Supplementary Information

Transcriptomic Modulation by Exosomes Derived from Human Adipose Stem Cells in

Neuronal Cells: Insights from mRNA Sequencing Analysis

Ekkaphot Khongkla^{1,4}*, Kornkanok Promtap¹, Jitrawadee Meerasri², Pornphawit Mo-Mai²,

Wasutorn Chankamngoen^{3,4}, Naraporn Sirinonthanawech⁴, Banthit Chetsawang^{1,4}

¹Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University,

Nakhon Pathom, Thailand

² Mahidol University Frontier Research Facility (MU-FRF), Nakhon Pathom, Thailand

³ Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University,

Salaya, Nakhon Pathom, Thailand

⁴ Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand

*Corresponding author: Ekkaphot.kho@mahidol.ac.th

Supplementary Files 1 3D video on exosome uptake

Supplementary Files 2 Expression result

Supplementary Files 3 DEG analysis

Supplementary Files 4 Uncropped western blot images

Supplementary Table 1 List of mouse primers for qRT-PCR.

Target	Forward 5'→ 3'	Reverse 5'→ 3'
p21	AATCTGCGCTTGGAGTGATAG	CTTGTCGCTGTCTTGCACT
p16	TTGGCCCAAGAGCGGGGACA	GCGGGCTGAGGCCGGATTTA
NF-κB	ACCTTTGCTGGAAACACACC	ATGGCCTCGGAAGTTTCTTT
IL6	TACCACTTCACAAGTCGGAGGC	CTGCAAGTGCATCATCGTTGTTC
GDF15	AGCCGAGAGGACTCGAACTCAG	GGTTGACGCGGAGTAGCAGCT
GAPDH	TGTGTCCGTCGTGGATCTGA	CCTGCTTCACCACCTTCTTGA

Supplementary Table 2 Software list

Tools	Description	Linkages
HISAT2	A spliced read mapper for RNA-Seq	http://ccb.jhu.edu/software/hisat2/index.shtml
StringTie	Transcript assembly for RNA-Seq	https://ccb.jhu.edu/software/stringtie/index.shtml
ASprofile	ASprofile is a suite of programs for	http://ccb.jhu.edu/software/ASprofile/
	extracting, quantifying and comparing	
	alternative splicing (AS) events from RNA-	
	seq data	
BLAST	Basic Local Alignment Search Tool	http://blast.ncbi.nlm.nih.gov/Blast.cgi
DESeq	An R package for RNA-Seq Differential	http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
	Expression Analysis based on a model	
	using the negative binomial distribution	
EBSeq	An R package for RNA-Seq Differential	https://www.biostat.wisc.edu/~kendzior/EBSEQ/
	Expression Analysis based on Bayesian	
	approach	
Cytoscape	An open-source software platform for	http://www.cytoscape.org/
	visualizing complex networks	
topGO	An R package for gene ontology	The bioinformatic analysis software not given in the report
	enrichment analysis	
rMATs	MATS is a computational tool to detect	http://rnaseq-mats.sourceforge.net/
	differential alternative splicing events from	
TEDOL	RNA-Seq data.	
TFBStools	An R package for the analysis and	http://www.bioconductor.org/packages/release/bioc/html/TFBSTools.html
	manipulation of transcription factor binding	
	sites.	

Supplementary Table 3 Database list

Database	Description	Homepage		
NR	non-redundant protein sequence database	ftp://ftp.ncbi.nih.gov/blast/db/		
Swiss-Prot	A manually annotated, non-redundant protein sequence database	http://www.uniprot.org/		
GO	Gene Ontology database	http://www.geneontology.org/		
COG	The database of Clusters of Orthologous Groups of proteins	http://www.ncbi.nlm.nih.gov/COG/		
KOG	The database of Clusters of Protein homology	http://www.ncbi.nlm.nih.gov/KOG/		
Pfam	The database of Homologous protein family	http://pfam.xfam.org/		
KEGG	The database of Kyoto Encyclopedia of Genes and Genomes	http://www.genome.jp/kegg/		
STRING	Search Tool for the Retrieval of Interacting Genes/Proteins	http://www.string-db.org/		
Ensembl	Database Sscrofa10.2 download from	http://asia.ensembl.org/index.html		
Cosmic	COSMIC, is the world's largest and most comprehensive resource for exploring the impact of somatic mutations in human cancer.	https://cancer.sanger.ac.uk/cosmic		
JASPAR	Database of transcription factor binding profiles	http://jaspar.genereg.net/		

