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Extended Data Figure 1. HIN1 infection induces endothelial activation and MHC-I upregulation. (a-e) C57BL/6 mice
were inoculated with 100 PFU HIN1 (A/PR/8/1934 ), with uninfected mice as control. (a) Body weight, (b) survival curve,
(¢) H & E staining of lung section at 7 dpi. (d) Flow cytometry of PVEC numbers at baseline and 7 dpi, and adhesion
molecule (ICAM-1 MFI, %VCAM-1* ECs). (e) RT-qPCR analysis of VCAMI, ICAMI, vWF, and E-selectin in isolated
PVECs at baseline and 7 dpi, normalized to GAPDH. (f-1) tdTomato reporter mice were inoculated with 100 PFU rHIN1Cre,
Lungs were perfused, harvested, and fixed at 7 dpi; uninfected mice served as controls. (f) Body weight . (g-j) Confocal
images of lung sections stained for CD31 at baseline (g), 4 dpi (h), and 7 dpi (i), as well as (j) zoom area in h. A: Arteriole, V:
Venule, B: Bronchus. (k) Quantification of infected ECs (tdTomato*CD31%) in microvasculature, arteriole and Venule of
infected areas at 7 dpi. (I) Flow cytometry of infected ECs (% tdTomato"CD31*CD45- of CD317CD45- cells) at baseline, 4
and 7 dpi. . (m-n) Human PCLSs were infected with HIN1 (1x103 PFU) for 2 days. (m) ICAM1 MFI on PMVECs from three
donors (different colors) by flow cytometry. (n) Representative confocal images of CD31, HIN1-HA, and CD8* T cells. All
quantitative data are presented as mean + s.e.m. from at least three independent biological replicates (mice). Data are
mean =+ s.e.m. Statistical analysis by unpaired two-tailed t-tests (d-e, m) and one-way ANOVA (k-i).
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Extended Data Figure 2. Single-cell RNA-seq reveals dynamic EC-CD8"* T cell communication during IAV
infection. Single-cell RNA-seq analysis of lung cells from C57BL/6 mice at baseline and 4, 7, 10 dpi. (a) Cell
clusters were annotated by marker genes for endothelial cells, CD8" T cells, dendritic cells, and macrophages. (b—
h) EC-CD8"* T cell communication inferred with CellChat (v2.2.0). (b) Number of interactions, (¢) interaction
strength, (d) MHC-I signaling strength, and (e) IFN-II signaling strength across time points. (f~h) Differential
signaling at 4, 7, and 10 dpi compared to control (x-axis: outgoing; y-axis: incoming).
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Extended Data Figure 3. Endothelial-specific B2M deletion impairs MHC-I-mediated CD8* T cell responses
during HIN1-induced acute lung injury. (a) Structural model of the MHC-I complex. (b) Strategy for endothelial-
specific B2M knockout; tamoxifen-induced Cre given 4 weeks before HINI infection. (¢) Experimental design:
B2MEC<KO and B2M mice infected with 100 PFU HINT; lungs collected at baseline and 7 dpi for CD8* T cell,
endothelial activation, viral load, and histology. (d) Flow cytometry gating of lung ECs for MHC-I, ICAMI,
VCAMI. (e) MHC-II MFI, ICAMI1", and VCAMI1" PVECs by flow cytometry. (f) CD8" T cell gating for effector
(Granzyme B*, IFNy*) and tetramer™® subsets. (g) Lung resident CD8" T cell effector responses. (h) BALF CD8" T

cell analysis. Data are mean + s.e.m. (>3 mice). Statistical analysis by unpaired two-tailed t-tests (e-h) and two-way
ANOVA (g).
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Extended Data Figure 4. Endothelial-specific B2M restoration restore MHC-I expression and enhances CD8*
T cell responses during HIN1-induced acute lung injury in vivo. (a) Schematic of B2MFC<Kl mice; tamoxifen
restores B2M in ECs. Cre™ littermates (B2M™/n) ysed as controls. (b) Design of B2M"™/i"V allele; tamoxifen-
induced inversion restores MHC-I on ECs. (¢) ICAM1 MFI, VCAMI1*, and MHC-I* PVECs at 7 dpi by flow
cytometry. (d) Lung resident CD8" T cells and effector subsets (Granzyme B*, IFNy*) by flow cytometry. (e)
Representative H&E lung sections (bottom, full lobe; top, enlarged). Data shown as mean + s.e.m. (>3 mice).
Statistical analysis by unpaired two-tailed t-tests (c) and two-way ANOVA (d).
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Extended Data Figure 5. In vitro co-culture for PMVECs direct presentation of viral antigen and induce
CDS8* T cell proliferation and effector responses. (a) Viral replication in mouse primary PMVECs infected with
HINI. Cells were harvested at 1, 24, and 48 hpi, and viral NP was quantified by RT-qPCR. (b) RT-qPCR analysis
of H2-Kb, B2M, and Tapl mRNA in PMVECs at 24 hpi, normalized to GAPDH. (¢) Western blot and
quantification of H2-Kb and B2M in mouse PMVECs at 24 hpi versus uninfected controls. (d—e) B2M
knockdown in mouse PMVECs using siRNA before co-culture; scramble siRNA as control. (d) Validation of
knockdown by RT-qPCR. (e) CD8* T cell proliferation after PMVEC B2M knockdown by flow cytometry. (f)
HINI-GFP infection in human primary PMVECs at 1 and 48 hpi by flow cytometry. (g) RT-qPCR of HLA-A and
B2M mRNA in human PMVECs at 24 hpi, normalized to GAPDH. (h) Flow cytometry plots of intracellular [FNy
in CD8" T cells after human peripheral blood mononuclear cells (PBMCs) coculturing with HIN1-infected
human PMVECs for 3 days. (i) CD8" T cell proliferation after co-culture of HINI-infected human HLM VECs
with PBMCs after 48 h, by flow cytometry. Data represent mean + s.e.m. from >3 biological replicates. Statistical
analysis by unpaired two-tailed t-tests (b-e, g) and one-way ANOVA (a, f, 1).
