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1 Theoretical Model

A mechanical model of the flexible riser carcass layer under flat-plate compres-
sion is first established, as illustrated in Figure 1. Owing to the geometric sym-
metry of the carcass cross-section, only one-quarter of the structure is considered
in the subsequent analysis to simplify the model. The structure is idealised as
a curved beam spanning from point A to point B.

When a longitudinal compressive force F is applied to the plate, the inter-
nal force equilibrium at an arbitrary cross-section located at angle φ can be
expressed as: 

Nφ =
1

2
F · sinφ

Qφ =
1

2
F · cosφ

Mφ = MA − 1

2
FR · sinφ

(1)

where Nφ, Qφ, and Mφ are the axial force, shear force, and bending moment
acting on the φ angle location, respectively.

The governing differential equation for the deflection curve of the curved
beam is given by:

Figure 1: Mechanical model of flexible riser carcass under compression.
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d2w

dφ2
+ w = −MφR

2

EI
(2)

The deflection equation of the flexible riser carcass subjected to flat-plate
compression can hence be derived as:

d2w

dφ2
+ w = −MAR

2

EI
+

FR3

2EI
· sinφ (3)

The general solution to the above differential equation is the following:

w = −MAR
2

EI
− FR3

EI
· φ cosφ

4
+ C1 cosφ+ C2 sinφ (4)

As the rotation angle of the curved beam is given by θ = 1
R

dw
dφ , taking the

derivative of Equation (4) yields:

θ =
FR2

4EI
(φ sinφ− cosφ)− C1

R
sinφ+

C2

R
cosφ (5)

Similarly, according to the relation between the radial displacement w and
the tangential displacement v (i.e., w = dv

dφ ), the expression for the tangential
displacement is:

v = −MAR
2

EI
· φ− FR3

EI
· cosφ+ φ sinφ

4
+ C1 sinφ− C2 cosφ+ C3 (6)

Boundary conditions based on symmetry can be established as w(0) = w(π),
v(0) = v(π) = 0. Additionally, the rotation angle at point A is zero, i.e.,
θ(0) = 0. By substituting all these boundary conditions into Equation (4), we
obtain: [

C1 C2 C3 MA

]
=

[
πFR3

8EI
FR3

4EI
FR3

2EI
FR
π

]
(7)

Furthermore, the deflection curve of the curved beam in Figure 1 can be
expressed as:

w =
FR3

EI

(
− 1

π
− φ cosφ

4
+

π cosφ

8
+

sinφ

4

)
(8)

The displacement obtained from the testing machine can be derived as:

X = 2 · w(0) = π2 − 8

4π
· FR3

EI
(9)

In the current paper, the displacement is considered in an incremental form
to incorporate the progressive development of material plasticity. Equation (9)
in its incremental form is given by:

Xinc = 2 · w(0) = π2 − 8

4π
· FincR

3

EtI
(10)
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in which Xinc is the increment of the applied longitudinal displacement, Finc is
the increment of the measured reaction force from the testing machine, and Et

is the tangent modulus of the material.
Equation (10) can be further rewritten as:

Finc

Xinc
=

π

3(π2 − 8)
· Lt

3

R3
· Et (11)

where L and t represent the length and the thickness of the flexible riser carcass
layer, respectively.

Let Sinc =
Finc

Xinc
, which is the local slope in Figure ??, we have:

Et = Sinc ·
3(π2 − 8)

π
· R3

Lt3
(12)

On the other side, consider the stress at end A of the curved beam in Figure 1,
which is the superposition of axial force-induced segment and bending moment-
induced segment. Consequently, the following relationship can be derived:

ε =
1

E
(σN + σM ) =

6FR

πELt2
(13)

Similarly, the expression of Equation (13) under an incremental step is:

εinc =
6FincR

πEtLt2
(14)

Substituting Equation (11) into Equation (14), we have:

εinc =
2

π2 − 8
· t

R2
·Xinc (15)

It can be observed that the left-hand sides of Equation (12) and Equation
(15) correspond to the tangent modulus of the material and the associated strain
increment under this modulus, respectively. In contrast, the right-hand sides
are functions of Xinc, which can be derived from Figure 1. In deed, for any given
Xinc, the tangent modulus Et is the first derivative of the strain increment εinc,
leading to the following differential equation:

F (Et, εinc, Xinc) = 0 (16)

By solving the above differential equation, a stress–strain curve can be ob-
tained, which represents the equivalent material behaviour we aim to determine.

The critical buckling pressure of a classical ring is:

Pcri =
3EIeq
R3

(17)

In the present paper, the tangent modules method is employed to charac-
terise the material plasticity evolution, with Equation 17 reformulated in the
incremental form:
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Pcri inc =
3EtIeq
R3

=
t3

4R3(1− ν2)
· Et (18)

On the other hand, the prescribed radial displacement is applied to the ring
incrementally. Based on the constitutive relation of the ring layer, the corre-
sponding resisting pressure under each displacement increment can be further
determined. Note that if the resisting external pressure obtained at a specific
displacement increment equals the value calculated from Equation 18, this pres-
sure is identified as the plastic collapse pressure of the ring layer. The result
will be further compared to the numerical solutions in the subsequent sections.
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