
Supplementary material for ’Approximate Bayesian
Computation of reduced-bias extreme risk measures from

heavy-tailed distributions’
Section A and Section B provide additional illustrations and numerical results associated with the

experiments on simulated data (Section 4 of the main paper). The proofs of the theoretical results are
given in Section C.

A Additional figures

The behavior of k 7→ Biask(Û(1000)) and k 7→ RMSEk(Û(1000)) associated with the five estimators
described in Section 4.2 is depicted on the first two rows of Figure A1 (RPD and Burr distributions
with γ = −ρ = 1/2) and Figure A2 (Fisher and GPD distributions with γ = −ρ = 1/2). The third row
displays the ABC estimator as a function of k ∈ {2, . . . , n − 1 = 499} and the associated 90% credible
interval computed on a single replication.
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Fig. A1: Illustration on simulated data sets of size n = 500 from a RPD (left panel) and a Burr distribu-
tion (right panel) with γ= −ρ =1/2 in both cases. Top: k∈{2, . . . , n− 1} 7→ RMSEk(Û(1/pn = 1000))
and center: k ∈ {2, . . . , n − 1} 7→ Biask(Û(1/pn = 1000)) computed on N = 500 replications associated
with Weissman (blue), ABC (black), CW (green), PWM (purple) and GPD (orange) estimators. Bottom
(in log scale): 90% credible intervals (blue) associated with the ABC estimator (black) computed on one
replication. The theoretical extreme quantile U(1/pn = 1000) is depicted by a red horizontal line.
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Fig. A2: Illustration on simulated data sets of size n = 500 from a Fisher distribution (left panel) and a
GPD (right panel) with γ = −ρ = 1/2 in both cases. Top: k∈{2, . . . , n− 1} 7→ RMSEk(Û(1/pn = 1000))
and center: k ∈ {2, . . . , n − 1} 7→ Biask(Û(1/pn = 1000)) computed on N = 500 replications associated
with Weissman (blue), ABC (black), CW (green), PWM (purple) and GPD (orange) estimators. Bottom
(in log scale): 90% credible intervals (blue) associated with the ABC estimator (black) computed on one
replication. The theoretical extreme quantile U(1/pn = 1000) is depicted by a red horizontal line.

3



B Additional tables
The M1RMSEs are provided in Table B1 for the RPD, in Table B2 for the Burr distribution and in
Table B3 for Fréchet, Fisher, GPD, Inverse Gamma, and Student t distributions.
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Table B1: M1RMSE associated with five estimators of
logU(1/pn = 1000) computed on N = 500 replications of a
data set of size n = 500 from a RPD. The best result is empha-
sized in bold. M1RMSEs larger than 1 are not reported.

RPD Weissman ABC CW PWM GPD
γ = 1/8
ρ = −1/8 0.0175 0.0106 0.0475 0.0202 0.0176
ρ = −1/4 0.0165 0.0092 0.0385 0.0198 0.0132
ρ = −1/2 0.0107 0.0059 0.0254 0.0140 0.0113
ρ = −1 0.0060 0.0037 0.0111 0.0115 0.0138
ρ = −2 0.0035 0.0042 0.0065 0.0073 0.0129
γ = 1/4
ρ = −1/8 0.0700 0.0423 0.1901 0.0810 0.0572
ρ = −1/4 0.0638 0.0349 0.1359 0.0740 0.0425
ρ = −1/2 0.0427 0.0237 0.1016 0.0558 0.0303
ρ = −1 0.0240 0.0150 0.0445 0.0459 0.0454
ρ = −2 0.0139 0.0168 0.0261 0.0293 0.0443
γ = 1/2
ρ = −1/8 0.2801 0.1691 0.7603 0.3239 0.2076
ρ = −1/4 0.2551 0.1397 0.5435 0.2961 0.1203
ρ = −1/2 0.1707 0.0950 0.4065 0.2234 0.1071
ρ = −1 0.0960 0.0598 0.1779 0.1835 0.1301
ρ = −2 0.0555 0.0671 0.1045 0.1171 0.1599
γ = 1
ρ = −1/8 - 0.6764 - - -
ρ = −1/4 - 0.5588 - - -
ρ = −1/2 0.6830 0.3799 - 0.8935 -
ρ = −1 0.3840 0.2393 0.7117 0.7340 0.8531
ρ = −2 0.2219 0.2685 0.4179 0.4683 0.8102

Table B2: M1RMSE associated with five estimators of
logU(1/pn = 1000) computed on N = 500 replications of
a data set of size n = 500 from a Burr distribution. The
best result is emphasized in bold. M1RMSEs larger than
1 are not reported.

