A deep learning classification pipeline for identifying economically important tephritid fruit flies
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Computer vision approaches utilising deep learning offer significant potential benefits for entomological applications, particularly for image-based taxonomic identification. Fruit flies (Tephritidae) represent economically damaging pests where species-level identification is critical for effective pest control, management, surveillance, and eradication programs. We assessed the capability of a deep learning convolutional neural network (CNN) pipeline to identify tephritid species from wing images, which serve as key diagnostic features. Our dataset comprised 1380 tephritid wing images spanning 34 tephritid species and 12 genera, with additional images from two 'other' classes (other Diptera and Hymenoptera). We employed a two-stage approach: (1) object detection using an Ultralytics YOLOv11n model to detect wing objects in images, treating all wings as a single class, followed by (2) species classification using an Ultralytics YOLOv11-cls model applied to cropped and augmented wing images generated from the object detection stage. The models demonstrated high accuracy in both wing detection (mAP50-95 value of 0.99 on a novel test set) and species classification (overall accuracy of 0.98 on a novel test set). Class-wise accuracy for different species varied (0.67-1) but showed general correlation with the number of original images available per class (10-285). Our results provide a potentially valuable tool for detecting pest tephritid species in biosecurity contexts. While deep learning technology remains in early development stages for entomological applications, such approaches hold promise to transform diagnostic and surveillance capabilities for biosecurity and pest management.
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Tephritidae, commonly known as fruit flies, are a diverse family of Diptera that are widely distributed around the world. Several species of Tephritidae cause severe economic damage to horticulture industries in a wide range of countries through costs associated with losses to fruit and vegetable crops, the loss of market access, and the costs associated with control (Suckling et al. 2014; Dias et al. 2018). Such losses can be substantial, for example, He et al. (2023) estimated the economic losses in China from Zeugodacus cucurbitae at many hundreds of millions of dollars per year. Kibira et al. (2010) noted that in eastern and southern Africa, several species of Ceratitis contribute to mango yield losses of between 30% to 70% depending on the locality, variety and season, and that an exotic species, Bactrocera dorsalis (reported as B. invadens) causes damage to over 80% of mango crops. In Australia, costs associated with maintaining exclusion zones and periodic outbreaks of B. dorsalis (reported as B. papayae) can also be as high as hundreds of millions of dollars (Jessup et al. 2007; Suckling et al. 2014).
Considerable effort and expenditure are associated with different types of control and management (Dias et al. 2018; He et al. 2023), such as the use of lures (Stringer et al. 2019), area wide suppression (Lloyd et al. 2010), natural enemies (Dias et al. 2022), and the sterile insect technique (Shelly and McInnis 2016). However, there is also significant effort and investment in keeping countries and areas free of these pests, particularly as many species can be easily transported around the globe via human trade networks. Such investment includes quarantine and fruit destruction, surveillance networks via large scale trapping, and eradication programmes (Quilici and Donner 2012; Suckling et al. 2014; Kean et al. 2024).
Correct species identification is critical, whether it is for the control and management of pests, or for keeping areas pest-free through surveillance and eradication. However, the morphological identification of tephritid species can be difficult and requires practical experience and professional skills (White 2006; Plant Health Australia 2011; Drew and Romig 2013; He et al. 2023). Molecular techniques are increasingly being used to resolve species limits and distinguish species, but this is also not without problems (Dhami et al., 2016; Doorenweerd et al. 2023; Starkie et al., 2024). 
Imaged-based identification offers an additional, and likely complementary, approach to morphological and molecular identification. Computer vision approaches based on machine learning and deep learning have significantly influenced a wide range of scientific disciplines, though these have only relatively recently been applied to entomology (Boer and Vos 2018; Marques et al. 2018; Hansen et al. 2019). Recent studies on image-based insect identification are showing that deep learning models can extract features from images and learn to differentiate species to an accuracy approaching, or exceeding, human expertise (Valan et al. 2019; Hoye et al. 2020, Ward and Martin 2023, da Cunha et al. 2024) and is being applied to a growing range of insect taxa. For example, over half of British ground beetles (Carabidae) can be identified to species, and 74% to genus using convolutional neural networks (Hansen et al. 2019). Boer and Vos (2018) used over 10,000 images from AntWeb (www.antweb.org) to classify ants at species level based on dorsal, head, and profile images, obtaining accuracy between 62–92% for species and 79–95% for genus, depending on different configurations of the models.
Previous work on the automated identification of fruit flies is limited, however Wang et al. (2016) used custom built software (based on C# language on Microsoft’s Net Framework) to classify 74 species belonging to six genera, and despite having only a few images per species was able to obtain good identification rates depending on the morphological character, 71% (wing), 69% (thorax), 39% (abdomen). More recent work includes Tariq et al. (2022) who were testing the development of identification systems for farmers and growers through mobile applications and examined the image capture of two species using smartphone and Raspberry Pi cameras in both the laboratory and fruit orchards.
In this paper, we test the ability of a deep learning convolutional neural network pipeline to classify genera and species of Tephritidae using images of the wing for a range of species that are relevant around the world for pest control and management, and for border biosecurity and surveillance. 


