Supplementary material for ’Approximate Bayesian
Computation of reduced-bias extreme risk measures from
heavy-tailed distributions’

Section A and Section B provide additional illustrations and numerical results associated with the
experiments on simulated data (Section 4 of the main paper). The proofs of the theoretical results are
given in Section C.

A Additional figures

The behavior of k — Biasg(U(1000)) and k& — RMSE;(U(1000)) associated with the five estimators
described in Section 4.2 is depicted on the first two rows of Figure A1 (RPD and Burr distributions
with v = —p = 1/2) and Figure A2 (Fisher and GPD distributions with v = —p = 1/2). The third row
displays the ABC estimator as a function of k € {2,...,n — 1 = 499} and the associated 90% credible
interval computed on a single replication.
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Fig. A1: Illustration on simulated data sets of size n = 500 from a RPD (left panel) and a Burr distribu-
tion (right panel) with y= —p =1/2 in both cases. Top: k€{2,...,n — 1} = RMSE(U(1/p, = 1000))
and center: k € {2,...,n — 1} — Bias(U(1/p, = 1000)) computed on N = 500 replications associated
with Weissman (blue), ABC (black), CW (green), PWM (purple) and GPD (orange) estimators. Bottom
(in log scale): 90% credible intervals (blue) associated with the ABC estimator (black) computed on one
replication. The theoretical extreme quantile U(1/p,, = 1000) is depicted by a red horizontal line.
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Fig. A2: Illustration on simulated data sets of size n = 500 from a Fisher distribution (left panel) and a
GPD (right panel) with v = —p = 1/2 in both cases. Top: k€{2,...,n—1} — RMSE;(U(1/p, = 1000))
and center: k € {2,...,n — 1} + Biasy,(U(1/p, = 1000)) computed on N = 500 replications associated
with Weissman (blue), ABC (black), CW (green), PWM (purple) and GPD (orange) estimators. Bottom
(in log scale): 90% credible intervals (blue) associated with the ABC estimator (black) computed on one
replication. The theoretical extreme quantile U(1/p, = 1000) is depicted by a red horizontal line.



B Additional tables

The M;RMSEs are provided in Table Bl for the RPD, in Table B2 for the Burr distribution and in
Table B3 for Fréchet, Fisher, GPD, Inverse Gamma, and Student ¢ distributions.



Table B1l: M;RMSE associated with five estimators of
logU(1/p, = 1000) computed on N = 500 replications of a
data set of size n = 500 from a RPD. The best result is empha-
sized in bold. M;RMSEs larger than 1 are not reported.

RPD ‘Weissman ABC CW PWM GPD
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0.0175 0.0106 0.0475 0.0202  0.0176
0.0165 0.0092 0.0385 0.0198  0.0132
0.0107 0.0059 0.0254 0.0140  0.0113
0.0060 0.0037 0.0111 0.0115  0.0138
0.0035 0.0042  0.0065 0.0073  0.0129
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—-1/8 0.0700 0.0423 0.1901 0.0810  0.0572
0.0638 0.0349 0.1359 0.0740  0.0425
0.0427 0.0237 0.1016 0.0558  0.0303
0.0240 0.0150 0.0445 0.0459  0.0454
0.0139 0.0168  0.0261  0.0293  0.0443
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0.2801 0.1691 0.7603 0.3239  0.2076
—1/4 0.2551 0.1397  0.5435 0.2961 0.1203

-1/2 0.1707 0.0950 0.4065 0.2234  0.1071
-1 0.0960 0.0598 0.1779 0.1835  0.1301
—2 0.0555 0.0671  0.1045 0.1171  0.1599
T

—-1/8 - 0.6764 - - -
—1/4 0.5588 - -

0.6830 0.3799 - 0.8935 -
0.3840 0.2393 0.7117 0.7340  0.8531
0.2219 0.2685  0.4179 0.4683  0.8102
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Table B2: M;RMSE associated with five estimators of
log U(1/p,, = 1000) computed on N = 500 replications of
a data set of size n = 500 from a Burr distribution. The
best result is emphasized in bold. M; RMSEs larger than
1 are not reported.

