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Abstract  40 

How polygenic risk translates into cellular dysfunction remains largely unknown in Alzheimer’s 41 
disease and related disorders. Here, we selected 31 donors broadly spanning the Caucasian-based 42 
polygenic risk distribution for AD and show that human polygenic architecture modulates 43 
microglial immune responses to amyloid pathology in vivo. We developed a “microglia village” 44 
model by xenotransplanting pooled iPSC-derived microglia from these genetically diverse donors 45 
into amyloid-bearing (AppNLGF) and control (AppHu) mouse brains, allowing the effect of genetic 46 
background to be separated from shared environmental influences. Marked inter-donor 47 
transcriptomic differences were observed in hMG derived from homeostatic, non-amyloid brain 48 
environments, demonstrating divergent baseline states across individuals. Amyloid exposure 49 
induced highly varied expression of MHC class II genes across donor, which correlated with 50 
individual’s AD polygenic risk scores. These findings demonstrate that polygenic risk can be 51 
decoded into functional immune phenotypes in human microglia and establish a scalable in vivo 52 
platform to dissect the genetic regulation of cellular responses in complex brain disorders. 53 
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Introduction 54 

Alzheimer’s disease unfolds through a series of cellular tipping points, and genetic factors strongly 55 
influence how the brain navigates them. These include the build-up of amyloid pathology, 56 
microglial responses that seed or compact amyloid, the induction of pTAU and granulovacuolar 57 
pathology in neurons, vascular pathology, and the onset of neuronal loss1–3. With high heritability 58 
estimates based on common SNP variants ranging from 0.38 to 0.664, genetic risk is likely to 59 
determine an individual’s relative vulnerability or resilience at each of these stages.  60 
 Genome-wide association studies (GWAS) have identified hundreds of common variants 61 
associated with AD5,6, each conferring only modest individual risk (typically 1-3%, excluding 62 
APOE5). As understanding has shifted from an oligogenic7 to a polygenic view of AD4,8,9, it is 63 
now evident that thousands of sub-threshold variants, together with rare coding and structural 64 
variants10,11, collectively shape susceptibility. Protective genotypes, such as the APOE 65 
Christchurch mutation12 and resilience-associated variants in centenarians13, further underscore 66 
the importance of studying the genome as an integrated whole rather than focusing on isolated 67 
loci. Yet, translating this complex genetic architecture into mechanistic insight remains a central 68 
challenge, due largely to the lack of models that can resolve genome-wide variation at cellular 69 
resolution14.  70 

In addition to rare mutations causing familial AD and associated with amyloid 71 
accumulation15, a large fraction of common AD-associated variants (accounting for 69-84% of 72 
SNP-based heritability4), are enriched in genes expressed by microglia or located in microglia-73 
specific enhancer regions5,15,16. Microglia sense amyloid-β (Aβ) pathology, a key trigger of AD 74 
pathogenesis3, and initiate inflammatory cascades that influence neuronal health and function15,17–75 
19. In response to Aβ, human microglia (hMG) adopt transcriptional states characterized by 76 
cytokine signaling, antigen presentation (human leukocyte antigen (HLA)/major 77 
histocompatibility complex (MHC)) and disease-associated microglia (DAM)-like 78 
phenotypes20,21. Many AD risk genes are differentially expressed across these states, suggesting 79 
that genetic variation tunes how microglia respond to pathological cues17,20,22. This positions 80 
microglia as both mediators and interpreters of polygenic risk. Yet, direct evidence that natural 81 
human genetic diversity shapes microglial function in vivo remains lacking23–25. 82 
 To address this gap, we developed a pooled xenotransplantation model (the “microglia 83 
village”) that enables high-resolution mapping of genotype-to-phenotype relationships in vivo26. 84 
By engrafting iPSC-derived microglia from genetically diverse donors into the brains of amyloid-85 
plaque-bearing27 and control mice28, we created a chimeric environment in which human microglia 86 
with different genotypes coexist and respond to identical cues within the same brain20,29–32. This 87 
design isolates donor-intrinsic effects from the shared host environment, allowing systematic 88 
assessment of how polygenic risk shapes microglial responses to Aβ pathology. Using a relatively 89 
small but well-characterized iPSC cohort, we provide a first mechanistic demonstration of linking 90 
polygenic risk to functional cellular outcomes. More broadly, the microglia village provides a 91 
scalable, generalizable platform to dissect the functional impact of complex human genetics across 92 
neurological and psychiatric disorders. 93 
 94 
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Results  95 

1. In vivo microglia villages disentangle genomic and environmental contributions to the 96 
microglial transcriptome.  97 

 To investigate how genetic variation in AD risk shapes hMG phenotypes in vivo, we 98 
computed polygenic risk scores (PRS) for AD from genome-wide SNP data (excluding the APOE 99 
locus, GWAS p-value threshold <0.05) across 3 cohorts8. Two AD case/control datasets (UZ 100 
Leuven, ROS/MAP33) and the HipSci collection34 were standardized to the Caucasian subset of 101 
the 1000 Genomes Project35. Thirty-one individuals (Table 1) spanning -3 to +4 standard 102 
deviations of the Caucasian-based polygenic risk distribution for AD were selected and iPSCs lines 103 
that passed quality control for pluripotency, stemness and karyotype were obtained (see Methods). 104 
For each donor, iPSC-derived microglial precursors were generated and grouped into three pools 105 
of 12-13 donors (the ‘microglia villages’), with three donor lines shared across all pools as internal 106 
standards. Each village was independently differentiated and transplanted into neonatal amyloid-107 
producing AppNLGF mice or AppHu-control mice (both on Rag2-/-, Il2rg-/-, hCSF1KI background, see 108 
Methods), thereby creating mixed-donor “microglia villages” (Fig.1A)26–28. This pooled design 109 
enables high-throughput, controlled comparisons across genotypes while minimizing the number 110 
of recipient animals. By exposing all donor-derived hMG to identical Aβ and brain 111 
microenvironments, the model isolates donor-intrinsic genetic effects from shared environmental 112 
influences.  113 
 Six months post-engraftment, hMG were isolated from the right brain hemisphere 114 
(excluding cerebellum) of recipient mice (n=4-6 per strain per village) and analyzed by single-cell 115 
RNA sequencing. Cells were demultiplexed by host mouse using CiteSeq antibody tagging36, and 116 
by donor genotype, using Souporcell37, based on donor-specific SNP profiles (see Methods). Two 117 
donors were excluded for low recovery, leaving 29 unique donor lines for downstream analysis.  118 
 Within each village, donor representation ranged from 27-35% for the most abundant line 119 
to 0.4-1.2% for the least, with reproducible engraftment across mice for each village and across 120 
both recipient strains (Fig.1B, Fig.S1A). Skews in donor contribution primarily impacted 121 
statistical power for detecting differentially expressed genes (DEGs), but even low-abundance 122 
lines yielded hundreds of DEGs (Fig.S1C). Strong correlations between shared anchor donor lines 123 
across villages (median 70%), demonstrated reproducibility across independent differentiations 124 
(Fig.S1D). Subsampling analyses confirmed that lower correlations ((e.g. Kolf2 in village 1) were 125 
attributable to low cell numbers (<500; Fig.S1D). Thus, although individual donor representation 126 
varied, reproducibility across anchor lines and subsampling analyses indicates that donor-specific 127 
signals are consistent and outweigh technical variation. We obtained in total an average of 8,107 128 
high quality hMG transcriptomes per donor (range: 537-29,964) amounting to 235,106 cells after 129 
integration with Seurat and Harmony. A unified UMAP embedding of all three villages across all 130 
experiments is shown in Fig.1A and Fig.S1B.  131 
 To assess donor-genotype effects while avoiding pseudo-replication (i.e. treating each cell 132 
as an independent replicate 38), we applied a generalized linear mixed-effects model with host 133 
mouse as a random effect, correcting for sequencing batch, read depth, and mouse host sex. An in-134 
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silico permutation test randomizing cell-to-donor assignments, but keeping all other proportions 135 
stable, confirmed type I error control, with at most one false-positive gene per comparison 136 
(Fig.S1C)38. This statistical model thus provides a robust instrument to disentangle genetic 137 
contributions to human microglial function in vivo, both under homeostatic conditions and in the 138 
presence of amyloid-β pathology (see also Fig.S1E and Methods). 139 
 140 

2. Female microglia exhibit a stronger inflammatory response than male microglia.  141 

Post-hoc regression analysis revealed substantial donor sex-effects: female-derived hMG 142 
expressed higher levels of MHC class I & II, interferon, and cytokine genes (Fig.1C, 143 
Supplementary Text ST1, Fig.S2A, Tables S1-2), consistent with an intrinsically heightened 144 
immune activation potential. All subsequent analyses were therefore performed on sex-corrected 145 
donor values.  146 
 147 

3. Genetic heterogeneity shapes the microglial transcriptional landscape under homeostatic 148 
conditions.  149 

To assess donor effects in the absence of pathology, we analyzed hMG from AppHu mice, 150 
comparing each donor’s gene expression profile to the grand mean of all donors (i.e. the average 151 
of donor means, which mitigates differences in total cell number). Donor-specific UMAP 152 
projections and DEG analysis revealed substantial transcriptional diversity (mean: 1,973 DEGs 153 
per donor, range 426-3,841; Fig.2A-B; Fig.S1E). Gene co-expression analysis, using WGCNA39, 154 
identified 13 modules with distinct biological functions (Fig.2C, Tables S3-4), ranging from 155 
discrete to very broad-range distributions across the UMAP (Fig.2D). Because modules can be 156 
expressed across multiple cell states, this approach better captures the multifunctional nature of 157 
microglia than cluster-based methods40 (Fig.2C-D and Fig.S3), yet still encompasses previously 158 
identified transcriptional profiles such as interferon response microglia (Blue (Innate Immunity)) 159 
and specific cytokine responses (e.g. Yellow (Cytokine, chemokine and toll-like receptor 160 
signaling))20. WGCNA confirmed that most donors diverged from the cohort average in 161 
homeostatic conditions in at least one gene module with over half of the modules showing more 162 
than 20 donors deviating significantly from the grand mean (Fig.2E-F, Fig.S7).  163 

These findings confirm that genetic background alone primes microglia into distinct 164 
immune-competent states (Fig.2F). For example, most donors show Magenta (MHCII) module 165 
(Fig.2F) expression, containing MHCII antigen presentation program genes (e.g. CD74, HLA-166 
DRA, HLA-DRB and the MHCII transactivator CIITA), below the amyloid-induced cohort 167 
response (red diamond, indicated as reference and based on the calculations detailed below),  yet 168 
donors L233, L25 and L23 exhibit comparable or higher scores even under control conditions. The 169 
data challenge the notion of a uniform 'homeostatic' microglial state as inferred from xenograft 170 
models20,31 or post-mortem tissue21,41,42 and underscores the influence of genotype on baseline 171 
immune tone. These baseline differences provide a potential substrate through which polygenic 172 
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burden exerts effects, but larger donor cohorts will be needed to resolve the full spectrum of 173 
genetically encoded immune tones.  174 

 175 

4. A consensus microglial response to amyloid includes a robust MHCII antigen presentation 176 
signature across donors.  177 