Methods

Taxonomic species and specimens
We captured 1,380 wing images representing 34 species across 12 genera of Tephritidae, along with 1,151 images of other Diptera and 3,368 images of Hymenoptera, totalling 5,899 images. An additional 10 tephritid species were excluded from the dataset as each had fewer than 10 images available. The dataset included economically important species from the genera Bactrocera, Ceratitis, and Zeugodacus, native New Zealand species from Austrotephritis, Sphenella, and Trupanea, and biocontrol agents from Procecidochares and Urophora that have been introduced to New Zealand for invasive weed control.
Specimens were primarily obtained from the New Zealand Arthropod Collection, including species from New Zealand and Pacific Island nations, using dry pinned material. Additional specimens were obtained from laboratory colonies kept at the USDA Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center in Hilo, Hawaii (B. dorsalis, Bactrocera latifrons, and Z. cucurbitae), the Indian Institute of Horticultural Research in Bangalore, India (Bactrocera tau) and South Africa (B. dorsalis and Ceratitis cosyra). The median number of images per tephritid species was 19 (range: 10–285). A complete species list is provided in Supplementary Table 1.

Specimen preparation and imaging
For pinned specimens, wings were carefully removed from the body prior to imaging. Specimens were placed in a specimen manipulator, and a micropin or number 5 forceps was used to gently manipulate the tegula until the wing detached naturally. Wings were not forcibly pulled to avoid membrane damage. Wings were positioned on a microscope stage with a white background, imaged, and subsequently stored in gelatin capsules for preservation. For specimens from Hawaiian, Indian and South African laboratory colonies, wings were secured in position using double-sided tape during imaging. All wing images were captured using a Leica EZ4 W microscope (Leica Microsystems) with an integrated camera. The wings provided from South Africa were prepared as reported in Roets et al. (2018) and Makumbe et al. (2020). Wings were positioned flat, eliminating the need for image stacking techniques (Figure 1).