Burr Weissman ABC CW PWM GPD
v=1/8

p=—1/8 0.0593 0.0563  0.0585 0.0775 0.0264
p=-1/4 0.0268 0.0182 0.0249 0.0321 0.0246
p=-1/2 0.0134 0.0065 0.0081 0.0142 0.0173
p=-1 0.0062 0.0029 0.0049 0.0056  0.0152
p=—2 0.0035 0.0027 0.0055 0.0032 0.0132
vy=1/4

p=—-1/8 0.2373 0.2251 0.2339 0.3101 0.0961
p=-1/4 0.1071 0.0727  0.0995 0.1284 0.0427
p=-1/2 0.0537 0.0259 0.0324 0.0568  0.0566
p=-—1 0.0249 0.0115 0.0194 0.0225  0.0520
p=—2 0.0146 0.0103 0.0198 0.0128  0.0456
y=1/2

p=-1/8 0.9493 0.9005  0.9355 - 0.8022
p=-1/4 0.4286 0.2908 0.3978 0.5136 0.0626
p=-1/2 0.2147 0.1034 0.1297 0.2272  0.1237
p=-—1 0.0994 0.0460 0.0778 0.0900 0.1756
p=—2 0.0556 0.0431 0.0883 0.0513 0.1632
y=1

p=—1/8 - - - - -
p=—1/a - : : : :
p=-1/2 0.8559 0.4137 0.5190 0.9090 -
p=-—1 0.3978 0.1841 0.3112 0.3602  0.8302
p=-2 0.2263 0.1723 0.3522 0.2052  0.8257



Table B3: M;RMSE associated with five estimators of
log U(1/p, = 1000) computed on N = 500 replications of
data sets of size n = 500 from five heavy-tailed distribu-
tions. The best result is emphasized in bold.

Weissman ABC CW PWM GPD

Fréchet (p = —1)
vy=1/8 0.0047 0.0031 0.0047  0.0042 0.0135
y=1/4 0.0189 0.0122 0.0186  0.0169 0.0460
y=1/2 0.0759 0.0488  0.0745 0.0679 0.1624
y=1 0.3035 0.1953 0.2981 0.2716 0.8276
Fisher (p = —7)
vy=1/8 0.0495 0.0412 0.0490  0.0683 0.0329
y=1/4 0.0860 0.0562 0.0766  0.1236 0.0555
vy=1/2 0.2062 0.1022 0.1345 0.2158 0.1632
y=1 0.4578 0.2051 0.3587  0.3849 0.8800
GPD (p=—v)
vy=1/8 0.0651 0.0551 0.0612 0.0785  0.0253
y=1/4 0.1088 0.0729 0.0977  0.1362 0.0441
vy=1/2 0.2118 0.1042 0.1322 0.2253 0.1357
y=1 0.4030 0.1823 0.3030  0.3492 0.7971
Tnverse Gamma (p = —7)

=1/8 0.0256 0.0146  0.0234  0.0305 0.0260

=1/4 0.0552 0.0272  0.0444  0.0579 0.0529

=1/2 0.1268 0.0605 0.0843  0.1217  0.1755

=1 0.3082 0.1789 0.2739 0.2529  0.81.98

dent ¢ (p = —27)

1/8 0.0303 0.0263  0.0290  0.0427  0.0272
1/4 0.0572 0.0343  0.0477  0.0819  0.0541
1/2
1

0.1406 0.0619  0.0501 0.1170  0.1601
0.2721 0.1579  0.4192 0.2192  0.7659
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C Proofs

Proof of Proposition 1.
Let us introduce ¢(z) = logU(exp ) for all > 0. Replacing in (8) yields the equation

ﬁ(s@(logt +logy) — p(logt) —ylogy) = K,(y),

for all ¢t > 1 and y > 0, or equivalently, letting s = logt and = = logy,

T (o2 ) = R

Y

for all  # 0 and s > 0. Letting 2 — 0 and remarking that K,(expx)/xz — p yield

¢'(s) = v+ pA(exps) = y(1 + Bexp(ps)),

in view of (6). Integrating, it follows that, for all s > 0,

p(s) = (0) +7(s + BE,(exps)),

leading to

U(z) =U1)z" exp(ByK,(x)),
for all x > 1. Conversely, it is easily checked that the above U function is a solution of (8). Finally, the
condition 8 > —1 is required to ensure that U is increasing. ]

Proof of Proposition 2.
(i) The tail quantile function of Y is given for all y > 1 by

Ualy) = Uly/a)/U(1/a) (23)
so that (5) can be rewritten with ¢t = 1/« as

1

lim /) (log Ua(y) — vlog(y)) = K,(y),

or equivalently,

limy ﬁ (log Un(y) — v10g(y) — A(1/a) K, (y)) = 0.