Burr Weissman ABC CW PWM GPD
γ = 1/8
ρ = −1/8 0.0593 0.0563 0.0585 0.0775 0.0264
ρ = −1/4 0.0268 0.0182 0.0249 0.0321 0.0246
ρ = −1/2 0.0134 0.0065 0.0081 0.0142 0.0173
ρ = −1 0.0062 0.0029 0.0049 0.0056 0.0152
ρ = −2 0.0035 0.0027 0.0055 0.0032 0.0132
γ = 1/4
ρ = −1/8 0.2373 0.2251 0.2339 0.3101 0.0961
ρ = −1/4 0.1071 0.0727 0.0995 0.1284 0.0427
ρ = −1/2 0.0537 0.0259 0.0324 0.0568 0.0566
ρ = −1 0.0249 0.0115 0.0194 0.0225 0.0520
ρ = −2 0.0146 0.0103 0.0198 0.0128 0.0456
γ = 1/2
ρ = −1/8 0.9493 0.9005 0.9355 - 0.8022
ρ = −1/4 0.4286 0.2908 0.3978 0.5136 0.0626
ρ = −1/2 0.2147 0.1034 0.1297 0.2272 0.1237
ρ = −1 0.0994 0.0460 0.0778 0.0900 0.1756
ρ = −2 0.0556 0.0431 0.0883 0.0513 0.1632
γ = 1
ρ = −1/8 - - - - -
ρ = −1/4 - - - - -
ρ = −1/2 0.8559 0.4137 0.5190 0.9090 -
ρ = −1 0.3978 0.1841 0.3112 0.3602 0.8302
ρ = −2 0.2263 0.1723 0.3522 0.2052 0.8257
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Table B3: M1RMSE associated with five estimators of
logU(1/pn = 1000) computed on N = 500 replications of
data sets of size n = 500 from five heavy-tailed distribu-
tions. The best result is emphasized in bold.

Weissman ABC CW PWM GPD
Fréchet (ρ = −1)
γ = 1/8 0.0047 0.0031 0.0047 0.0042 0.0135
γ = 1/4 0.0189 0.0122 0.0186 0.0169 0.0460
γ = 1/2 0.0759 0.0488 0.0745 0.0679 0.1624
γ = 1 0.3035 0.1953 0.2981 0.2716 0.8276
Fisher (ρ = −γ)
γ = 1/8 0.0495 0.0412 0.0490 0.0683 0.0329
γ = 1/4 0.0860 0.0562 0.0766 0.1236 0.0555
γ = 1/2 0.2062 0.1022 0.1345 0.2158 0.1632
γ = 1 0.4578 0.2051 0.3587 0.3849 0.8800
GPD (ρ = −γ)
γ = 1/8 0.0651 0.0551 0.0612 0.0785 0.0253
γ = 1/4 0.1088 0.0729 0.0977 0.1362 0.0441
γ = 1/2 0.2118 0.1042 0.1322 0.2253 0.1357
γ = 1 0.4030 0.1823 0.3030 0.3492 0.7971
Inverse Gamma (ρ = −γ)
γ = 1/8 0.0256 0.0146 0.0234 0.0305 0.0260
γ = 1/4 0.0552 0.0272 0.0444 0.0579 0.0529
γ = 1/2 0.1268 0.0605 0.0843 0.1217 0.1755
γ = 1 0.3082 0.1789 0.2739 0.2529 0.81.98
Student t (ρ = −2γ)
γ = 1/8 0.0303 0.0263 0.0290 0.0427 0.0272
γ = 1/4 0.0572 0.0343 0.0477 0.0819 0.0541
γ = 1/2 0.1406 0.0619 0.0501 0.1170 0.1601
γ = 1 0.2721 0.1579 0.4192 0.2192 0.7659
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C Proofs
Proof of Proposition 1.
Let us introduce φ(x) = logU(expx) for all x ≥ 0. Replacing in (8) yields the equation