Model training and validation
Wing images were uploaded to Roboflow (https://roboflow.com/), an online platform for image annotation and deep learning. A project was established in Roboflow (publicly available at: https://universe.roboflow.com/bugider/tephritidae), where polygons were drawn around each wing using the Smart Polygon tool powered by Meta AI's Segment Anything Model (SAM2). Each polygon was annotated with the corresponding taxonomic species designation.
Images were exported to a local workstation (HP Z2 SFF G9 with 128GB RAM and NVIDIA RTX A4000 GPU, Windows 10) for processing. Annotations were converted to bounding box format compatible with YOLO object detection models. Images underwent preprocessing including resizing to 640 × 640 pixels, grayscale conversion (due to limited colour information in tephritid wings), and exposure correction using contrast stretching to create the object detection training dataset.	Comment by Katerina Taskova: would be nice to add example image before after preprocessing; However, not clear if the gray-scaling or contrast stretching have any parameters that have been set based on looking at the whole dateset (before spiting to train/val/test); any preprocessing method needs to see info only from train/val ..
	Comment by Aaron Harmer: Not really following this. From everything I’ve read/been told, test images should be processed the same way as training images.
I added preprocessed images for comparison.
We trained a two-stage model, with a detection stage (finding the wing in the image) and then a classification stage (identification to species). Both datasets (detection and classification) were partitioned into training (85%), validation (15%), and test (5%) splits using stratified sampling to maintain proportional class representation across splits. For the classification dataset (i.e. stage two cropped wings generated from the detection stage), images were further processed by resizing the crops to 640 × 640 pixels, and augmenting through random flipping, blurring, and noise addition. The two 'other' classes (Hymenoptera and Diptera) were randomly subsampled to match the size of the largest tephritid class, preventing training bias. The final classification dataset comprised 7,800 images. 	Comment by Katerina Taskova: not clear what this means; I would use  the standard in ML which is "model development dataset" (that is used to develop the model including creating the train/val/test ) and then have another section for new unseen test dataset that has been obtained after the model has been developed (emulating the deployment stage when new data are coming). Reading the abstract I got that understanding three is a second test set .
	Comment by Aaron Harmer: Added sentence to clarify this is the stage 2 part of the pipeline.	Comment by Katerina Taskova: Not clear why this is not applied for all classes that have less sample than the over-represented classes ;  if the training loss is focal loss then class imbalance is less of a problem; but if cross entropy is used then upsampling will make for minor classess. 	Comment by Aaron Harmer: This isn’t clear to me but augmentations were applied to all classes. Focal loss wasn’t a problem.
We trained two-stage YOLOv11 models using the Ultralytics Python library (Jocher et al., 2023). A single object detection model was trained treating all wings as a single class. Multiple classification models were trained with varying dropout rates (0.2–0.5) and learning rates (0.0001–0.01) to optimize performance. Complete training parameters are detailed in Supplementary Table 2. Model performance was evaluated on the test splits in each image set (unseen during training or validation) using mean Average Precision (mAP) for object detection and accuracy, precision, recall, and F1 score for species classification. We also assessed performance by comparing the confidence scores of correct versus incorrect predictions on the test set.	Comment by Katerina Taskova: Not clear: implying that  there are many test sets; but only one test set is mentioned above; 
	Comment by Aaron Harmer: Not sure how to rephrase this to make it clearer. There are two datasets each with its own test split.


Results and Discussion
Both the detection and classification models converged well after 30 training epochs. Training and validation loss curves were similar for both models (Supplementary Figure 1).

Object detection performance
The model (YOLOv11n) demonstrated excellent performance in detecting wing objects within images, achieving precision and recall of 1.00 for both metrics on the test dataset. The mean Average Precision at IoU threshold 0.5 (mAP50) was 1.00 and at mAP50-95 was 0.99. These results indicate that the model was highly effective at locating and delineating wing boundaries across all images, successfully distinguishing wing objects from the background. While these results may appear unrealistically high, it should be noted that wings were always displayed on a plain background, there was a single wing per image, and all classes were lumped for the object detection task, so precision and recall were expected to be very high. Further, we would expect that in any model deployed for identification queries would have images captured in very similar conditions (see Methods) to the training images to ensure similarly high detection rates. Images based on specimens photographed in filed situations would be expected to perform xxx because preparation is different. 

Species classification performance
The classification model (YOLOv11n-cls) showed strong overall performance across the 34 tephritid species and two other taxonomic groups. Overall (across classes) classification accuracy was 0.98, with precision of 0.98, recall of 0.97, and F1 score of 0.97, demonstrating robust species-level identification.
Classification performance varied considerably among species, revealing patterns related to dataset composition and morphological distinctiveness (Table 1). Twenty-six species (76%) achieved perfect classification metrics (accuracy, precision, recall, and F1 scores of 1.00), including economically important pest species such as B. dorsalis, B. tryoni, C. capitata, and Z. cucurbitae. Several species showed slight reductions in precision while maintaining perfect recall and accuracy. Bactrocera passiflorae achieved 0.91 precision, B. facialis recorded 0.95 precision, and Sphenella ruficeps showed 0.80 precision. These lower precision values suggest occasional misclassification of other species (Figure 3=2, Supplementary Figure 2).	Comment by Darren Ward: Bring in table with sp list and put confusion mztrix into suppl- its too msall to read!