Taking account of (6), it follows
lim o (log Ua(y) — v1og(y) — Bya™"K,y(y)) =0,

leading to

lim o” (log Ua(y) —logUrpp(y | 7, p, Ba?)) =0,
if Urpp(1) = 1. Taking the exponential concludes the proof.
(ii) The result is a consequence of (23) and of the identity

Urep (/2 | 7:2:8) _ 1 ovtoen (B arpie - 1)) — .
Oren(1/a | 7op.B) )”ep(p 7y’ 1))—URPD(y|’Y,p,ﬂ ’)

that holds for all y > 1. [ ]



Proof of Proposition 3.
The probability weighted moment of order a > —1 is given by
+oo

my (a) = (a+1)*E((logY)(Frep(Y))*) = (a + 1)2/[] " log(z)(Frep(2))® frpp (z) dz,

where Frpp and frpp denote respectively the survival function and the density function associated with
the tail quantile function Urpp given in Definition 1. The change of variable y — 2 = Urpp(y) yields

+oo
my(a) = (a+1)? / log(Urpp ()y~*~ dy,
—+oo
— (at1)? / log (Urpn (1) exp(B1K,(3))) 52 dy,

400 “+ o0
= (a+ 1)210g(URPD(1))/ y*“*Qdy+(a+1)27/ log (y)y~“~*dy
1 1
2 e 2
+ (a+1)*By K,(y)y “ ~dy.
1

The first term vanishes given that Ugpp(1l) = 1. Integrating by parts the second term concludes the
proof. [ ]

Proof of Proposition /4.
Suppose Urpp(1) = 1, ay < 1 and introduce ¢ = —af+/p. Then, a direct calculation yields

1 e
CTMy (a,a) = a/o Ufpp(1/v | v, p, 8)dv

-5 /“ v exp(afyK,(1/v))dv
0

[0

= %/ v~ exp(—cv™?)dv
«@ 0

1
= exp(c)a“”/ u” T exp(—caPu"")du,
0
which is the desired result. Finally, note that, if 8 > 0, then ¢ > 0 too and the CTM can be computed as

o —1
CTMy (a,a) = — 2 252 p, (“7 m”) :
ap p

where I'y(+, ) is the incomplete lower gamma function. [ |

Proof of Lemma 1.

The result is a straightforward consequence of (23) in the proof of Proposition 2: Letting o = k/n and
y = d, = k/(npy,) yields Uy, (dn) = U(1/p,)/U(n/k) and the result is proved. |



Proof of Theorem 5.
Let d,, = k/(npy) be the extrapolation factor. The following expansion holds:

log U (1/pn) —log U(1/py) = (log U(1/p,) —log U(1/pn)) + (log U(1/pn) —log U(1/py))
= A1+ Ao p + Az + By,
with A , =log X,k — logU(n/k),
Ao = (§ — ) log(dy),
AS,n = 'S’BnKﬁ(dn) - 75nKp(dn),
B, =logUrpp(dn | 7, p, B(n/k)") —log Ug /n(dn).

Each term is considered separately. First, (de Haan and Ferreira, 2006, Theorem 2.4.1) yields

Vkn _
m!‘ll,n = Op(1/log(dn)), (24)
since vVkA(n/k) — X as n — oo. Second, letting &, := VE(§ — 7), one has
Vkn B
mAzn =&, (25)

Third, let us rewrite As ,, as

A3,n = Bn (’?gnKﬁ(dn) - 'YKp(dn)> = ’Yﬁ(n/k)p (Kﬁ<dn)0P(1) - Kﬂ(dn)) )

since 4 — ~ and Bn/Bn = Op(1) by assumption. Remark that K,(d,) — —1/p as n — oo while
|K;(dn)| < —2/p < —2/p! almost surely. As a consequence,

Vkn
mA&n = OP(I/ log(dn))v (26)

under the assumption vVkA(n/k) — X\ as n — oo. Finally, B, is a non-random term controlled
with (de Haan and Ferreira, 2006, Eq. (3.2.7)): For all ¢ > 0, there exists to such that for ¢t > tg and y > 1,

ﬁ (log U(ty) —logU(t) — ylog(y)) — K,(y)| < ey”*.

Taking account of (6) and considering y = d,, — oo and ¢t = n/k — o0, it follows
log U(1/pn) —logU(n/k) — ylog(dn) — vB(n/k)" K, (dn)| < edfi™*|A(n/k)],

or equivalently, in view of Definition 1 and (23) in the proof of Proposition 2, |B,| < edf*¢|A(n/k)|, so

that .
Vkn dere
_Vin < _¥n

under the assumption vkA(n/k) — X as n — oo. Combining (24)(27), it follows that

(log U(1/pn) —log U(l/pn)) =& +O0p (bg(ldn)> +0 <dfl+5) ;

k
log(d,,) log(d.,)



Choosing € < —p concludes the proof.

Proof of Lemma 2.
Recall that

1 DPn
CTMx (a,p,) = p—/ U*(1/v)dv,
n Jo

with U(1/v) = U(n/k)Uy,(k/(nv)) from (23) in the proof of Proposition 2. Replacing, one obtains

1 P 1/dn
CTMx (a,pn) = p—nU“(n/k)/O U,?/n(k/(m;))dv = dnU“(n/k)/O Ug/n(l/u)du,

with the change of variable u = nv/k. Remarking that

1/dp
dn/ Ug/n(L/u)du = CTMyp(a, 1/dy)
0

concludes the proof.
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