1600, dpi = 220)

Figure 2: Hotspot prevalence time series
fig2 <- ggplot(hot_trends, aes(year, hotspot_prevalence)) +
 geom_line() + geom_point() +
 labs(x = "Year", y = "% states that are hotspots",
 title = paste0("Hotspot prevalence (Gi* |z| ≥ ", z_cut, "), 2010–2024")) +
 theme_minimal(base_size = 12)
ggsave("output/figure_2_hotspot_prevalence.png", fig2, width = 8, height = 4.5, dpi = 220)

Figure 3: 2018 DTP3 overlay with hotspot outlines (DTP3 CSV now guaranteed)
dtp3_2018 <- readr::read_csv(dtp3_path, show_col_types = FALSE) |>
 janitor::clean_names() |>
 dplyr::mutate(state_name = stringr::str_to_title(state_name)) |>
 dplyr::mutate(state_name = dplyr::recode(state_name, "Nasarawa" = "Nassarawa"))

gi2018 <- dplyr::filter(gi_tbl, year == 2018) |>
 dplyr::select(admin1_id, state_name, gi_z, hot_flag)

ng_2018 <- ng_admin1 |>
 dplyr::left_join(gi2018, by = c("admin1_id","state_name")) |>
 dplyr::left_join(dtp3_2018, by = "state_name") |>
 dplyr::mutate(
 outline_col = ifelse(hot_flag == "Hotspot", "red3", "gray40"),
 outline_lwd = ifelse(hot_flag == "Hotspot", 2, 0.5)
)

fig3 <- tm_shape(ng_2018) +
 tm_polygons(
 fill = "dtp3",
 fill.legend = tm_legend(title = "DTP3 coverage (2018)")
) +
 tm_shape(ng_2018) + tm_borders(col = "outline_col", lwd = "outline_lwd") +
 tm_layout(legend.outside = TRUE)

tmap::tmap_save(fig3, "output/figure_3_dtp3_overlay_hotspots_2018.png",
 width = 1600, height = 1200, dpi = 220)
tmap::tmap_save(fig3, "output/figure_3_dtp3_overlay_hotspots_2018.jpg",
 width = 1600, height = 1200, dpi = 220)
tmap::tmap_save(fig3, "output/figure_3_dtp3_overlay_hotspots_2018.pdf",
 width = 10, height = 7.5, units = "in")

---- Core tabulations saved as CSV ---
events_by_year <- state_year |>
 dplyr::group_by(year) |>
 dplyr::summarise(
 states_reporting = dplyr::n_distinct(admin1_id),
 total_events = sum(events, na.rm = TRUE),
 median_events_state = median(events, na.rm = TRUE),
 iqr_events_state = IQR(events, na.rm = TRUE),
 .groups = "drop"
)
readr::write_csv(events_by_year, "output/tables/table_2a_events_by_year.csv")

dtp3_summary <- readr::read_csv(dtp3_path, show_col_types = FALSE) |>
 janitor::clean_names() |>
 dplyr::summarise(
 n_states = dplyr::n(),
 mean_dtp3 = mean(dtp3, na.rm = TRUE),
 median_dtp3 = median(dtp3, na.rm = TRUE),
 min_dtp3 = min(dtp3, na.rm = TRUE),
 max_dtp3 = max(dtp3, na.rm = TRUE)
)
readr::write_csv(dtp3_summary, "output/tables/table_2b_dtp3_summary_2018.csv")

Moran’s I table for reproducibility (numeric)
readr::write_csv(global_morans, "output/tables/table_3_morans_i.csv")

Hotspot state lists (for Table 4 downstream)
hot_list <- gi_tbl |>
 dplyr::filter(hot_flag == "Hotspot") |>
 dplyr::arrange(year, state_name) |>
 dplyr::group_by(year) |>
 dplyr::summarise(
 n_hotspots = dplyr::n(),
 hotspot_states = paste(state_name, collapse = "; "),
 .groups = "drop"
)
readr::write_csv(hot_list, "output/tables/hotspot_states_by_year.csv")

hot_list_panels <- hot_list |> dplyr::filter(year %in% c(2010, 2014, 2018, 2024))
readr::write_csv(hot_list_panels, "output/tables/hotspot_states_panel_years.csv")

---- End ---
Page 2 of 2

Page 1 of 2 # === # Supplementary Analysis Code # Title: Conflict hotspot trajectories and immunization coverage in Nigeria: # A descriptive spatial analysis of ACLED and DHS data from 2010 to 2024 # Version: 1.0 # Date: 2025 - 10 - 06 # Purpose: Reproduce data abstraction, preparation, and analyses used in the paper. # Notes: # - Relative paths only (no local machine paths). # - Inputs expected under ./raw_data; outputs written to ./output and subfolders. # How to run: # - Set working directory to project root (contains raw_data/). # - Run: source("Supplementary_Analysis_Nigeria_Conflict_DTP3_2010_2024_v1.0.R") # === suppressPackageStartupMessages({ pkgs < - c("sf","readr","readxl","dplyr","stringr","purrr","lubridate", "janitor","spdep","tmap","ggplot2","tidyr","tibble") need < - setdiff(pkgs, rownames(installed.packages())) if (length(need)) install.packages(need, quiet = TRUE) invisible(lapply(pkgs, require, character.only = TRUE)) })