 An analysis of the previously characterized amyloid plaque response of microglia 178 
(ARM)20,43 across all donors provides a broader generalizability than the prior studies relying on 179 
one or two donor lines20,31. To define the average human microglial response to Aβ, we compared 180 
transcriptomes from AppNLGF mice (with Aβ plaques) to those from AppHu controls (lacking AD-181 
related pathology) across all 29 genetically distinct donors (‘strain effect’ in Fig.S1E). We 182 
identified 2,262 differentially expressed genes (DEGs: 619 upregulated; 1,643 downregulated; 183 
Fig.3A, Table S5). GO and KEGG analysis (Table S6) revealed downregulation of RNA splicing, 184 
mRNA metabolism and histone modification and upregulation of MHCII related genes (HLA-185 
DRA, HLA-DPA1, HLA-DQA1, CD74, CIITA) and huDAM markers (CD9, APOC1, APOE, 186 
TREM2, MITF, MYO1E, LIPA) consistent with prior studies20,21,31,41,42,44. 187 
 In concordance, the Magenta (MHCII) and Brown (huDAM) WGCNA modules were 188 
upregulated, the latter module overlapping significantly with the huDAM state (e.g. SPP1, CD9, 189 
and GPNMB; Fisher’s exact test, odds ratio = 8.4, p=5.15e-15)20. The Brown module is enriched 190 
for lysosomal, endocytosis, and lipid transport pathways (Fig.2B, Table S6). Additional 191 
upregulated modules are Turquoise (Ribosome) and Pink (Morphology & Immune) (Fig.2D). 192 
Together, these findings indicate that hMG mount a robust MHCII and huDAM-like response to 193 
Aβ-plaques confirming previous findings with one genotype20, while downregulating 194 
transcriptional regulatory programs.  195 
 196 

5. The MHCII response in microglia is functionally relevant and present in AD microglia in 197 
human brain.   198 

 We next confirmed at the protein level that plaque-exposed hMG upregulate antigen-199 
presentation machinery. FACS analysis of hMG derived from H9 embryonic stem cells in AppNLGF-200 
FIRE brains (a line known to induce MHCII expression upon amyloid exposure20) showed increased 201 
surface expression of HLA-DR, HLA-ABC, and key co-stimulatory and -inhibitory molecules 202 
(CD80, CD86, PD-L1), compared to controls (Fig.2C-H). In both xenografted AppNLGF brains 203 
(Fig.S5A) and post-mortem AD tissue (Fig.S5B), MHCII expression was highest in microglia 204 
adjacent to plaques, consistent with literature20,45,46. Thus, hMG exposed to amyloid plaques 205 
activate the full antigen-presenting machinery necessary for T cell engagement. Because 206 
xenotransplants were performed in Rag2-deficient mice lacking adaptive immunity, we next 207 
assessed the functional relevance of this phenotype ex vivo. hMG isolated from plaque-bearing 208 
mice stimulated naïve CD4+ and CD8+ T cells more effectively than controls, inducing cytokine 209 

production (TNF, IFN and IL2) and T-cell proliferation (Fig.S6A-F). This confirms that 210 
amyloid exposure induces a bona fide antigen-presenting microglia state. Despite this capability, 211 
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T cell infiltration into the brain parenchyma appears limited in postmortem AD tissue (see Fig. 212 
S5C and47) compared to other diseases like MS, suggesting that the role of MHCII+ microglia in 213 
AD and their interaction with T-cells requires further investigation.  214 

6. Donor-specific microglial responses to Aβ pathology reveal striking variability in MHCII 215 
activation.  216 

 Across donors, hMG showed robust induction of MHCII and huDAM genes in response to 217 
amyloid plaques (Fig.2). In contrast, donor-level projections onto the UMAP revealed pronounced 218 
heterogeneity (Fig.4A), indicating substantial deviations from the consensus “average amyloid 219 
response”. DE analysis of the strain*donor interaction (Fig.S1E) confirmed marked inter-donor 220 
divergence in Aβ responses which was further supported by WGCNA showing distinct module 221 
activity profiles for each donor (Fig.4B-C, Fig.S7).  222 
 The Magenta (MHCII) module showed the most pronounced variability: 21 of 29 donors 223 
deviated significantly from the average across donors (Fig.4B-C, Fig.S7). For example, donor 224 
BR99 showed a two-fold increase in MHCII induction, whereas donor Oupf6 showed no 225 
detectable induction (Fig.4C). Donor variation also influenced the Brown (huDAM) and Pink 226 
(morphology) modules (9 and 11 donors respectively) (Fig.4C, Fig.S7), as well as modules not 227 
strongly activated at the cohort-level average such as Blue (Innate immunity) and Green 228 
(Endoplasmic reticulum). Together these findings illustrate that amyloid plaques elicit a conserved 229 
ARM response in human microglia, even across genetically diverse donors, while also revealing 230 
extensive donor-to-donor variability in the magnitude and composition of this response. The 231 
Magenta (MHCII) module emerges as the most genetically sensitive component of the Aβ-induced 232 
microglial program. Importantly, these results do not imply that MHCII is the sole relevant 233 
pathway, but rather that it represents the most statistically tractable and reproducible signal given 234 
the current sample size. To ensure that these donor-specific effects were not artifacts of the pooled 235 
design, we next validated transcriptional concordance in independently differentiated, single-236 
donor xenografts. 237 
 238 

7. Single-donor grafts confirm village-based transcriptional profiles 239 

 To validate that village-derived hMG preserve donor-specific traits, we transplanted 16 240 
iPSC lines individually into AppNLGF mice and compared their transcriptomes to those of the same 241 
donors in microglia villages. Gene-level concordance was high (average Pearson's r = 0.81; 242 
Fig.S8A). This concordance suggests that the pooled design does not artificially generate 243 
phenotypic diversity but rather captures reproducible donor-intrinsic traits. The results 244 
demonstrate that village-based xenotransplantation faithfully preserves inherent, donor-specific 245 
transcriptional responses of hMG across differentiation batches, supporting its use as a scalable 246 
and robust platform to capture cell-autonomous effects of genetic variation in vivo. 247 
 248 
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8. Polygenic risk predicts MHCII responses to amyloid pathology  249 

 To retain statistical power given our modest sample size (n=29 donors), we limited the 250 
number of hypotheses tested. Based on the marked donor-to-donor variability in MHCII responses 251 
both to plaques and at baseline, we focused on whether clinical diagnosis or polygenic risk (PRS) 252 
for AD8, explained variation in Magenta (MHCII) module expression. Among donors with known 253 
diagnosis (AD cases, n=13; controls, n=11), we observed no baseline differences (t(23)=0.05, 254 
p=0.96) but plaque-induced MHCII responses were significantly stronger in AD cases (t(23)= 255 
3.53, p=0.0019; Fig.5A). Gene-level analysis confirmed that this effect was driven by the eleven 256 
MHCII-related genes in the module, rather than by the two MS4A-locus genes (Fig.5B).  257 

Whole-genome PRS (excluding the APOE locus and pT<0.05 based on6) correlated 258 
strongly with donor-specific Magenta (MHCII) induction in response to Aβ (R=0.71, p=9.6E-5, 259 
Fig.5C). A similar, but non-significant, correlation was observed in the hMG derived from the 260 
Hipsci subset for which we have no diagnostic data (R=0.71, p=0.17, Fig.S9A). Using partial 261 
correlation analysis we confirmed that the association between the donor-specific Magenta 262 

response to A in AD cases and controls and PRS was not driven by confounders such as the 263 
APOE genotypes in our cohort or donor proportions in our villages and retained its significance 264 
(after controlling for APOE: R=0.65, p=0.0005; after controlling for donor proportion: p=0.70, 265 
p=0.0001). Moreover, we could not identify enrichment of AD-associated MHCII haplotypes 266 
among MHCII-high donors (Table S7). No correlation was detected between PRS and baseline 267 

MHCII expression (Fig.S9B). Thus, the correlation between PRS and MHCII responses to A 268 
appears polygenic in nature and is not explained by APOE, donor distributions within the village 269 
or single HLA haplotypes, although future studies with larger sample sizes will be required to 270 
resolve contributions from specific loci. In conclusion, these findings demonstrate that polygenic 271 
AD risk predicts the strength of microglial MHCII activation in response to amyloid pathology, 272 
supporting a model in which polygenic risk burden shapes stimulus-specific immune activation in 273 
human microglia. 274 

Discussion 275 

Genes implicated by AD-associated GWAS loci likely act across multiple cell types and 276 
disease mechanisms, including plaque pathology formation and neuronal vulnerability to protein 277 
aggregation. The enrichment of AD risk loci in microglial genes and enhancers16,48,49, suggests 278 
that part of the heritable predisposition to AD operates through altered microglial responses to 279 
pathology. Yet, in sporadic AD, where risk is largely polygenic and distributed genome-wide, it 280 
has remained challenging to translate PRS into concrete biological mechanisms15. Here, we 281 
provide in vivo functional evidence that elements of the polygenic architecture can be resolved 282 
into stimulus-specific cellular read-outs where polygenic burden correlates with the strength of 283 
microglial immune responses to amyloid pathology. Remarkably this was detectable in a relatively 284 
small but carefully characterized iPSC cohort, suggesting that functional decoding of PRS may be 285 
feasible even at moderate cohort sizes. This does not preclude that other elements of polygenic 286 
risk act on neurons, vasculature, or other glia populations, but it establishes for the first time that 287 
PRS can be linked directly to measurable immune phenotypes in vivo.  288 
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By leveraging genetic diversity in a pool of xenografted human iPSC-derived microglia, 289 
we isolate donor-intrinsic transcriptional variation from environmental influences. Our findings 290 
show that human genomic variation shapes both baseline and amyloid-induced microglial states 291 
and that polygenic risk for AD primarily tunes the magnitude of microglial reactivity rather than 292 
the baseline state. Notably, microglia from some donors exhibited elevated expression of MHC 293 
class II and human disease-associated microglia (huDAM) genes even in the absence of pathology, 294 
challenging the notion of a uniform “homeostatic” state21,41,42,44.  295 
 Across donors, microglia responses to Aβ pathology converged on a shared transcriptional 296 
program marked by inflammatory and antigen presentation genes, consistent with previous 297 
observations in AD tissue and models20,21,31,41,42,44. However, donor-specific analysis revealed 298 
striking variability which may contribute to explaining inconsistencies between different 299 
postmortem AD datasets21,41,42,44, and highlights why future studies will require even larger donor 300 
cohorts to map the full landscape of genetically encoded microglial states. Importantly, sex 301 
contributed significantly to this diversity: female-derived microglia exhibited stronger induction 302 
of MHCII and cytokine pathways, suggesting that genetic and sex-linked factors jointly modulate 303 
immune activation thresholds. This observation aligns with epidemiological and molecular 304 
evidence that sex modifies AD risk and progression50,51 and it underscores the need to consider 305 
sex as an integral dimension of microglial heterogeneity. 306 