Then have to RE_DO fig numbers
The most challenging classifications involved species with smaller training datasets and that were visually like other species in the same genus. Bactrocera minuta (83 training images) achieved 67% accuracy with precision of 1.00 but recall of 0.67, indicating that while wings predicted as B. minuta were accurately classified, some individuals within this class were misassigned to the visually similar B. passiflorae (e.g. Figure 3a). Similarly, B. latifrons (96 training images) showed 67% accuracy with 0.80 precision and 0.67 recall (misclassified as B. dorsalis, e.g. Figure 3b), B. tau (57 training images) achieved 80% accuracy with precision of 1.0 and 0.8 recall (misclassified as B. latifrons), and Sphenella fascigera (44 training images) achieved 75% accuracy with precision of 1.0 and 0.75 recall (misclassified as S. ruificeps, e.g. Figure 3c). Bactrocera kirki, despite having a larger training set (345 images), showed slightly reduced performance (96% accuracy, 1.00 precision, 0.96 recall, misclassified as B. fascialis), suggesting morphological similarity to closely related species rather than sample size limitations. All misclassified images were assigned to other species within the same genus as the source species. Wing morphology is also much more conserved within genera than across genera.
The high performance across diverse genera, including functionally distinct groups such as agricultural pests (e.g. Bactrocera, Ceratitis), biocontrol agents (Procecidochares, Urophora) and native New Zealand species (Austrotephritis, Trupanea), demonstrates the classification model's ability to generalise across varied wing morphologies to accurately identify species of economic importance. Further, there was generally good separation in confidence scores between correct and incorrect predictions, with correct predictions skewed towards 1.0 and incorrect predictions typically below 0.8 (Figure 4=3).

Conclusions
In this study we demonstrated the successful application of deep learning methods for automated species-level identification of Tephritidae, achieving excellent accuracy (98%) in distinguishing among 34 fruit fly species using wing morphology. The two-stage YOLOv11 pipeline showed perfect object detection performance and robust classification across economically critical pest species including B. dorsalis, B. tryoni, C. capitata, and Z. cucurbitae, which achieved near-perfect identification rates. Our results represent a significant advancement for biosecurity and pest management applications, where rapid and accurate species identification is essential for effective quarantine decisions, surveillance programs, and targeted control strategies. The classification model's ability to reliably distinguish between pest species, beneficial biocontrol agents, and native taxa addresses a critical bottleneck in entomological diagnostics, particularly in resource-limited settings where taxonomic expertise may be unavailable. By providing an accessible, automated identification tool that maintains high accuracy across diverse geographic specimens, this technology has the potential to transform frontline biosecurity operations. The further development of desktop or mobile applications will also enable real-time pest detection at ports of entry and support management decisions that protect agricultural systems and native ecosystems from invasive species.
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Table 1: Classification performance by species.
	Species
	Training Images
	Validation Images
	Test Images
	Accuracy
	Precision
	Recall
	F1 Score