1

A(t)
(φ(log t+ log y)− φ(log t)− γ log y) = Kρ(y),

for all t ≥ 1 and y > 0, or equivalently, letting s = log t and x = log y,

1

A(exp s)

(
φ(s+ x)− φ(s)

x
− γ

)
=

Kρ(expx)

x
,

for all x ̸= 0 and s ≥ 0. Letting x → 0 and remarking that Kρ(expx)/x → ρ yield

φ′(s) = γ + ρA(exp s) = γ(1 + β exp(ρs)),

in view of (6). Integrating, it follows that, for all s ≥ 0,

φ(s) = φ(0) + γ(s+ βKρ(exp s)),

leading to
U(x) = U(1)xγ exp(βγKρ(x)),

for all x ≥ 1. Conversely, it is easily checked that the above U function is a solution of (8). Finally, the
condition β ≥ −1 is required to ensure that U is increasing.

Proof of Proposition 2.
(i) The tail quantile function of Y is given for all y ≥ 1 by

Uα(y) = U(y/α)/U(1/α) (23)

so that (5) can be rewritten with t = 1/α as

lim
α→0

1

A(1/α)
(logUα(y)− γ log(y)) = Kρ(y),

or equivalently,

lim
α→0

1

A(1/α)
(logUα(y)− γ log(y)−A(1/α)Kρ(y)) = 0.

Taking account of (6), it follows

lim
α→0

αρ
(
logUα(y)− γ log(y)− βγα−ρKρ(y)

)
= 0,

leading to
lim
α→0

αρ
(
logUα(y)− logURPD(y | γ, ρ, βα−ρ)

)
= 0,

if URPD(1) = 1. Taking the exponential concludes the proof.
(ii) The result is a consequence of (23) and of the identity

URPD(y/α | γ, ρ, β)
URPD(1/α | γ, ρ, β)

= (1/α)γ exp

(
βγ

ρ
α−ρ(yρ − 1)

)
= URPD(y | γ, ρ, βα−ρ)

that holds for all y ≥ 1.
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Proof of Proposition 3.
The probability weighted moment of order a > −1 is given by

mY (a) = (a+ 1)2 E((log Y )(F̄RPD(Y ))a) = (a+ 1)2
∫ +∞

URPD(1)

log(x)(F̄RPD(x))
afRPD(x) dx,

where F̄RPD and fRPD denote respectively the survival function and the density function associated with
the tail quantile function URPD given in Definition 1. The change of variable y 7→ x = URPD(y) yields

mY (a) = (a+ 1)2
∫ +∞

1

log(URPD(y))y
−a−2 dy,

= (a+ 1)2
∫ +∞

1

log (URPD(1)y
γ exp(βγKρ(y))) y

−a−2 dy,

= (a+ 1)2 log (URPD(1))

∫ +∞

1

y−a−2 dy + (a+ 1)2γ

∫ +∞

1

log (y) y−a−2 dy

+ (a+ 1)2βγ

∫ +∞

1

Kρ(y)y
−a−2 dy.

The first term vanishes given that URPD(1) = 1. Integrating by parts the second term concludes the
proof.

Proof of Proposition 4.
Suppose URPD(1) = 1, aγ < 1 and introduce c = −aβγ/ρ. Then, a direct calculation yields

CTMY (a, α) =
1

α

∫ α

0

Ua
RPD(1/v | γ, ρ, β)dv

=
1

α

∫ α

0

v−aγ exp(aβγKρ(1/v))dv

=
exp(c)

α

∫ α

0

v−aγ exp(−cv−ρ)dv

= exp(c)α−aγ
∫ 1

0

u−aγ exp(−cα−ρu−ρ)du,

which is the desired result. Finally, note that, if β > 0, then c > 0 too and the CTM can be computed as

CTMY (a, α) = −exp(c)

αρ
c

1−aγ
ρ Γℓ

(
aγ − 1

ρ
, cα−ρ

)
,

where Γℓ(·, ·) is the incomplete lower gamma function.