Our analysis suggests that module-based frameworks such as WGCNA which capture 307 
overlapping functional programs, may provide a more robust and transferable approach for 308 
classifying microglia states across disease contexts. Among these programs, antigen presentation 309 
via MHCII emerged as the strongest correlate of polygenic risk in this current study. Nevertheless, 310 
other pathways, including interferon signaling, lipid metabolism and cytokine networks, also 311 
varied across donors, suggesting that multiple immune axes may be genetically tuned and should 312 
be explored in expanded cohorts.  313 
 The data confirm that the antigen-presentation program is both reproducible and 314 
functionally relevant. Although the immunocompromised host strain may influence the cytokine 315 
milieu, the strong concordance with human post-mortem data showing HLA-DR positive 316 
microglia around amyloid plaques (Fig.S5B) supports the physiological relevance of these 317 
findings. Amyloid exposure induced MHCII and key co-stimulatory and inhibitory molecules 318 
(CD80, PD-L1), shifting hMG toward an antigen-presenting state capable of enhanced T cell 319 
activation 52–54. Crucially, the magnitude of this response varied across donors and correlated with 320 
their AD polygenic scores, highlighting its potential role in disease susceptibility20,31,44–46. While 321 
specific HLA haplotypes have been linked to AD5,6,55, we found that risk-associated and protective 322 
HLA variants occurred across the full spectrum of MHCII module expression, rather than single-323 
allele effects. Similarly, hMGs carrying rare variants such as TREM2-R47H, PLCG2-P522R or 324 
SORL1 knockout, also showed altered MHCII expression20,56,57. Together these data raise the 325 
possibility that individuals with high genetic burden may exhibit exaggerated immune responses 326 
to pathology, a concept that could guide stratified immunomodulatory therapies. 327 
 Our data do not yet establish whether MHCII-high microglia are protective, maladaptive, 328 
or compensatory in AD; future studies incorporating neuronal readouts and adaptive immunity 329 
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will be essential to define these functional consequences. In our xenograft model, MHCII 330 
upregulation occurs in the absence of peripheral immune cells, owing to the immunocompromised 331 
host background, demonstrating that this response can arise cell-autonomously in microglia58. In 332 
AD, T-cells are relatively scarce in the parenchyma (Fig.S5C)47, in contrast to multiple sclerosis, 333 
where immune infiltration is pronounced59. This raises the question of whether MHCII+ microglia 334 
represent a maladaptive state in AD. It remains plausible that MHCII-high or -low microglia 335 
modulate the CNS environment or contribute to neuronal dysfunction in addition to direct T cell 336 
interactions.  337 
 The hMG village model provides a powerful framework for in vivo functional 338 
polygenomics, enabling dissection of how complex genetic backgrounds shape microglial immune 339 
phenotypes. The strong transcriptional concordance between pooled and single-donor grafts 340 
validates its scalability. Accounting for sex as a biological variable proved essential, both to isolate 341 
donor-intrinsic effects and to reveal sex-linked amplification of immune pathways60. This further 342 
supports the view that microglial activation thresholds and transcriptional programs are set by an 343 
interplay between genetic background, sex, and pathological cues50,51. 344 
 Conceptually, our findings begin to recast polygenic risk from a statistical abstraction into 345 
a cell-intrinsic modifier of immune function. By explicitly demonstrating this in vivo, we provide 346 
a framework that can be generalized to larger-scale cohorts, different microglial stimuli, and other 347 
cell types implicated by AD genetics. Microglial activation in the current work emerges not as a 348 
uniform response to pathology, but as a genetically encoded trait that varies across individuals 349 
even under identical conditions. This framework enables genotype- and sex-stratified prediction 350 
of microglial responses to pathology and establishes a tractable platform for personalized 351 
pharmacogenomic screening. Beyond AD, similar complex genetic architectures may shape 352 
stimulus-specific microglial behaviors in psychiatric, neurodevelopmental, and other 353 
neurodegenerative disorders where microglia play increasingly recognized roles61.  354 
 355 
  356 
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Figures & Figure Legends 583 

 584 

Fig. 1. The in vivo microglia village approach allows to robustly separate impact of genome 585 
and environment on the human microglial transcriptome 586 

(A) Whole genome polygenic risk scores (PRS, excl the APOE locus, pT<0.05) were calculated 587 
for three cohorts of individuals (see Methods), and iPSCs from donors spanning a range of PRS 588 
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were obtained (represented as green individuals in each cohort). Human iPSC-derived microglial 589 
precursors from 31 genetically distinct donors were grouped into 3 pooled “villages” (n=12-13 590 
lines per pool, with three lines shared across all villages). Each village was xenotransplanted at 591 
postnatal day 4 into 4-6 AppHu (Control) and AppNLGF (amyloid producing) mice (n=17 and n=16 592 
total, respectively, both on Rag2-/-, Il2rg-/-, hCSF1KI background). At 6 months of age, human 593 
microglia (hMG) were isolated and profiled by single-cell RNA sequencing. A total of 235,106 594 
high-quality hMG were assigned to individual host mice using Citeseq hashing and to individual 595 
donors using SNP-based demultiplexing. Data from all donors and mice were integrated into a 596 
unified UMAP for downstream analysis.  597 
(B) Stacked bar-graph of the number of hMG after demultiplexing per mouse (x-axis; AppNLGF 598 
mice are indicated with an asterisk) and per cell line (different colors). The three lines that were 599 
included in all 3 villages to serve as internal standards are at the top of each bar-graph (Kolf2 (dark 600 
grey), Burb1 (light grey) and L26 (red)), which show high reproducibility across different 601 
experiments (also see Fig.S1).  602 
(C) A rotated volcano plot showing differentially expressed genes (DEGs) between hMG from 603 
female versus male donors. DEGs upregulated in female microglia (n=1735) are shown in purple; 604 
those upregulated in male microglia (n=4201) are in green (Benjamini–Hochberg–adjusted 605 
p<0.05). Values are capped at LFC<|2.5| and -log10(padj)<300. 606 
  607 
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 608 

Fig. 2. Microglial transcriptomic diversity reflects genotype-specific homeostatic states in a 609 
physiological brain environment 610 
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(A) UMAP density plots showing the distribution of hMG from each donor in AppHu mice, 611 
projected onto the integrated transcriptional space. Darker colors indicate where the cells of the 612 
indicated donor are distributed across transcriptional space. 613 
(B) Bar-graph depicting the number of significant DEGs per donor in AppHu mice compared to the 614 
average hMG profile across all donors. 615 
(C) Overlap between the WGCNA co-expression modules and microglial transcriptional states (as 616 
defined in Mancuso et al.20), with color scale displaying the log(odds ratio), capped at 10 and 617 
showing only enrichment. Modules (y-axis) were functionally annotated using GO & KEGG 618 
pathway enrichment. Cell states (x-axis) include: CRM1 (cytokine response microglia 1); CRM2 619 
(cytokine response microglia 2); DAM (disease-associated microglia); HLA (antigen presenting 620 
microglia); HM (homeostatic microglia); IRM (interferon response microglia), RM (ribosomal 621 
microglia); tCRM (transitioning CRM). Other abbreviations: ER (endoplasmic reticulum); TLR 622 
(Toll-like receptor). *: Benjamini-Hochberg corrected p-value (padj)<0.05; **: padj<0.01; ***: 623 
padj<0.001.  624 
(D) Spatial distribution of the WGCNA modules scores across the UMAP visualized using hexbin-625 
based density plots. Darker UMAP color represents a higher average WGCNA enrichment score 626 
across the hMG within that hexbin. Certain modules occupy distinct transcriptional niches (e.g., 627 
Brown (huDAM); Magenta (MHCII)) while others show continuous gradient-like expression (e.g., 628 
Greenyellow (Motility); Green (ER & protein folding)).  629 
(E) Module differential expression analysis for each donor. Deviations from the average 630 
transcriptional profile across all AppHu microglia are indicated by colour. The x-axis lists WGCNA 631 
modules; the y-axis lists individual donors. Cells marked with “x” denote no significant difference 632 
from the average transcriptomic profile (BH-adjusted p < 0.05). 633 
(F) Donor-specific z-score shifts in the Magenta (MHCII, left) and Brown (huDAM, right) 634 
modules in hMG from AppHu mice. Each dot represents the mean module score across all cells 635 
from a given donor (error bars: 95% confidence interval), plotted relative to the average AppHu 636 
expression across all donors (black vertical line at x = 0). The average AppNLGF response from 637 
Fig.3 is included for reference (top row, dashed line, listed as “NLGF”). Black diamonds indicate 638 
significant deviation from the AppHu average (BH-adjusted p < 0.05); grey diamonds: not 639 
significant. Top density plots show the overall distribution of module z-scores across all AppHu 640 
hMG. 641 
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 643 

Fig. 3. The cohort-wide microglial response to amyloid includes a robust huDAM and 644 
antigen-presenting signature 645 

(A) Volcano plot showing the average transcriptomic response of hMG to Aβ pathology, 646 
comparing hMG from AppNLGF (amyloid) to AppHu (control) mice. Genes significantly upregulated 647 
(red) or downregulated (blue) in AppNLGF are indicated (Benjamini-Hochberg (BH) adjusted 648 
p<0.05). 649 
(B) Differential expression analysis on the module level, showing significant differences in module 650 
expressions between hMG extracted from AppNLGF and AppHu mice (BH adjusted p-values as 651 
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indicated). Modules with a positive log2(fold change) contain genes that are on average 652 
upregulated in hMG from AppNLGF mice. 653 
(C) Gating strategy to select HLA-DR-positive H9-hMG from AppHu and AppNLGF-FIRE mice (both 654 
on Rag2-/-, Il2rg-/-, hCSF1KI background). 655 
(D) Quantification of the percentage of MHCIIpos hMG (left; unpaired parametric t-test) and the 656 
mean fluorescent intensity (MFI) of MHCIIpos hMG (right; unpaired Mann-Whitney U test) in 657 
AppHu (n=6) and AppNLGF-FIRE mice (n=7) demonstrating increased HLA-DR expression in amyloid 658 
plaque exposed H9-derived microglia; p-values indicated per graph. 659 
(E-H G-J) Density plot (left) and quantification (right) of the mean fluorescence intensity (MFI) 660 
of HLA-A/B/C expression (E), CD80 (F), CD86 (G) and PDL1 (H) in H9-derived hMG from 661 
AppHu (n=5) and AppNLGF-FIRE mice (n=6), demonstrating several elements of the immune hemi-662 
synapse expressed on microglia exposed to amyloid plaques. Statistics: Unpaired parametric t-test 663 
(E, H); unpaired Mann-Whitney U test (D, F, G); p-values indicated per graph. 664 
  665 
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 666 

Fig. 4. MHCII activation is the dominant genetically programmed response to amyloid 667 
pathology 668 
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(A) UMAP density plots showing the distribution of hMG from each donor in AppNLGF mice, 669 
projected onto the integrated transcriptional space. Darker colors indicate where the cells of the 670 
indicated donor are distributed across transcriptional space demonstrating strong variability in the 671 
transcriptomic phenotype of the genetically diverse donors.  672 
(B) Module differential expression analysis for each donor. Deviations from the average amyloid 673 
response derived from the cohort (Fig.3) is indicated by colour (Benjamini-Hochberg adjusted p-674 
value<0.05). The x-axis lists modules; the y-axis lists the individual donors. Cells marked with ‘x’ 675 
indicate no significant difference from the average response in Fig.3.  676 
(C) Donor-specific z-score shifts in Magenta (MHCII; left) and Brown (huDAM; right) module 677 
expression in hMG derived from AppNLGF, which are the main components in the average amyloid 678 
response discussed in Fig.3. The average amyloid response (dashed line, indicated with a red dot 679 
in top row labeled “NLGF”) and the baseline module expression in AppHu controls (solid black 680 
vertical line at x = 0) are indicated, confirming the strong upregulation of the magenta (MHCII) 681 
and the brown (huDAM) response in the cohort of hMG exposed to amyloid plaques 20. Each 682 
diamond represents the mean module score across all cells from one donor; error bars show the 683 