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Extended Data Figure 6. IFNy enhances endothelial MHC-I and adhesion molecule expression and
promotes CD8* T cell activation in vitro and in vivo. (a) Mouse primary PMVECs treated with I[FNy; MHC-I
(H2-Kb) and Tapl mRNA measured by RT-qPCR (GAPDH as control). (b—¢) IFNy-pretreated mouse (b) or
human (¢) PMVECs + HIN1; MFI of ICAMI1 on PMVECs were measured by flow cytometry. (d—e) HIN1-
infected mouse PMVECs co-cultured with CD8" T cells; MFI of MHC I (H2-Kb) quantified on IFNy-untreated
(d) or pretreated (e) PMVECs by flow cytometry. (f) Human PMVECs + [FNy, infected with HIN1, co-cultured
with CD8" T cells; CD8" T cell proliferation was assessed by flow cytometry. (g) Generation of inducible EC-
specific Ifngrl knockout (Ifngr1E¢KO) mice by crossbreeding Cdh5-CreFR2 mice with Ifngrl™® mice; Cre-
negative littermates as controls. (h—i) Flow cytometry detection of PMVEC ICAM1/VCAMI (h) and lung
resident CD8* T cell subsets (total, granzyme B*, IFNy") (i) in Ifngr1E&cKO and controls at baseline and 7 dpi. (j)
Representative H&E-stained lung sections in Ifngr1 &K and controls at baseline and 7 dpi. Data are mean +
s.e.m. from >3 biological replicates. Statistical analysis by unpaired two-tailed t-tests (a, f, h), one-way ANOVA
(b-e), and two-way ANOVA (i).
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Extended Data Figure 7. Single-cell transcriptomic profiling of PMVEC subsets and immune gene
expression post HIN1 infection. Lung cells from C57BL/6 mice were collected at baseline, 4, 7, and 10 dpi for
single-cell RNAseq, and PVECs were selected and analyzed. (a) UMAP of all lung cells with DCs and ECs
identified by cell-specific markers. (b) UMAP of PVECs colored by time point. (¢) UMAP of PVECs showing
different clusters. (d—g) Bubble plots showing gene expression across six PMVEC clusters: MHC 1II and
regulators (d), inflammatory cytokines (e), high-expressed MHC I (f), and low-expressed MHC 1 (g). (h-k)
bubble plot to compare gene expression of interests between immune ECs (clusters 1, 2, and 4 based on immune
profile) and DCs for MHC 1 (h), inflammatory cytokines (i), co-stimulatory molecules (j), and co-inhibitory

molecules (k). Bubble size represents percent of cells expressing a gene; color intensity represents average
expression.
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Extended Data Figure 8. IFNy-STAT1 signaling drives MHC-I upregulation in PMVECs during HIN1
infection. scRNA-seq analysis of PVECs from C57BL/6 mice at baseline, 4, 7, and 10 dpi. (a) Instaneous RNA
velocity and transcriptional vector field of mixed single PVECs from different time points was reconstructed
using Dynamo and GraphVelo to reveal cell-state transition between different time points. This 2D representation
(made from a combination of PCA and UMAP axes) depicts time point progression. The reconstructed vector
field (all the arrows) projected on to the 2D representation. (b) The gene regulatory information was obtained
from the velocity vector by Jacobian regulation analysis to reveal how changing the expression of one gene, the
regulator, affects the velocity of an effector gene (dose response curve). Cumulative Statl regulation over time
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Extended Data Figure 9. Endothelial MHC-I is required for CD8" T cell responses during H5N1 infection. C57BL/6
mice were infected with the highly pathogenic H5N1 strain (A/Texas/37/2024) at 5, 50, or 500 PFU and monitored for 10
days. (a) Body weight loss over time. (b—d) B2MEC-KO and B2M1 i mice were inoculated with 5 PFU H5N1 and lungs were
analyzed at 6 dpi. Uninfected mice served as baseline controls. (b) Flow cytometry of total CD8" T cells, Granzyme B*, and
IFNy* CD8" T cells. (¢) Representative H&E staining of lung lobes and enlarged regions. (d) Comparative CD8* T cell
responses in lungs of B2MFC-KO and B2m/! mice infected with 10 PFU HSN1 or HIN1, Lung resident Granzyme B* and
I[FNy* CD8" T cells quantified by flow cytometry. (e—g) Representative confocal images of lung sections at 4 dpi; white
squares indicate zoomed areas shown in Fig. 6j—i respectively. A: Arteriole, V: Venule, B: Bronchus. Data are mean =+ s.e.m.
from >3 biological replicates. Statistical analysis by two-way ANOVA (b, d).
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Extended Data Figure 10. Graphic Conclusion
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