Proof of Lemma 1.
The result is a straightforward consequence of (23) in the proof of Proposition 2: Letting α = k/n and
y = dn = k/(npn) yields Uk/n(dn) = U(1/pn)/U(n/k) and the result is proved.
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Proof of Theorem 5.
Let dn = k/(npn) be the extrapolation factor. The following expansion holds:

log Û(1/pn)− logU(1/pn) = (log Û(1/pn)− logU(1/pn)) + (logU(1/pn)− logU(1/pn))

= A1,n +A2,n +A3,n +Bn,

with A1,n = logXn−k,n − logU(n/k),

A2,n = (γ̂ − γ) log(dn),

A3,n = γ̂β̂nKρ̂(dn)− γβnKρ(dn),

Bn = logURPD(dn | γ, ρ, β(n/k)ρ)− logUk/n(dn).

Each term is considered separately. First, (de Haan and Ferreira, 2006, Theorem 2.4.1) yields
√
kn

log(dn)
A1,n = Op(1/ log(dn)), (24)

since
√
kA(n/k) → λ as n → ∞. Second, letting ξn :=

√
k(γ̂ − γ), one has

√
kn

log(dn)
A2,n = ξn. (25)

Third, let us rewrite A3,n as

A3,n = βn

(
γ̂
β̂n

βn
Kρ̂(dn)− γKρ(dn)

)
= γβ(n/k)ρ (Kρ̂(dn)OP (1)−Kρ(dn)) ,

since γ̂
P−→ γ and β̂n/βn = OP (1) by assumption. Remark that Kρ(dn) → −1/ρ as n → ∞ while

|Kρ̂(dn)| ≤ −2/ρ̂ ≤ −2/ρ† almost surely. As a consequence,
√
kn

log(dn)
A3,n = OP (1/ log(dn)), (26)

under the assumption
√
kA(n/k) → λ as n → ∞. Finally, Bn is a non-random term controlled

with (de Haan and Ferreira, 2006, Eq. (3.2.7)): For all ε > 0, there exists t0 such that for t ≥ t0 and y ≥ 1,∣∣∣∣ 1

A(t)
(logU(ty)− logU(t)− γ log(y))−Kρ(y)

∣∣∣∣ ≤ εyρ+ε.

Taking account of (6) and considering y = dn → ∞ and t = n/k → ∞, it follows

|logU(1/pn)− logU(n/k)− γ log(dn)− γβ(n/k)ρKρ(dn)| ≤ εdρ+ε
n |A(n/k)|,

or equivalently, in view of Definition 1 and (23) in the proof of Proposition 2, |Bn| ≤ εdρ+ε
n |A(n/k)|, so

that √
kn

log(dn)
|Bn| ≤ ε|λ| dρ+ε

n

log(dn)
(1 + o(1)), (27)

under the assumption
√
kA(n/k) → λ as n → ∞. Combining (24)–(27), it follows that

√
k

log(dn)

(
log Û(1/pn)− logU(1/pn)

)
= ξn +OP

(
1

log(dn)

)
+O

(
dρ+ε
n

log(dn)

)
,
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Choosing ε < −ρ concludes the proof.

Proof of Lemma 2.
Recall that

CTMX(a, pn) =
1

pn

∫ pn

0

Ua(1/v)dv,

with U(1/v) = U(n/k)Uk/n(k/(nv)) from (23) in the proof of Proposition 2. Replacing, one obtains

CTMX(a, pn) =
1

pn
Ua(n/k)

∫ pn

0

Ua
k/n(k/(nv))dv = dnU

a(n/k)

∫ 1/dn

0

Ua
k/n(1/u)du,

with the change of variable u = nv/k. Remarking that

dn

∫ 1/dn

0

Ua
k/n(1/u)du = CTMk/n(a, 1/dn)

concludes the proof.
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