95% confidence intervals. Black diamonds indicate significant deviation from the average A 684 
response (BH adjusted p < 0.05); grey diamonds are not significant. Top density plots indicate the 685 
overall distribution of module z-scores across all AppNLGF hMG.  686 
  687 



 

 
 

29 

 688 

 689 

 690 

Fig. 5. Microglial MHCII activation in response to amyloid reflects donor AD status and 691 
polygenic risk 692 

(A) Mean log2(fold change) of the Magenta (MHCII) module genes for the donor-specific 693 
response to Aβ in AD cases (red) and non-demented controls (ND, blue). Unpaired t-test, (t(23)= 694 
3.53, p=0.0019).  695 
(B) Gene-wise comparison of Magenta module expression between AD cases and non-demented 696 
controls in their response to Aβ pathology. Top row “Avg magenta log2fc” recapitulates the 697 
module-level comparison from panel B (p=0.0019). Lower rows show individual gene-level t-698 
statistics; black diamonds to the right of the red dashed line indicate nominal significance (p < 699 
0.05; uncorrected; see Methods). 700 
(C) Correlation between the mean log2(fold change) of the Magenta (MHCII) module genes in the 701 
donor-specific response to Aβ with the donor’s polygenic risk score for AD (PRS, excluding the 702 
APOE locus; p-value threshold (pT) < 0.05), for AD cases and controls (R = 0.71, p =9.6E-5). The 703 
samples from the HipSci cohort, for whom AD status is not known, are shown in Fig.S9A (R = 704 
0.71, p=0.17).  705 
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Table 1.  707 
Overview of all iPSC lines used in the current study, with their official name, which cohort they are from, which 708 
village they were grafted in, their demographic details and PRS (p-value threshold <0.05) and ORS (oligogenic risk 709 
score; p-value threshold p<5e-08) both excluding the APOE region. *: donors L234 and BR83 were removed from 710 
analysis due to low cell recovery.  711 

Main_ID Official_name Cohort Village Status APOE Sex PRS.noAPOE ORS.noAPOE 

BR89 AJ0089-02-SV-008 ROS/MAP Village2 Ctrl E2/E3 F -3.38 -0.50 

BR64 AJ0066-01-SV-007 ROS/MAP Village3 Ctrl E3/E4 F -2.74 -0.06 

BR21 AJ0046-01-SV-023 ROS/MAP Village3 Ctrl E3/E3 F -2.69 -1.39 

BR04 AJ0056-01-SV-004 ROS/MAP Village3 Ctrl E2/E3 F -2.59 2.06 

BR50 AJ0041-01-SV-033 ROS/MAP Village3 Ctrl E3/E4 F -2.14 -1.21 

Oupf6 HPSI0514i-oupf_6 HipSci Village1 NA E3/E3 F -1.61 -1.23 

BR33 AJ0047-01-SV-009 ROS/MAP Village2 Ctrl E3/E3 M -1.58 -0.10 

L26 KP-21-26 UZ Leuven Village1-3 Ctrl E3/E3 M -1.30 -2.04 

L252 LUMC0252iCTRL UZ Leuven Village1 Ctrl E3/E3 F -1.23 -1.55 

L235 LUMC0235iCTRL UZ Leuven Village1 Ctrl E3/E3 M -1.08 1.30 

L262 LUMC0262iCTRL UZ Leuven Village2 Ctrl E3/E3 F -0.97 -1.05 

Kolf2 HPSI0114i-kolf_2 HipSci Village1-3 NA E3/E3 M -0.78 -0.75 

BR37 AJ0031-02-SV-012 ROS/MAP Village3 Ctrl E3/E3 F -0.60 -0.20 

L261 LUMC0261iAD UZ Leuven Village2 AD E3/E3 M -0.49 1.80 

L264 LUMC0264iAD UZ Leuven Village2 AD E4/E4 M -0.44 0.19 

L233 LUMC0233iAD UZ Leuven Village1 AD E3/E3 M -0.25 1.23 

L275 LUMC0275iAD UZ Leuven Village2 AD E4/E4 M -0.06 -0.19 

L276 LUMC0276iAD UZ Leuven Village2 AD E4/E4 F 0.29 1.92 

Aipt33 HPSI0513i-aipt_33 HipSci Village1 NA E3/E3 M 0.33 0.70 

BR97 AJ0123 ROS/MAP Village3 AD E3/E3 M 0.53 -0.33 

L23 KP-21-23 UZ Leuven Village1 AD E3/E3 F 0.99 1.84 

L25 KP-21-25 UZ Leuven Village1 AD E3/E3 F 1.56 1.66 

L234* LUMC0234iAD UZ Leuven Village1 AD E3/E3 F 1.60 2.07 

BR103 AJ0121-01-SV-004 ROS/MAP Village2 AD E3/E3 F 1.62 0.94 

Uaqe1 HPSI0813i-uaqe_1 HipSci Village1 NA E3/E3 F 1.87 -1.27 

L263 LUMC0263iAD UZ Leuven Village2 AD E4/E4 M 2.23 0.65 

BR66 AJ0094-01-SV-010 ROS/MAP Village3 AD E3/E3 M 2.33 -1.09 

Burb1 HPSI0714i-burb_1 HipSci Village1-3 NA E3/E3 M 2.33 0.55 

BR54 AJ0048 ROS/MAP Village3 AD E4/E4 F 2.50 -1.29 

BR83* AJ0083-01-SV-011 ROS/MAP Village3 AD E3/E3 M 2.69 1.60 

BR99 AJ0107-01-SV-013 ROS/MAP Village2 AD E3/E4 F 4.39 0.59 
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Methods 714 

Mice 715 

All protocols concerning animal experimentation were approved by the Ethical Committee of 716 
Laboratory Animals of KU Leuven (project no. 125/2022 & license LA1210591), following 717 
Belgian and European Union guidelines. AppNL-G-F/NL-G-F mice 27 carry the humanized Ab sequence 718 
which contains the Swedish (NL), Arctic (G) and Iberian (F) mutations, resulting in progressive 719 
amyloidosis and plaque formation from 2 months of age (M) and learning and memory 720 
impairments from 6M. The AppHu/Hu mice were developed by our lab to serve as WT control, 721 
carrying the humanized Aβ sequence, yet without any FAD mutations 28. To enable hMG 722 
xenotransplantation, both strains were crossed onto the Rag2tm1.1Flv Csf1tm1(CSF1)Flv Il2rgtm1.1Flv/J 723 
homozygous background (Jackson Laboratory, strain 017708) to obtain Rag2-/- Il2rg-/- 724 
hCSF1KI*AppNL-G-F/NL-G-F (henceforth named AppNLGF) and Rag2-/- Il2rg-/- hCSF1KI*AppHu/Hu 725 
mice (AppHu for short). Mice had ad libitum access to food and water and were housed in groups 726 
of 2-5 mice on a 14/10h day/night cycle at 21°C and 32% humidity. Both male and female mice 727 
were used in this study, trying to keep the ratio males to females equal across experimental 728 
conditions.  729 
 730 

Donor selection 731 

All participants signed informed consent and ethical approvals for genotyping and iPSC generation 732 
were granted by the Ethics Committee of the University Hospitals Leuven, Belgium (study 733 
protocol 63481). 734 

Donors were selected from various cohorts: 1) Human iPSC Initiative (HipSci34), which 735 
includes 477 healthy donors; 2) UZ Leuven Memory Clinic cohort of 200 biomarker-proven AD 736 
cases and 135 spouse controls62; 3) UZ Leuven F-PACK (Flemish Prevent AD cohort KU Leuven) 737 
cohort, a community-recruited longitudinal observation cohort of 180 older adults, who undergo 738 
2-yearly neuropsychological evaluation and 18F-flutemetamol amyloid PET imaging63; 4) 739 
ROS/MAP iPSC cohort, comprising 53 deceased individuals which were both clinically and 740 
neuropathologically confirmed AD cases and controls33. If not already available, either publicly or 741 
in-house, SNP array data was generated for each individual (Global Screening Array (GSA), 742 
Illumina).  743 

A polygenic risk score (PRS) was calculated for each individual per cohort as previously 744 
described8, using the clumping and thresholding method and the PLINK genetic data analysis 745 
toolset64 with a p-value threshold for association to AD p<0.05 on LD-clumped SNPs, where 746 
variants with R2>0.1 in a 1000-kb window were excluded and SNPs with the smallest p-value were 747 
retained. As we aimed to understand how genetic risk would impact hMG function beyond the 748 
effect of APOE, we used the PRS.noAPOE model where the PRS is calculated excluding the 749 
APOE region (chromosome 19:44.4-46.5 Mb). The scores of all cohorts were standardized against 750 
the Caucasian subset of the 1000 Genomes project, meaning that all datasets were merged, the 751 
principal components were derived and adjusted for, and the scores in different cohorts were 752 
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standardized using the mean and standard deviations from the 1000 Genomes subset. For each 753 
cohort we selected chromosomally male and female individuals (n=5 (HipSci), n=13 (UZ Leuven) 754 
and n=13 (ROS/MAP)) to span a range of PRSs yet predominantly selecting AD cases with a 755 
positive PRS and controls with a negative PRS (see also Table 1).  756 

 757 

Human stem cells 758 

For an overview of all iPSCs used in this study, see Table 1, which includes information regarding 759 
donor sex, APOE status, study cohort and PRS. The iPSCs from the HipSci and ROSMAP cohorts 760 
were generated as described previously33,34. IPSCs from the UZ Leuven cohorts were either 761 
generated in house (L23, L25, L26) in collaboration with the KU Leuven Stem Cell Institute or at 762 
the Leiden hiPSC Centre, always starting from peripheral blood mononuclear cells (PBMCs).  763 

For those generated in house, the PBMCs were first cultured StemPro-34 SFM Medium 764 
(Gibco, 10639-011), supplemented with penicillin-streptomycin (Gibco, 15140-122) and 765 
cytokines (SCF 100 ng/ml, Peprotech, 300-07), FLT-3 (100 ng/ml, Peprotech, 300-19), IL-3 766 
(20ng/ml; Peprotech, 200-03) and IL-6 (20 ng/ml, Peprotech, 200-06) for 4 days to enhance 767 
expansion of erythroid lineage cells. Reprogramming was performed using 2.5*105 PMBCs in a 768 
12-well plate and the CytoTuneTM-iPS 2.0 Sendai reprogramming kit (ThermoFisher Scientific, 769 
A16517), following the manufacturers standard protocols for feeder-free reprogramming of 770 
PBMCs. The Sendai viruses were removed the following day by centrifugating the cells (200g, 771 
10min) and replating in fresh StemPro-34 medium with cytokines. On day 3 after reprogramming, 772 
cells were seeded in different densities (1x 104, 2.5x 104, 5x 104) in a Matrigel coated (Corning, 773 
354277) 6-well plate with complete StemPro34 medium without cytokines. Following daily half 774 
media changes on days 4-6, cells were transitioned to complete Essential E8 Flex Basal medium 775 
(Thermo Fisher Scientific, A28585-01; supplemented with penicillin-streptomycin 1/1000) on day 776 
7. Colonies appeared between day15-21 after transduction, which were picked, gradually 777 
expanded and checked for remaining Sendai virus using qPCR (TaqMan® iPSC Sendai Detection 778 
Kit, A13640) from P9 onwards. Quality checks included mycoplasm, HIV & hepatitis B/C testing, 779 
testing for pluripotency and stemness using immunocytochemistry (OCT4 (Abcam, ab19857, 780 
1/200), Tra1-81 (Milipore, mab4381, 1/200), SOX2 (Abcam, ab92494, 1/200), Nanog (R&D 781 
systems, AF1997, 1/200), OTX2 (Millipore, AB9566, 1/500), Ki67 (BD Pharmingen, 556003, 782 
1/200) and the TaqMan HPSC scorecard method (Life Technologies – A15872) after trilineage 783 
differentiation via embryoid bodies formation, as per manufacturers protocol, and karyotyping 784 
using aCGH array (Cytosure Syndrome Plus 180K array).  785 