Supplementary Table 4 Description on annotation databases

Database name	Database description			
NR database	Non-redundant protein database in NCBI, including Swissprot, PIR (Protein Information Resource), PRF (Protein Research Foundation), PDB (Protein Data Bank) protein database and CDS from GenBank and RefSeq			
Swissprot database	A database maintained by EBI (European Bioinformatics Institute) containing a collated database of protein annotation information with relevant references and high credibility			
COG database	A database for homologous classification of gene products. It is an early database for the identification of orthologous genes, which is obtained by comparing a large number of protein sequences of various organisms.			
KOG database	For eukaryotes, homologous genes from different species are divided into different Ortholog clusters based on gene orthologous relationships and evolutionary relationships. Currently, KOG has 4852 classifications. Genes from the same Ortholog have the same function, so that functional annotations can be directly inherited to other members of the same KOG cluster.			
Pfam database The most comprehensive classification system for protein do annotations. Proteins are composed of domains, and the protein seque of each particular domain are somewhat conserved. Pfam divides the protein into different protein families, and establishes an HMM statismodel of the amino acid sequence of each family through alignment of protein domain into different protein families.				
GO database	The internationally standardized gene function classification system provides a dynamically updated standard vocabulary to fully describe the functional properties of genes and gene products in organisms. There are three main categories of the database, namely molecular function, cellular component and biological process, each describing the molecular function that the gene product may perform, and the cellular environment and Participation in biological processes. The most basic concept in the GO database is Term, each entry has a Term name, such as "cell", "fibroblast growth factor receptor binding" or "signal transduction", with a unique number, like GO:nnnnnn			
KEGG database	A database that systematically analyzes the metabolic pathways of gene products in cells and the function of these gene products. It integrates data on genomics, chemical molecules, and biochemical systems, including PATHWAY, DRUG, DISEASE, GENES, and GENOME. Using this database helps to study the genes and their expressions as a whole network.			

Supplementary Table 5 Sample information for mRNA-sequencing

#ID	read1_name	read2_name		
CTL1	Unknown_CP734-001T0001_good_1.fq	Unknown_CP734-001T0001_good_2.fq		
CTL2	Unknown_CP734-001T0002_good_1.fq	Unknown_CP734-001T0002_good_2.fq		
CTL3	Unknown_CP734-001T0003_good_1.fq	Unknown_CP734-001T0003_good_2.fq		
DG1	Unknown_CP734-001T0004_good_1.fq	Unknown_CP734-001T0004_good_2.fq		
DG2	Unknown_CP734-001T0005_good_1.fq	Unknown_CP734-001T0005_good_2.fq		
DG3	Unknown_CP734-001T0006_good_1.fq	Unknown_CP734-001T0006_good_2.fq		
DGEx1	Unknown_CP734-001T0007_good_1.fq	Unknown_CP734-001T0007_good_2.fq		
DGEx2	Unknown_CP734-002T0001_good_1.fq	Unknown_CP734-002T0001_good_2.fq		
DGEx3	Unknown CP734-001T0008 good 1.fq	Unknown_CP734-001T0008_good_2.fq		

Note: #ID:sample name; read1_name & read2_name:Double-ended fq file name corresponding to the sample name.

Supplementary Table 6 Sequencing data Statistics

#SampleID	ReadSum	BaseSum	GC (%)	N (%)	Q20(%)	Q30(%)
CTL1	19829143	5.92E+09	49.79	0	99.85	98.76
CTL2	21755225	6.49E+09	49.61	0.02	98.79	94.99
CTL3	20372686	6.08E+09	50.05	0.01	98.89	95.36
DG1	21125385	6.3E+09	50.13	0.02	98.68	94.72
DG2	20400624	6.09E+09	49.45	0.01	98.86	95.38
DG3	21236873	6.34E+09	49.99	0.01	98.86	95.25
DGEx1	20293541	6.07E+09	51	0.01	98.86	95.34
DGEx2	22084086	6.6E+09	50.47	0.01	98.88	95.42
DGEx3	21632825	6.47E+09	50.54	0.02	98.76	94.88

Note:

(1) Samples: Sample name;

(2) Clean reads: Counts of clean PE reads;

(3) Clean bases: total base number of Clean Data;

(4) GC content: Percentage of G, C in clean data.

(5) ≥Q30%: Percentage of bases with Q-score no less than Q30.

