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1 Theoretical Model

A mechanical model of the flexible riser carcass layer under flat-plate compres-
sion is first established, as illustrated in Figure 1. Owing to the geometric sym-
metry of the carcass cross-section, only one-quarter of the structure is considered
in the subsequent analysis to simplify the model. The structure is idealised as
a curved beam spanning from point A to point B.

When a longitudinal compressive force F' is applied to the plate, the inter-
nal force equilibrium at an arbitrary cross-section located at angle ¢ can be
expressed as:

1
N, = 5F~sin<p

1
Q, = EF'cosgo 1)
1
M, =Mz — 5FR~sin<p

where Ny, Q,, and M, are the axial force, shear force, and bending moment
acting on the ¢ angle location, respectively.

The governing differential equation for the deflection curve of the curved
beam is given by:

Figure 1: Mechanical model of flexible riser carcass under compression.
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The deflection equation of the flexible riser carcass subjected to flat-plate
compression can hence be derived as:
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The general solution to the above differential equation is the following:
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As the rotation angle of the curved beam is given by 6 = %%, taking the
derivative of Equation (4) yields:
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Similarly, according to the relation between the radial displacement w and
the tangential displacement v (i.e., w = 3—;), the expression for the tangential
displacement is:
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Boundary conditions based on symmetry can be established as w(0) = w(w),
v(0) = v(w) = 0. Additionally, the rotation angle at point A is zero, i.e.,
6(0) = 0. By substituting all these boundary conditions into Equation (4), we
obtain:
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Furthermore, the deflection curve of the curved beam in Figure 1 can be
expressed as:
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The displacement obtained from the testing machine can be derived as:
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In the current paper, the displacement is considered in an incremental form
to incorporate the progressive development of material plasticity. Equation (9)
in its incremental form is given by:

X =2 w(0)=
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in which Xj,. is the increment of the applied longitudinal displacement, Fi,. is
the increment of the measured reaction force from the testing machine, and FE;
is the tangent modulus of the material.

Equation (10) can be further rewritten as:
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where L and ¢ represent the length and the thickness of the flexible riser carcass
layer, respectively.

Let Sine = )1;:1 , which is the local slope in Figure 7?7, we have:
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On the other side, consider the stress at end A of the curved beam in Figure 1,
which is the superposition of axial force-induced segment and bending moment-
induced segment. Consequently, the following relationship can be derived:
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Similarly, the expression of Equation (13) under an incremental step is:
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Substituting Equation (11) into Equation (14), we have:
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It can be observed that the left-hand sides of Equation (12) and Equation
(15) correspond to the tangent modulus of the material and the associated strain
increment under this modulus, respectively. In contrast, the right-hand sides
are functions of Xj,., which can be derived from Figure 1. In deed, for any given
Xine, the tangent modulus E} is the first derivative of the strain increment &y,
leading to the following differential equation:

F(Etaf:inc:Xinc) =0 (16)

By solving the above differential equation, a stress—strain curve can be ob-
tained, which represents the equivalent material behaviour we aim to determine.
The critical buckling pressure of a classical ring is:
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In the present paper, the tangent modules method is employed to charac-
terise the material plasticity evolution, with Equation 17 reformulated in the
incremental form:

Pcri:

(17)
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On the other hand, the prescribed radial displacement is applied to the ring
incrementally. Based on the constitutive relation of the ring layer, the corre-
sponding resisting pressure under each displacement increment can be further
determined. Note that if the resisting external pressure obtained at a specific
displacement increment equals the value calculated from Equation 18, this pres-
sure is identified as the plastic collapse pressure of the ring layer. The result
will be further compared to the numerical solutions in the subsequent sections.