For those iPSCs generated by the Leiden hiPSC Centre, the PBMCs were reprogrammed 786 
using episomal polycistronic lentiviral vectors with or without p53 knockdown65 after which they 787 
were cultured on Matrigel or Vitronectin XF (STEMCELL Technologies, cat. #100-0763) and 788 
mTESRTM Plus (Stemcell Technologies, cat. #100-0276). Stem cells were quality checked at 789 
Leiden hiPSC Centre for stemness and pluripotency using flow cytometry (NANOG, SSEA4, 790 
OCT4) and immunocytochemistry (PAX6, FABP7, Nestin, GATA4, FOXA2, EOMES, Vimentin, 791 
CDX2 and Brachyury). Additional quality checks included mycoplasm testing, HIV, hepatitis B/C 792 



 

 
 

33 

testing and karyotyping using aCGH array. All stem cells were transitioned to Matrigel coating 793 
and complete Essential E8 Flex Basal medium upon arrival, expanded and banked in liquid 794 
nitrogen until further use.  795 
 796 

Stem-cell-derived microglia generation and xenotransplantation 797 

Human MG precursor cells were generated using the MIGRATE protocol as previously 798 
published29. For the xenotransplantations where 1 line was grafted per mouse (from here on 799 
referred to in Materials & Methods as the ‘single grafts’), we performed the MIGRATE protocol 800 
in batches of 1-4 donor lines and always including differentiation of the Kolf2 line as an internal 801 
control for batch variation. For the hMG village experiments, precursor cells from 12-13 different 802 
donors were generated for each line separately, harvested and counted on day 18 and pooled in 803 
equal ratios where numbers permitted. Every hMG village experiment contained cells from donors 804 
Kolf2, Burb1 and L26 to facilitate data integration across hMG villages. In total we generated 3 805 
separate hMG villages that were differentiated independently. hMG precursors were xenografted 806 
in pups of postnatal day 4, who had received BLZ945 (200 mg/kg; ) i.p. in the 2 days prior to 807 
xenotransplantation, injecting 250.000 cells in 1µl per hemisphere, aiming for +1mm ML and -808 
1mm AP from Bregma. The same hMG village was grafted simultaneously in both AppHu and 809 
AppNLGF mice. For the single graft experiments we only grafted AppNLGF mice, grafting both the 810 
donor lines within that batch as well as the Kolf2 line alongside (in separate mice) to control for 811 
batch effects. In total, hMG from n=16 donor lines were grafted for the single graft experiments 812 
and villages n=3 were grafted in n=33 mice.  813 

 814 

Human microglia isolation from mouse brain  815 

At 6M of age, mice were sacrificed using an overdose of sodium pentobarbital followed by 816 
transcardial perfusion with 20 ml of ice-cold DPBS (Gibco, Cat #. 14190-144) containing 5 units 817 
of heparin (Heparin Leo 25000 IU/5 ml, Leo Pharmaceuticals). Each of the three hMG village 818 
experiments were transplanted into 4-6 mice per strain (AppHu or AppNLGF). For the single graft 819 
experiments we sacrificed n=2-6 mice (AppNLGF only) total per donor. For Kolf2 we sacrificed a 820 
total of n=24 mice, sacrificing n=2 Kolf2 mice per injection batch of single donor transplantations 821 
(see previous section) to control for batch variation. The right hemisphere (omitting cerebellum) 822 
was placed in ice-cold FACS buffer (1x DPB, 2% FBS, 2mM EDTA) including 5µM actinomycin 823 
D (ActD; Sigma, A1410-5MG), to prevent artificial microglial activation due to the isolation 824 
procedure, as previously described66. The samples were mechanically and enzymatically 825 
dissociated using the Miltenyi Neural Tissue Dissociation Kit P (Miltenyi, 130-092-628) 826 
supplemented with 5 µM ActD, filtered using a 70 µM strainer (Greiner Bio-One, 542070), washed 827 
with 15 ml of ice-cold FACS buffer + 5µM ActD and centrifuged (300g, 15min, 4°C). From here 828 
on, ActD was omitted from the buffers. Next, a sample clean-up was performed by resuspending 829 
the pellet in a 30% isotonic Percoll gradient (Fischer Scientific, cat. #11500744), centrifuging 830 
(300g, 15min, 4°C) and removing the layers of myelin and cellular debris that accumulate on top 831 
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of the sample. The Fc receptors on the cells were blocked in FcR blocking solution (1/10, Miltenyi, 832 
130-092-575) in ice-cold FACS buffer for 10 min at 4°C. After a 5ml FACS buffer wash and 833 
centrifugation (300g, 5 min, 4°C), pelleted cells were incubated for 30 min at 4°C in FACS buffer 834 
with the viability dye eFluor780 (1/2000; Thermo Fisher Scientific, 65-0865-14) and the following 835 
antibodies: PE pan CD11b (1/50; Miltenyi, 130-113-806), APC human CD45 (1/50; BD 836 
Biosciences, 555485), BV421 mouse CD45 (1/500; BD Biosciences, 563890) and Total-Seq A 837 
cell hashing antibodies (1/500, Biolegend). Following incubation, cells were washed, pelleted 838 
through centrifugation (300g, 5 min, 4°C), resuspended in 500 µl ice-cold FACS buffer and passed 839 
through a 35 µm strainer, before sorting on the MACSQuant Tyto. Human microglia (hMG) were 840 
considered positive for CD11b and hCD45 and per mouse 40.000 hMG were collected and diluted 841 
to 1000 cells/µl in FACS buffer.  842 

 843 

Single cell RNA library preparation and sequencing 844 

As cells were hashed using Total-Seq A cell hashing antibodies36, cells from different mice could 845 
be pooled. For the hMG Village experiments cells from the different mice (n=5-6 per sacrifice 846 
date) were pooled in equal numbers. For the single graft experiments, cells from different mice 847 
were combined to enable retrieval of roughly equal number of cells from 1 donor across variable 848 
mouse numbers (n=2-6). Given the high number of Kolf2-grafted mice (n=24), we only loaded 849 
2000 cells per Kolf2-grafted mouse. The LUNA dual fluorescence cell counter (Logos Biosystems, 850 
Villeneuve d’Ascq, France) was used to verify cell density and viability of the samples. Pooled 851 
cells were loaded onto a custom in-house HyDrop microfluidics droplet generator67. In short, the 852 
desired cell volume, the single cell barcoding mix and the barcoding gel beads were loaded 853 
separately into mineral oil-backed syringe tips and the droplet generating partition oil was also 854 
loaded into a separate syringe. Next, the syringes were loaded onto independent syringe pumps on 855 
the ONYX droplet platform (Atrandi Biosciences, Vilnius, Lithuania) and droplets were generated 856 
with the in-house developed HyDrop microfluidics chips67. The ability of fine-tuning the liquid 857 
flowrates with custom HyDrop microfluidics setup and the ability to observe real-time droplet 858 
encapsulation allows to get higher cell encapsulation efficiency and lower failures resulting from 859 
encapsulation anomalies.  860 

Single cell RNA-seq libraries were subsequently prepared using 10X Genomics Chromium 861 
Single Cell 3’ Kit, v3.1 NextGEM chemistry (CG000204 Rev D, 10X Genomics, Pleasanton, CA, 862 
USA) following manufacturer’s instruction. Hashtag oligo (HTO) libraries were prepared in 863 
parallel also following manufacturer’s instruction (BioLegend, Total-Seq A Antibodies and Cell 864 
Hashing with 10x Single Cell 3’ Reagent Kit V3.1 Protocol), using 16 cycles for the index PCR. 865 
The quality of the libraries was assessed using the Qubit (Thermo Fisher Scientific, Schwerte, 866 
Germany) and Bioanalyzer (Agilent Technologies, Santa Clara, USA). In total we created 24 867 
libraries for the hMG Village experiment, encompassing 33 mice in total, and 33 libraries for the 868 
single grafts, encompassing 99 mice in total. Libraries were sequenced aiming for 90% mRNA 869 
and 10% HTO libraries (55,000 total reads per cell) on a NovaSeq6000 (Illumina) with the read 870 
lengths recommended by 10X Genomics.  871 
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 872 

Data processing, quality control and dimensionality reduction 873 

The sequencing reads were aligned to a combined murine mm10 and human GRCh38 genome. 874 
Analysis of single cell sequencing data was conducted in R version 4.3.3 and Seurat V568. HTO 875 
computational deconvolution was done using Seurat. For the village grafts additional donor 876 
deconvolution was performed based on the unique SNP profile of each donor, using SoupOrCell37. 877 
This method assigns donor origins by comparing known SNPs between donors to those detected 878 
in the sequencing reads of individual cells. These cells are then clustered based on their SNP 879 
profile. Next, a mixture model is applied to assign a cell to the donor of origin, to identify if it is a 880 
genetically heterogeneous doublet, or conclude that insufficient information is available for a 881 
confident donor assignment. To validate the SNP-based deconvolution approach, we used data 882 
from the single grafted lines, as here individual mice are grafted with a single donor but also 883 
received a Total-Seq A cell hashtag, allowing us to compare the SNP-based deconvolution to 884 
antibody-based deconvolution. The overlap was on average 99% (data not shown).  885 

Next, we removed low-quality cells that could not be confidently assigned to a single 886 
donor, that had too few Total-Seq A cell hashtag reads to be confidently mapped back to their 887 
murine host, and those with more than 10% murine reads. Additionally, we used miQC69 to 888 
generate data-driven mitochondria percentage cut-offs for each sequencing library and removed 889 
any offending cells. For the village data, the proportions of cells retrieved from each donor were 890 
variable, but highly consistent across mice, and for those lines included in each village, quite 891 
consistent across villages (Fig.1B, Fig.S1A). Donors with fewer than 500 cells in the village data 892 
were dropped from the analysis (L234, BR89). For the single graft data, we dropped the cells from 893 
donor L262 as the data was derived from only 1 mouse.  894 

Next, we removed any cells with <200 features and >5000 features as they are indicative 895 
of uninformative cells and doublets, respectively. Finally, we performed an initial clustering of the 896 
cells and removed clusters of proliferating cells and contaminating border associated macrophages 897 
(Fig.S1B). After all quality control steps, we retained n=235,106 microglia from 29 human donors, 898 
grafted across 33 mice. 899 