Supplementary Table 7 Statistics on data mapping

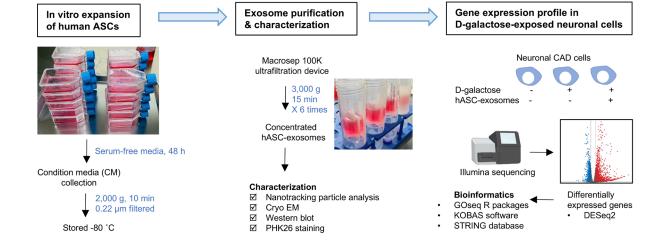
Sample	Total Reads	Mapped Reads	Uniq Mapped Reads	Multiple Map Reads	Reads Map to '+'	Reads Map to '-'
CTL1	39658286.00	38,044,113	34,888,310	3,155,803	21,010,023	20,993,585
		(95.93%)	(87.97%)	(7.96%)	(52.98%)	(52.94%)
CTL2	43510450.00	41,393,251	37,893,988	3,499,263	22,871,461	22,866,541
		(95.13%)	(87.09%)	(8.04%)	(52.57%)	(52.55%)
CTL3	40745372.00	38,677,910	35,553,675	3,124,235	21,295,490	21,287,769
		(94.93%)	(87.26%)	(7.67%)	(52.26%)	(52.25%)
DG1	42250770.00	39,691,063	36,595,130	3,095,933	21,802,760	21,777,413
		(93.94%)	(86.61%)	(7.33%)	(51.60%)	(51.54%)
DG2	40801248.00	36,265,809	33,538,161	2,727,648	19,846,596	19,838,251
		(88.88%)	(82.20%)	(6.69%)	(48.64%)	(48.62%)
DG3	42473746.00	40,196,814	37,046,210	3,150,604	22,077,305	22,054,631
		(94.64%)	(87.22%)	(7.42%)	(51.98%)	(51.93%)
DGEx1	40587082.00	38,649,165	36,097,856	2,551,309	20,979,844	20,966,220
		(95.23%)	(88.94%)	(6.29%)	(51.69%)	(51.66%)
DGEx2	44168172.00	42,202,397	38,900,197	3,302,200	23,169,263	23,155,199
		(95.55%)	(88.07%)	(7.48%)	(52.46%)	(52.43%)
DGEx3	43265650.00	41,261,149	38,326,028	2,935,121	22,508,378	22,494,249
		(95.37%)	(88.58%)	(6.78%)	(52.02%)	(51.99%)

Note:

Sample: sample ID in system;

Total Reads: Counts of Clean Reads, counted as single end;

Mapped Reads: Counts of mapped reads and the proportion of that in clean data;


Uniq Mapped Reads: Counts of reads mapped to a unique position on reference genome and proportion of that in clean data;

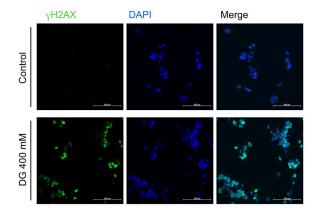
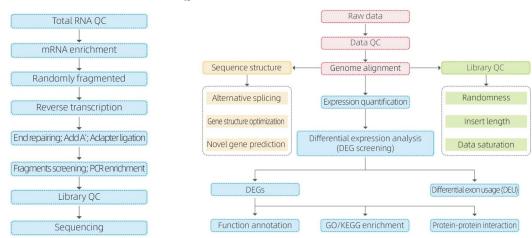
Multiple Mapped Reads: Counts of reads mapped to multiple positions on reference genome and proportion of that in clean data;

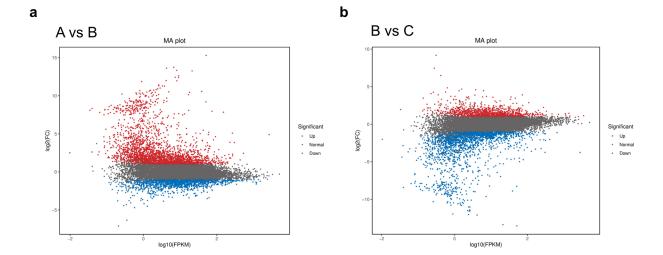
Reads Map to '+': Counts of reads mapped to the sense chain and the proportion of that in clean data;

Reads Map to '-': Counts of reads mapped to antisense chain and proportion of that in clean data.