	Austrotephritis cassiniae
	32
	6
	2
	1.00
	1.00
	1.00
	1.00

	Austrotephritis plebeia
	44
	8
	4
	1.00
	1.00
	1.00
	1.00

	Bactrocera caliginosa
	38
	7
	3
	1.00
	1.00
	1.00
	1.00

	Bactrocera correcta
	57
	10
	5
	1.00
	1.00
	1.00
	1.00

	Bactrocera curvipennis
	38
	7
	3
	1.00
	1.00
	1.00
	1.00

	Bactrocera distincta
	176
	33
	11
	1.00
	1.00
	1.00
	1.00

	Bactrocera dorsalis
	912
	171
	57
	1.00
	0.97
	1.00
	0.98

	Bactrocera facialis
	313
	58
	21
	1.00
	0.95
	1.00
	0.98

	Bactrocera frauenfeldi
	48
	9
	3
	1.00
	1.00
	1.00
	1.00

	Bactrocera kirki
	345
	64
	23
	0.96
	1.00
	0.96
	0.98

	Bactrocera latifrons
	96
	18
	6
	0.67
	0.80
	0.67
	0.73

	Bactrocera melanotus
	124
	23
	9
	1.00
	1.00
	1.00
	1.00

	Bactrocera minuta
	83
	15
	6
	0.67
	1.00
	0.67
	0.80

	Bactrocera obscura
	89
	16
	7
	1.00
	1.00
	1.00
	1.00

	Bactrocera passiflorae
	320
	60
	20
	1.00
	0.91
	1.00
	0.95

	Bactrocera tau
	57
	10
	5
	0.80
	1.00
	0.80
	0.89

	Bactrocera tryoni
	57
	10
	5
	1.00
	1.00
	1.00
	1.00

	Bactrocera umbrosus
	131
	24
	9
	1.00
	1.00
	1.00
	1.00

	Bactrocera xanthodes
	211
	39
	14
	1.00
	1.00
	1.00
	1.00

	Ceratitis capitata
	64
	12
	4
	1.00
	1.00
	1.00
	1.00

	Ceratitis cosyra
	249
	46
	17
	1.00
	1.00
	1.00
	1.00

	Coelotrypes punctilabris
	70
	13
	5
	1.00
	1.00
	1.00
	1.00

	Dacus solomonensis
	44
	8
	4
	1.00
	1.00
	1.00
	1.00

	Dacus vertebratus
	185
	34
	13
	1.00
	1.00
	1.00
	1.00

	Diptera
	912
	171
	57
	1.00
	1.00
	1.00
	1.00

	Dirioxa pornia
	76
	14
	6
	1.00
	1.00
	1.00
	1.00

	Hymenoptera
	912
	171
	57
	1.00
	1.00
	1.00
	1.00

	Procecidochares alani
	32
	6
	2
	1.00
	1.00
	1.00
	1.00

	Procecidochares utilis
	41
	7
	4
	1.00
	1.00
	1.00
	1.00

	Sphenella fascigera
	44
	8
	4
	0.75
	1.00
	0.75
	0.86

	Sphenella ruficeps
	51
	9
	4
	1.00
	0.80
	1.00
	0.89

	Trupanea fenwicki
	41
	7
	4
	1.00
	1.00
	1.00
	1.00

	Trupanea longipennis
	38
	7
	3
	1.00
	1.00
	1.00
	1.00

	Urophora cardui
	32
	6
	2
	1.00
	1.00
	1.00
	1.00

	Urophora stylata
	32
	6
	2
	1.00
	1.00
	1.00
	1.00

	Zeugodacus cucurbitae
	233
	43
	16
	1.00
	1.00
	1.00
	1.00
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Figure 1. Examples of pre- processed (top) and post-processed (bottom) wing images used in training; from left to right: Austrotephritis plebeia, Bactrocera tryoni, and Ceratitis capitata.
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Figure 2. Confusion matrix of predicted species vs actual species for the classification task.
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Figure 3. Examples of misclassified images (left) from the test split compared to the predicted species (right). (a) Actual species B. minuta, predicted species B. passiflorae. (b) Actual species B. latifrons predicted species B. dorsalis. (c) Actual species S. fascigera, predicted species S. ruificeps.
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Figure 4. Confidence distribution by prediction correctness; Incorrect (red), Correct (blue).
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Supplementary Table 1: Training configuration for each model stage.
	Stage    
	Model
	Epochs
	Batch size
	Image size
	Optimizer
	Dropout
	Single class
	Learning rate

	Detection      
	YOLOv11n
	30
	64
	640x640
	AdamW
	NA
	Yes
	0.002

	Classification
	YOLOv11n-cls
	30
	92
	640x640
	AdamW
	0.2
	No
	0.001
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Supplementary Figure 1. Training and validation curves for the detection model (top) and the classification model (bottom).
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Supplementary Figure 2. Confusion matrix of predicted species vs actual species for the classification task.
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