The raw RNA counts from each sequencing libraries were normalized using SCTransform 900 
(SCT)70. Dimensional reduction was performed on the SCT residuals using Principal Component 901 
Analysis (PCA) and optimal PCA retention was determined by elbow plot analysis, retaining 902 
thirteen principal components (PCs). Sequencing batch effects were integrated out using 903 
Harmony71. Using the integrated space we constructed 2D UMAPs. These UMAPs were binned 904 
to produce the hexbin module score (see below) and donor density plots. For module scores (see 905 
below), each hexagon represents the mean module expression of all cells within that area of the 906 
UMAP. Patient density plots depict the total number of microglia in each hexagon relative to the 907 
total number of cells recovered from each donor. 908 
 909 
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WGCNA 910 

Modules of co-expressing genes were identified by Weighted Gene Co-expression Network 911 
Analysis (WGCNA72). Similarity scores were calculated using Pearson’s correlations among the 912 
5,000 most variable genes as identified by SCT. The default WGCNA approach was used to 913 
determine the power that best approximated a scale-free network topology, with a minimum cluster 914 
size of five and a default splitting parameter of two. This analysis yielded thirteen gene co-915 
expression modules, which were functionally annotated using overrepresentation analysis 916 
(Fisher’s exact test with Benjamini-Hochberg correction for multiple testing) by comparing their 917 
member genes to known microglial cluster markers as previously published20. 918 
 919 

Differential expression testing 920 

For the microglia village dataset, we analyzed differences in gene expression using a generalized 921 
linear mixed effects model (GLMM) with a negative binomial distribution, which allowed us to 922 
assess the impact of both biological and technical variables. Our experimental design included 923 
three reference donors in each sequencing batch and grafted village (L26, Kolf2, Burb1) to ensure 924 
the model remained identifiable. The model was applied directly to the unaltered count matrix. 925 
Sequencing batch and host sex were included as fixed effects within the statistical framework, 926 
while an offset was taken to control for sequencing depth. To account for the non-independence 927 
of cells from the same host animal, we included a random intercept for mouse host, thereby 928 
controlling for pseudo-replication and reducing false-positive discovery rates. We used 929 
glmmTMB73 to efficiently fit the model across the 10.000 most variable genes as determined by 930 
SCT. Genes that failed to converge or produced non-positive-definite Hessian matrices, mostly 931 
due to low coverage, were excluded from downstream analysis. Model in pseudo code:  932 
 933 𝑦 ∼ 𝑛𝑒𝑔𝑏𝑖𝑛(λ, φ) 934 𝑙𝑜𝑔(λ) ∼ 𝑑𝑜𝑛𝑜𝑟 + 𝑚𝑜𝑢𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 + 𝑑𝑜𝑛𝑜𝑟 ∗ 𝑚𝑜𝑢𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 + (𝑚𝑜𝑢𝑠𝑒 𝑖𝑑) + 𝑚𝑜𝑢𝑠𝑒 𝑠𝑒𝑥 +  𝑏𝑎𝑡𝑐ℎ + 𝑙𝑜𝑔 𝑑𝑒𝑝𝑡ℎ 935 ℎ𝑜𝑠𝑡 𝑖𝑑 ∼ 𝒩(μ, σ) 936 
 937 
From this model we extracted four contrasts of interest: 1) the donor effect: genes differentially 938 
expressed (DE) in one donor compared to the grand mean of all donors (i.e. the mean of all donor 939 
averages) only in AppHu mice reflecting basic genetic differences; 2) the average amyloid response: 940 
equivalent to the mouse host strain effect identifying DE genes between all hMG from AppNLGF 941 
mice versus AppHu mice; 3) the personalized amyloid response: equivalent to the donor*host strain 942 
interaction effect, quantifying how each donor deviates from the average amyloid response, that 943 
is, genes  significantly up- or downregulated in a specific donor relative to the cohort’s mean 944 
amyloid response; 4) the donor sex effect: the DE between all male and female donors. All 945 
contrasts were derived from the fitted model using the emmeans package in R74. The resulting 946 
parameter estimates were post-hoc corrected for donor sex using a simple linear model (given that 947 
sex is collinear with donor, it could not be fitted in the model), and adjusted p-values were derived 948 
from the corrected estimates and Benjamini-Hochberg FDR corrected to account for the inflation 949 
in false positives due to multiple testing.  950 
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Many differential expression methods for single cell sequencing data are known to have 951 
inflated false positive rates due to sample size inflation38. To evaluate the robustness of the model 952 
in controlling type I errors, we conducted a randomization experiment. Donor information was 953 
randomized while maintaining the same proportions within sequencing batches and mouse hosts, 954 
ensuring no true biological effects existed. We then performed a differential expression analysis 955 
(using the grand mean across all donors as a reference) assessing the impact of donor, while 956 
retaining potential confounding assignments like sequencing batch. Our model produced 957 
maximally 1 false-positive per comparison, indicating strong control over false positive rates 958 
(Fig.S1C). We compared this with the performance of the often-used Wilcoxon rank sum test 959 
(using donor Uaqe1 as a reference for the DE). This DE model produced thousands of false 960 
positives across donors, especially when comparing across sequencing batches (Fig.S1C). The 961 
Wilcoxon method assumes, in contrast to the GLMM method we applied here, statistical 962 
independence across cells. From a biological (baseline inter-mouse variability in gene expression) 963 
or technical perspective (e.g. batch effects) this is not tenable, and when Wilcoxon is used for the 964 
analysis of a large population (>250.000 cells) this results in many false positive changes as 965 
illustrated here (Fig.S1C).  966 

For the module-level differential expression analysis, we employed a linear mixed effects 967 
model (LMEM), using continuous module scores (eigengenes) derived from WGCNA. The same 968 
covariates and adjustments for sex differences were incorporated, maintaining consistency across 969 
analyses. 970 

 971 

Gene Set Enrichment Analysis 972 

To identify enriched pathways in our DE results and WGCNA modules, we employed the Fast 973 
Gene Set Enrichment Analysis (FGSEA) package75. Where possible we used the signed 974 
log10(pvalue) as the ranking metric to identify the enrichment of groups of genes in our differential 975 
expression based on their annotation in the Gene Ontology (Biological Processes) and KEGG 976 
databases. To examine the function of WGCNA modules, we compared the genes present in each 977 
module against these same databases using overrepresentation analysis (Fisher’s exact test). 978 

 979 

Comparing single grafts to village grafts 980 

The single graft experiment contained hMG from 16 donors that were xenotransplanted 981 
individually into AppNLGF mice (1 donor per mouse, 2-6 mice per donor). Cells from donor L262 982 
were dropped (see “Data processing, quality control and dimensionality reduction”). DE analysis 983 
was performed on this dataset (n=299,368 good quality hMG) comparing the transcriptome of each 984 
donor to that of L235, considering we had sufficient cells of L235 in both the single graft 985 
experiment (n=22,498) as well as in the village experiment (n=19,849). To make the village data 986 
comparable, we subsetted the village data to include only cells from the AppNLGF mice, and 987 
performed the DE analysis comparing each donor to L235. Next, the gene expression profile of 988 
each donor between the two datasets was compared using Pearson’s correlation. 989 
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 990 

Association analysis with the Magenta personalized amyloid response 991 

The association between the Magenta donor-specific amyloid response and AD status was assessed 992 
using a Welch Two Sample t-test comparing the mean log2 fold change (LFC) of all Magenta 993 
genes (sex-corrected) between AD patients and non-demented controls. Five donors with unknown 994 
AD status (HipSci cohort) were excluded from the analysis. We further investigated whether the 995 
mean LFC of the genes in the Magenta module in the personalized amyloid response (sex-996 
corrected) per donors were correlated with their polygenic risk scores using a Pearson's correlation.  997 

 998 

MHCII haplotyping 999 

DNA extraction was performed on iPSC pellets of the same donor and clone as used in the hMG 1000 
village experiments, using the PCI method. In short, cell pellets were lysed in cell lysis buffer 1001 
(10mM Tris (pH 8), 100mM NaCl, 10mM EDTA (pH 8), 10% SDS) containing proteinase K (20 1002 
mg/ml) for 1h at 56°C with agitation (1400rpm). After adding phenol:chlorophorm:isoamyl 1003 
alcohol (25:24:1, pH 7.8-8.2; Fluka Biochemika, cat# RA14615), vortexing for 1min and spinning 1004 
at max speed for 5min, the aqueous phase was removed into a fresh tube. Additional retrieval was 1005 
performed by adding elution buffer (10mM TrisHCl pH 8.5) to the cell lysate tube, vortexing and 1006 
spinning at max speed, and removing the additional aqueous phase, which was merged with the 1007 
initial aqueous phase. Next, equal volumes of chloroform:isoamyl alcohol (Sigma, cat# 0549-1PT) 1008 
was added to the aqueous phase, samples were vortexed and spun at max speed for 5 min, after 1009 
which the aqueous phase was again transferred to a clean tube. Ethanol precipitation was achieved 1010 
by adding 0.75M NH4OAc (final concentration) and 20 µg of GlycoBlue (Invitrogen, cat# 1011 
AM9516) to the sample, mixing and subsequently adding 2.5 volumes of 100% ethanol, mixing 1012 
and incubating at -80°C for 30min. After a 20 min spin at full speed at 4°C, the supernatant was 1013 
decanted, the samples were washed 2x in 80% ethanol and dried overnight at RT. Samples were 1014 
resuspended in 60°C elution buffer and stored at -20°C until further handling. Genotyping of all 1015 
samples to G-level resolution of the MHCII locus (exon 2 and 3 for HLA-A, -B, -C and exon 2 for 1016 
HLA-DRB1345, -DQA1, -DQB1, DPA1, -DPB1) was performed using the HiSeq sequencing system 1017 
(Illumina Inc., San Diego, USA). The IMGT/HLA allele database version 3.55.0 was used for 1018 
results reporting.  1019 
 1020 

Immunofluorescence on xenograft mouse brain 1021 

The left brain-hemisphere of the same mice used for the single graft hMG isolation were 1022 

immersion fixed overnight in 4% PFA and cut in 40 m thick sections on the vibratome. Sections 1023 
were permeabilized (15min, RT with shaking in PBS 0.2% Triton X100 (PBST)), stained with 1024 

X34 staining solution (10M final concentration in 40% ethanol in PBS (vol/vol) and 20mM 1025 
NaOH), washed 3x 2min with 40% ethanol in PBS (vol/vol) and 2x 5min with PBST, blocked in 1026 
blocking solution (5% donkey serum in PBST) for 1h at RT and incubated overnight with primary 1027 

antibody at 4C (anti-human HLA-DR/DQ/DP, 1/200, cat.# ab7856, Abcam) in blocking solution. 1028 
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After washing (3x 5min PBS), the sections underwent 2h of secondary antibody incubation at RT 1029 
(donkey anti-mouse Alexa647 (1/500, cat# A31571, Invitrogen) followed by washes (3x 5min 1030 

PBS), 1h blocking and another round of primary antibody incubation overnight at 4C (anti-human 1031 
CD9 biotin (1/100, cat.# 312112, Biolegend), anti-human P2RY12 (1/1000, cat.# HPA014518, 1032 
Atlas Antibodies)), followed by washes (3x 5min PBS), incubation with the secondary antibodies 1033 
for 2h at RT (donkey anti-rabbit 594 (1/500, cat.# A21207, Invitrogen), streptavidin 488 (1/500, 1034 
cat.# S32354, Thermo Scientific)) and mounting in Glycergel (C0563, Dako). Confocal images 1035 
were obtained using the Nikon AX inverted microscope driven by NIS software (v5.42.06), 1036 
exciting at 405, 488, 561 and 640nm and compiled using Fiji/Image J software.  1037 
 1038 