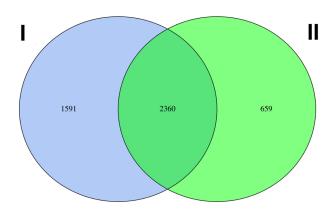
Schematic overview of experimental workflow for assessing the transcriptomic effects of hASC-derived exosomes on D-galactose–induced neuronal cells. Human adipose-derived stem cells (hASCs) were exposed to serum-free medium for 48 h, and the conditioned media (CM) were collected, centrifuged (2,000 g, 10 min), and filtered (0.22 µm) prior to storage at –80 °C. Exosomes were subsequently purified and concentrated from CM using a Macrosep 100K ultrafiltration device with repeated centrifugation (2,000 g, 15 min, 6 cycles). Purified hASC-derived exosomes were characterized by nanoparticle tracking analysis, cryo-electron microscopy (cryo-EM), Western blot, and PKH26 staining. For transcriptomic analysis, neuronal CAD cells were divided into three groups: untreated cells (A), D-galactose–treated cells (B), and D-galactose plus hASC-exosome—treated cels(C). Total RNA was extracted and subjected to Illumina sequencing, followed by bioinformatics analysis.

D-galactose induced DNA-damage response in neuronal CAD cells. The CAD cells were exposed to D-galactose (DG, 400 mM) for 24. The immunocytochemistry stained for γ-H2AX, a marker of DNA damage showed the increased number of the γ-H2AX-positive cells after DG exposure. DAPI stained for nucleus. Scale bar is 100 μ m.

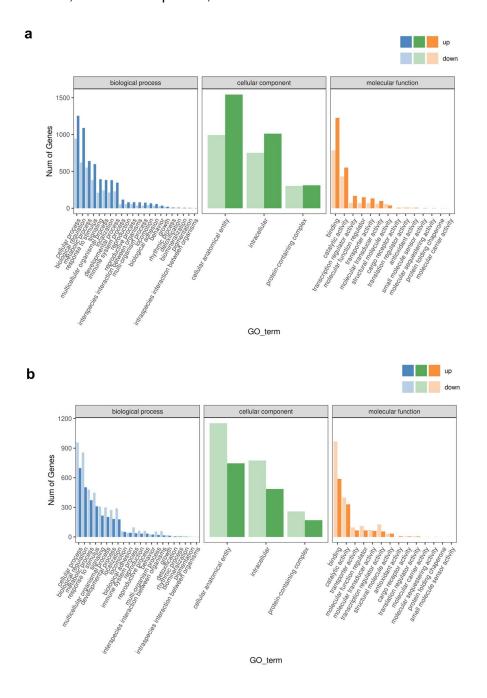

Diagram showing the workflow of bulk mRNA-sequencing and downstream analysis. (a) the sequential steps of mRNA isolation, enrichment, and preparation for mRNA-sequencing analysis. (b) The diagram showing the post-sequencing steps including data quality control (QC), genome alignment, expression quantification, differential expression analysis, and functional annotation.

a b



MA plots illustrating the overall distribution of gene expression of the mRNA-seq data.

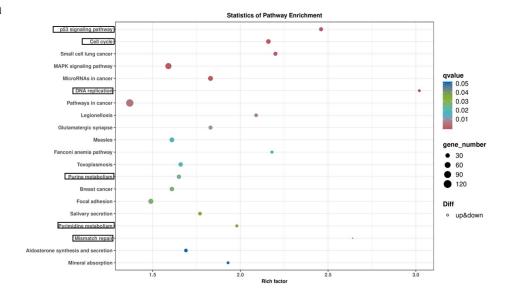
MA plot of the gene expression and fold change of expression levels between (a) A vs B, and (b) B vs C samples. Note that each dot represents a single gene. X-axis represents values of log2 (FPKM). Y-axis represents values of log2(FC). The dots colored in red and blue stand for significant up-regulated and down-regulated genes respectively. Black dots stand for the genes without significant difference in expression between two samples. A: Untreated cells, B: D-galactose-induced cells, C: DG+ hASC-exosome treated cells.

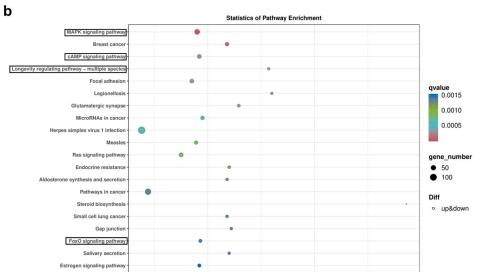

Venn Diagram showing the number of unique DEGS (1,597 and 659) between each comparing group and overlapping DEGs (2,360). I represents a total number of DEGS between A vs B, while II represents a total number of DEGs between B vs C. A: Untreated cells, B: D-galactose-induced cells, C: DG+ hASC-exosome treated cells.

I: A (untreated) vs B (D-galactose-treated)

II: B vs C (hASC-exosome and D-galactose treated)

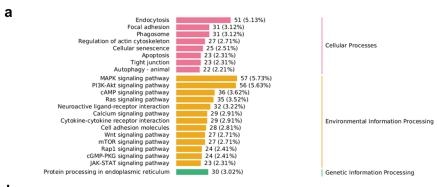
Gene Ontology (GO) classification of DEGs in each comparing group including (a) A vs B, and (b) B vs C. The bar graph illustrates the number of upregulated (dark color) and downregulated (lighter color) genes associated with each GO category, including Biological Process, Cellular Component, and Molecular Function.

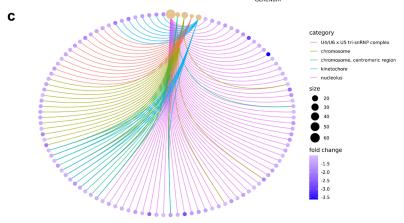



red denotes higher significance).

KEGG pathway enrichment analysis of total DEGs identified from each comparing group.

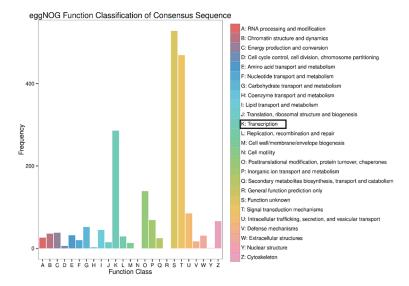
(a) KEGG pathway enrichment analysis of total DEGs from group B vs C. Key pathways such as p53 signaling pathway, Cell cycle, DNA replication, and Pyrimidine metabolism are highlighted. (b) KEGG pathway enrichment analysis of total DEGs from group B vs C. Key pathways such as MAPK signaling pathway, cAMP signaling pathway, Longevity regulating pathway, FoxO signaling pathway, and Estrogen signaling pathway are highlighted. The scatter plot displays enriched pathways based on the Rich factor (x-axis), with the number of genes involved represented by the size of each dot and the q-value indicated by color (from blue to red, where

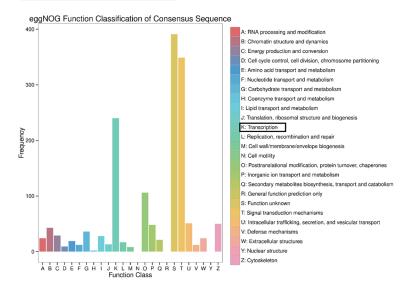




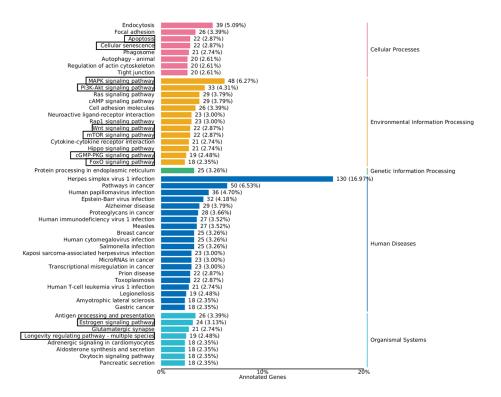
Rich factor

Functional enrichment analysis of differentially expressed genes in A vs B. (a) KEGG pathway enrichment analysis of upregulated DEGs. The bar chart displays the percentage and number of annotated genes associated with significantly enriched pathways. (b) GO term enrichment analysis of downregulated DEGs. Bar chart showing significantly enriched Biological Process. The x-axis indicates the number of genes (GeneNum) associated with each term, and bar colors reflect statistical significance (q-values). (c) Network diagram illustrating gene-to-process associations of the downregulated DEGs, focusing on Cellular Component categories. Genes are connected to their respective biological processes, with color-coded categories. Fold change values are represented by shades of blue, suggesting key structural regions affected by gene downregulation under D-galactose exposure in neuronal cells.





The eggNOG functional classification of consensus sequences of DEGs. The bar chart displays the frequency of sequences assigned to various functional categories (A–Z) based on eggNOG annotations. (a) eggNOG functional classification of consensus sequences of upregulated DEGs from group A vs B. The upregulated DEGs from group A vs B are enriched in transcription-related functions. (b) eggNOG functional classification of consensus sequences derived from downregulated DEGs between group B and group C. Notably, category K (Transcription) is highlighted, indicating a marked reduction in transcription-related functions. This suggests a shutdown of transcriptional activity, consistent with a broader suppression of gene expression in group B compared to group C.


a Upregulated genes in A vs B

b Downregulated genes in B vs C

KEGG pathway enrichment analysis of downregulated DEGs between group B vs C. The bar chart displays the number and percentage of genes annotated to significantly enriched pathways across multiple functional categories, including apoptosis and cellular senescence. Highlighted cellular processes (square) are apoptosis and cellular senescence and age-implicated pathways