Quantification of MHCII in human brain samples 1039 

Human post-mortem brain 1040 
Brain tissue from 15 human autopsy cases was included for this study (Table S8). The clinical 1041 
Dementia Rating (CDR) score, reflecting the stage of cognitive and functional impairment, was 1042 
retrospectively assessed based on clinical files. Patients met the criteria for (a) symptomatic 1043 
Alzheimer’s disease (AD), defined by clinical signs of dementia and intermediate to high levels of 1044 
AD neuropathological changes (as described in 76), or (b) the absence of dementia symptoms along 1045 
with AD neuropathological changes. Autopsies were conducted at university or municipal 1046 
hospitals in Belgium (Leuven) and Germany (Bonn and Offenbach) in compliance with local laws. 1047 
Informed consent was obtained in accordance with local legislation. Ethical approval for the 1048 
recruitment protocols and collection of human brain tissue was granted by the ethical committees 1049 
of UZ Leuven (Belgium; S59292, S52791) and the University of Ulm (Germany, 58/08). The use 1050 
of the brain sample for the experiments reported here was approved by the ethical committee of 1051 
UZ-Leuven (S-59295, S-65147). The right hemisphere of the cerebrum, cerebellum, and the right 1052 
half of the brainstem were dissected for gross neuropathological examination and stored at -80°C. 1053 
The left cerebral hemisphere, left cerebellar hemisphere, and left half of the brainstem were fixed 1054 
in 4% aqueous or phosphate-buffered formaldehyde for 2 to 4 weeks, after which they underwent 1055 
dissection and gross neuropathological assessment. Tissue samples from the frontal cortex 1056 
(Brodmann area (BA) 6) were collected during autopsy.  1057 
 1058 
Chromogen immunohistochemistry on human post-mortem brain 1059 
Immunohistochemistry was performed on tissue samples from the frontal cortex. Information and 1060 
dilutions of the primary antibodies can be found in Table S9. Paraffin-embedded tissue sections 1061 
were deparaffinized and subjected to heat-induced epitope retrieval (pH 6.1) followed by 1062 
incubation with Envision Flex Peroxidase-Blocking Reagent (Dako) for 5 minutes. Tissue sections 1063 
were then incubated with primary antibodies overnight, followed by incubation with horseradish 1064 
peroxidase (HRP)-conjugated secondary antibodies (EnVision+ System HRP-Labelled Polymer 1065 
Anti-mouse, Dako) or biotinylated secondary antibody (REAL Detection System Alkaline 1066 
Phosphatase/RED Rabbit/Mouse, Dako) and subsequently alkaline phosphatase-conjugated 1067 
streptavidin for 30 minutes. MHCII antigen-antibody complexes were visualized using 3,3’-1068 
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Diaminobenzidine tetrahydrochloride hydrate (DAB; Liquid DAB+ Substrate Chromogen System, 1069 
Dako) or Vector SG Substrate Peroxidase (Vector SG Substrate Kit, Peroxidase (HRP), Vector 1070 
Laboratories), Fast-Red (REAL Detection System Alkaline Phosphatase/RED Rabbit/Mouse, 1071 
Dako) was used for the visualization of 4G8 immunoreactivity. CD3 antigen-antibody complexes 1072 
were visualized using DAB. Incubation with Envision Flex Peroxidase-Blocking Reagent (Dako) 1073 
was repeated before incubation with subsequent primary antibodies overnight. Slides were 1074 
counterstained with hematoxylin, dehydrated using an autostainer (Leica Biosystems), and 1075 
mounted with an automated cover-slipper and Leica CV mount (Leica Biosystems). Microscopic 1076 
images were captured using a Leica DFC7000 T camera (Leica Microsystems, Wetzlar, Germany) 1077 
mounted on a Leica DM2000 LED light microscope (Leica Microsystems). Image processing was 1078 
performed using ImageJ software (National Institutes of Health, Bethesda, USA) and Inkscape 1079 
(https://inkscape.org/). 1080 
 1081 
Quantification of microglia with MHC class II upregulation  1082 
Microglial cells immunoreactive to MHC class II were quantified in layer V/VI of the frontal 1083 
cortex, after immunohistochemical staining for HLA-DR/DP/DQ using Vector Substrate 1084 
Peroxidase, 4G8 using Fast-Red and CD3 using DAB. Only regions without infarcts, microinfarcts 1085 
or bleedings were considered for quantification. Microglial cells were morphologically 1086 
distinguished based on cell type-specific cytological features as described by García-Cabezas et 1087 
al.77. For each AD case, twenty regions of interest were determined with a diameter of 100 μm 1088 
around Aβ plaques, and twenty regions of interest of 100 μm in areas without Aβ plaques. For 1089 
non-AD cases, twenty regions of interest with a diameter of 100 μm were determined in areas 1090 
without Aβ plaques, containing glial cells. Images were taken using a 40x objective, mounted on 1091 
a Leica DM2000 LED microscope (Leica Microsystems). Cell counts were performed manually 1092 
using ImageJ software. 1093 
 1094 

hMG & T cell co-culture 1095 

Mice 1096 
H9 embryonic stem cells (WA09, WiCell, Madison, WI, USA) were differentiated into human 1097 
microglia precursor cells and xenotransplanted as described above (“Stem-cell-derived microglia 1098 
generation and xenotransplantation”) into AppHu mice and Rag2tm1.1Flv ; Csf1tm1(CSF1)Flv; 1099 
Il2rgtm1.1Flv/J; Apptm3.1Tcs; Csf1Rem1Bdes; AppNL-G-F/NL-G-F (1 from here on named AppNLGF-FIRE ), which 1100 
carry the fms-intronic regulatory sequence (FIRE sequence) deletion in intron 2 of the mouse 1101 
Csf1R gene, which genetically depletes all mouse microglia . At 5 (AppHu) and 8 months of age 1102 
(AppNLGF-FIRE) mice were sacrificed through an overdose of pentobarbital and intracardiac 1103 
perfusion with PBS-Heparin and the hMG were isolated from brain as described above (“Human 1104 
microglia isolation from mouse brain”). hMG were stained for viability with eF780 dye (Thermo 1105 
Fischer, cat. #65-0865-18) and Alexa Fluor 488 anti-human CD45 (cat. #304017, Biolegend); 1106 
PE/Dazzle 594 anti-human CD274 (PD-L1; cat. #329732, Biolegend)); PeCy7 anti-human HLA-1107 
DR (cat. #307616, Biolegend); Brilliant Violet 421 anti-human CD80 (cat. #305221, Biolegend); 1108 

https://inkscape.org/


 

 
 

41 

PE anti-human CD86 (cat. #305438, Biolegend); APC anti-human HLA A/B/C (cat. #307616, 1109 
Biolegend). Precision Counting beads (cat. #424902, Biolegend) were added before acquisition. 1110 
Samples were acquired and counted on a BD FACSymphony A1 (BD Biosciences) and analyzed 1111 
using FlowJo (BD Biosciences). 1112 
 1113 
Peripheral blood mononuclear cell isolation 1114 
Buffy coat samples from healthy donors were obtained from the Red Cross Donor Center 1115 
Mechelen, Belgium and approved by the Ethics Committee of the University Hospitals Leuven, 1116 
Belgium (study protocol S68611). Peripheral blood mononuclear cells were obtained by Ficoll 1117 
density centrifugation (Axis-Shield, 1114545) and washed in PBS containing 1 mM EDTA. The 1118 
ring at the interface was collected, washed with PBS, counted and frozen at 50x106 cells/mL in 1119 
FCS 10%DMSO at -150°C. 1120 
 1121 
In vitro human T cell assay 1122 
For mixed leukocyte reaction (MLR) experiments, human T cells were isolated from frozen 1123 
PBMCs using the Naive Pan T Cell Isolation Kit (Miltenyi, cat. #130-097-095). T cells were plated 1124 
on top of hMG at a ratio 5:1.  1125 

For proliferation and activation assessment, isolated Naive Pan T cells were labeled with 1126 
5µM Cell Trace Violet (CTV; Thermo Fischer, cat. #C34557) for 15 min at 37°C and cultured 1127 
with hMG. At day 5, cells were collected and stained for viability with eF780 dye (Thermo Fischer, 1128 
Cat# 65-0865-18) and extracellular markers APC anti-human CD45RO (cat. #304210, Biolegend); 1129 
FITC anti-human CD8 (cat. #344704, Biolegend); PE/Cy7 anti-human CD45RA (cat. #304126, 1130 
Biolegend); PerCP/Cy5.5 anti-human CD4 (cat. #300530, Biolegend)) in PBS, 3% FCS, 2mM 1131 
EDTA. Samples were acquired on a BD FACSymphony A1 (BD Biosciences) and analyzed using 1132 
FlowJo (BD Biosciences).  1133 

For the study of cytokines produced by T cells, CytoStim (Miltenyi, cat. #130-092-172) 1134 
was added during all the coculture, according to manufacturer’s instructions. At day 5, cells were 1135 
collected and restimulated for 5h at 37°C with Cell Stimulation Cocktail (cat. #00-4970-03, 1136 
Thermo Fischer) in presence of Brefeldin A (cat. # 420601, Biolegend) and Monensin (Thermo 1137 
Fischer, Cat# 00-4505-51). Cells were stained for viability with eF780 dye and extracellular 1138 
markers APC anti-human CD45RO (cat. #304210, Biolegend); FITC anti-human CD8 (cat. 1139 
#344704, Biolegend); PerCP/Cy5.5 anti-human CD4 (cat. #300530, Biolegend) in PBS 3%FCS 1140 
2mM EDTA. For intracellular staining the cells were fixed and permeabilized using Transcription 1141 
Factor Staining Buffer Set (cat. #00-5523-00, Thermo Fischer) according to manufacturer’s 1142 
instructions. The cells stained with PE anti-human IFNϒ (cat. #502510; Biolegend); BV421 anti-1143 

human IL-2 (cat. #500328, Biolegend); Brilliant Ultra Violet 737 TNFα (cat. #367-7349-42, 1144 
Thermo Fischer)). Samples were acquired using BD LSRFortessa X20 (BD Biosciences) and 1145 
analyzed using FlowJo (BD Biosciences).  1146 
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 1147 

Statistics 1148 

Depending on the normality of the residuals and the equality of variances of the data, unpaired 1149 
parametric t-test with or without Welch’s correction or Mann-Whitney U tests were applied with 1150 
Dunn’s post-hoc testing where applicable, as indicated in the respective figure legends, with 1151 

=0.05.  1152 
 1153 
  1154 
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Supplementary Text 1 (ST1) 1155 

Sex differences in microglial biology have been reported in both mice and humans, yet their 1156 
transcriptional impact in the context of natural human genetic diversity remains incompletely 1157 
understood. To examine the effect of donor sex on human microglia function, we compared single-1158 
cell transcriptomes from male and female donors across all experimental conditions. We identified 1159 
1,735 significantly upregulated genes and 4,201 downregulated genes in hMG from female 1160 
compared to male donors (see Fig.1C & Table S1). Among the most enriched transcripts in female 1161 
microglia were multiple X-linked genes (XACT, PRKX, ZFX, JPX), as well as MHCI and MHCII 1162 
genes (e.g HLA-A, HLA-B, HLA-DRA, -DRB1, -DQB1, CD74). Additional upregulated genes 1163 
included members of the AD-associated MS4A locus (MS4A6A, MS4A4A, MS4A7, MS4A6E), cell-1164 
surface receptors (CLEC17A, TLR7, TLR2, TNFRSF11A), cytokines and chemokines (TNFSF18, 1165 
CXCL10, CCL20, IL1A) and interferon signaling genes (IFI27, IFI22L, ISG15, MX1; see Table 1166 
S1).  1167 

Gene ontology and KEGG pathway analyses confirmed overrepresentation of immune-1168 
related pathways in female microglia including antigen processing and presentation, cytokine 1169 
signaling, and cell adhesion (Fig.S2A, Table S2). Conversely, male microglia showed increased 1170 
expression of several Y-linked genes (UTY, NLGN4Y, USP9Y, TTTY14), as well as genes encoding 1171 
glycoproteins (TNR, GP7), transcriptional regulation (TOX, ZNF556) and cell adhesion (CADM2, 1172 
CDH10, PCDHGA10). These findings suggest that human donor sex influences core 1173 
immunological features of microglial identity—including MHC expression and cytokine 1174 
responsiveness—and highlight the importance of accounting for sex as a biological variable in 1175 
genetically diverse human microglia models. 1176 

 1177 

 1178 

  1179 
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Supplementary figure legends 1180 

Fig. S1. Quality checks and statistical models 1181 

(A) Proportion of cells per donor (as a percentage) across all mice within a single village. Note 1182 
that the top 3 lines were included in all three hMG villages.  1183 
(B) Initial UMAP highlights the hMG (black) that were kept and the CNS-associated macrophages 1184 
(CAMs; red) and proliferating cells (blue) that were removed from the analysis. 1185 
(C) Comparison of statistical methods for differential expression analysis on randomized versus 1186 
real data (see Methods). Left panel (Green): generalized linear mixed effects model (GLMM) 1187 
applied to true donor-labeled data across both AppHu and AppNLGF mice reveals substantial donor-1188 
specific variation (using the grand mean across all donors (i.e. the average of donor averages) as a 1189 
reference for the DE analysis). Middle panel: GLMM applied to randomized donor assignments, 1190 
preserving batch and host proportions (using the grand mean across all donors as a reference for 1191 
the DE analysis). As expected, DEG counts approach zero. Right panel (pink): the widely-used 1192 
Wilcoxon test applied to randomized donor assignments (using Uaqe1 as a reference for the DE 1193 
analysis). Despite no true biological signal, this method yields spurious DEG calls in the current 1194 
experiment (also in a sequencing batch dependent manner), illustrating that without mixed-effect 1195 
modeling one would inflate false positive rates. 1196 
(D) Correlation analysis comparing the anchor lines across the three different villages and with its 1197 
mean across all 3 villages. Correlations for Kolf2 are low for Village 1, due to low cell number 1198 
(n=310), as demonstrated by (E).  1199 
(E) Subsampling of donor BR64 to series of ~300 cells demonstrates that drops in correlation 1200 
across different subsamples are predominantly due to low cell number, not due to intervillage 1201 
variation, given that BR64 was only grafted within village #3.  1202 
(F) Overview of the statistical comparisons that were conducted in this study, showcasing a subset 1203 
of donors and HLA-DBQ1 expression as example (AppHu: SCT normalized expression data; 1204 
AppNLGF: expression values extrapolated from the DE model). “Donor effect” (left panel): 1205 
assesses to what extent HLA-DQB1 expression of a single donor only in AppHu mice deviates 1206 
significantly (depicted with the double-sided arrows) from the average HLA-DQB1 expression 1207 
across all donors (dashed vertical line; representing the average of donor means). “Strain effect” 1208 
(middle panel): assesses HLA-DQB1 expression in all donor cells derived from AppHu mice and 1209 
compares that to all donor cells derived from AppNLGF mice. “Strain*Donor effect” (right panel): 1210 
assesses whether specific donors deviate significantly (depicted with the double-sided arrows) 1211 
from the main strain effect (dashed vertical line, derived from left panel). The same statistical 1212 
concepts are applied on WGCNA module data.  1213 

 1214 

  1215 
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Fig. S2. Major transcriptional differences between male and female hMG 1216 

(A) Gene set enrichment analysis of sex-associated DEGs using GO Biological Process (GOBP) 1217 
and KEGG pathway terms. Selected terms with Benjamini-Hochberg-adjusted p<0.05 are 1218 
highlighted. See also Table S2.  1219 

 1220 

Fig. S3. Correlation structure among gene expression modules across all hMG 1221 

(A) Pearson correlation matrix of WGCNA module scores averaged across all 235,106 hMG. 1222 
Nearly all pairwise correlations are statistically significant after BH correction due to the high 1223 
numbers. Modules associated with immune activation (e.g., Magenta, Brown, Pink) show positive 1224 
correlations, while others such as Greenyellow (motility) exhibit anti-correlation with these 1225 
immune modules, reflecting structured and combinatorial gene program usage across microglia. 1226 
(B) Network representation of the correlation structure depicted in A, showing only positive 1227 
correlations. Size of the nodes represent the strength of the correlation. The Greenyellow module 1228 
seems to branch out into 2 separate responses, one involving cytokine release and innate immunity 1229 
responses, and the other involving ribosomal and mitochondrial changes together with huDAM 1230 
and MHCII responses.  1231 

 1232 

Fig. S4. Donor-specific profile of WGCNA module induction in the control brain 1233 

Z-score shifts in module expression across all 29 donors in AppHu mice. Each panel represents one 1234 
WGCNA module. The x-axis denotes z-score shift in module expression relative to the average 1235 
hMG baseline across all donors (solid black line at x = 0), with 1 unit corresponding to one standard 1236 
deviation. For reference, the average AppNLGF module expression (from Fig. 3) is indicated in the 1237 
top row and as a dashed line. Each diamond on the y-axis represents the donor’s mean module 1238 
expression across all cells (error bars: 95% confidence interval). Black diamonds indicate 1239 
significant deviation from the AppHu average (BH adjusted p < 0.05); grey diamonds: not 1240 
significant. Density plots above each panel show the overall distribution of module z-scores across 1241 
all AppHu hMG.  1242 

 1243 

Fig. S5. Plaque exposed hMG show enhanced MHCII expression in mouse xenograft and AD 1244 
postmortem brain 1245 

(A) Immunofluorescence on the L23 line xenotransplanted in the AppNLGF mouse at 6 months 1246 
of age, highlighting plaque pathology (X34, yellow), hP2RY12 (gray), hCD9 (cyan) and hMHCII 1247 

(HLA-DR/DQ/DP, magenta). Scalebar = 50m.  1248 
(B) Chromogen immunohistochemical staining for MHCII (HLA-DR/DP/DQ, brown), and Aβ 1249 
(4G8, red) in frontal cortex of symptomatic AD cases (n=8) and non-demented controls (non-AD, 1250 
n=7). Representative images are shown for each group. Arrowheads: MHCII-positive microglia 1251 
around Aβ plaques. Full arrows: MHCII-positive microglia not accumulating at an Aβ plaque.  1252 
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(C) Quantifications are performed in 100m circular regions of interest in areas containing Aβ 1253 
plaques (AD, n=8), or no Aβ plaques (AD, n=8, and non-AD, n=7). The total number of MHCII-1254 
positive microglia per donor are summed up over all regions of interest. The Kruskal-Wallis test 1255 
was performed followed by Dunn’s multiple comparisons test (p-values indicated on graph). 1256 
(D) Chromogen immunohistochemical staining for MHCII (HLA-DR/DP/DQ, brown), and CD4 1257 
T cells (red) in frontal cortex and white matter of a symptomatic AD case, showing little 1258 
parenchymal CD4 T cells in AD brain. Full arrows: CD4-positive T cell in the extravascular space.  1259 

 1260 

Fig. S6. Activation of allogenic naïve T cells by amyloid plaque exposed H9-hMG ex vivo  1261 

(A) Purity of naïve T cell populations, as measured by CD45RA-positivity, before and after 1262 
enrichment for CD4+ and CD8+ T cells. 1263 
(B) Experimental overview of the ex vivo hMG & human T cell co-culture experiment, where H9-1264 
derived xenotransplanted hMG are isolated from either the AppHu or the AppNLGF-FIRE brain and 1265 
co-cultured in a mixed leukocyte reaction with PBMC-isolated naïve T cells (1:5 ratio), after which 1266 
the T cells are assessed for cytokine production and activation & proliferation. 1267 
(C-D) Proliferation of CD45ROpos CD8pos T cells (C) and CD45ROpos CD4pos T cells (D) after 5-1268 
day co-culture with hMG from AppHu (n=5) and AppNLGF-FIRE (n=6) mouse brain using Cell Trace 1269 
Violet (CTV). Left panel: gating strategy; right panel: normalized quantification (to AppHu). 1270 
Unpaired parametric t-test, p-value indicated on graph.  1271 

(E-F) Production of TNF, IFN and IL-2 by CD8pos T cells (E) and CD4pos T cells (F) after 5-1272 
day co-culture with hMG from AppHu (n=5) and AppNLGF-FIRE (n=6) mouse brain and stimulation 1273 
with Cytostim. Left panel: gating strategy; right panel: normalized quantification (to AppHu). 1274 
Unpaired Mann-Whitney U test (E); unpaired t-test with Welch’s correction (F); p-values indicated 1275 
per graph. 1276 

 1277 

Fig. S7. Donor-specific induction of WGCNA modules in response to Aβ pathology 1278 

Z-score shifts in module expression for each donor relative to the average AppNLGF amyloid 1279 
response (dashed line, and “NLGF” diamond (red when significant) in top row, derived from Fig.3) 1280 
and the donor’s baseline module expression in AppHu controls (solid black line at x=0). Each panel 1281 
represents one WGCNA module. X-axis indicates z-score shift in module expression (1 unit = 1 1282 
standard deviation); Y-axis shows each donor’s mean module score across all hMG (error bars = 1283 
95% confidence interval). Black diamonds: donors with significant deviation from the average 1284 
AppNLGF response (BH adjusted p < 0.05); grey diamonds: not significant. Top density plot shows 1285 
the overall distribution of module z-scores across all hMG from AppNLGF. 1286 
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 1287 

Fig. S8. Donor-specific transcriptional profiles are preserved in village versus single-donor 1288 
grafts 1289 

(A) Correlation between differentially expressed gene profiles for each donor line, either 1290 
xenotransplanted individually or as part of a hMG village. Differential expression was calculated 1291 
relative to the donor L235 in both conditions. Correlation for L234 was low due to low cell 1292 
numbers (<500) in the Village condition (see Methods).  1293 

 1294 

Fig. S9. PRS correlations 1295 

(A) Correlation between PRS excluding the APOE locus (p-value threshold (pT)<0.05) and the 1296 
Magenta module score in the donor-specific response to amyloid pathology with the donors from 1297 
the HipSci cohort (blue, R=0.71, p=0.17) showing the same tendency as Fig.5C.  1298 
(B) Pearson correlation (R=0.26, p=0.17) between PRS (excluding APOE locus, p-value threshold 1299 
(pT)<0.05) and the Magenta module score in the donor-specific profile in the physiological brain 1300 
environment (hMG from AppHu mice). 1301 
 1302 
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