

1 **Supplementary Information for “Rapid and gentle**
2 **volumetric imaging of host–pathogen**
3 **interactions in salmon skin cells using projective**
4 **oblique plane microscopy”**

5 Jon-Richard Sommernes¹, Dhivya Borra Thiagarajan², Florian Ströhl^{1*}

6 1 Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø,
7 Norway

8 2 The Norwegian College of Fishery Science, UiT The Arctic University of Norway,
9 Tromsø, Norway

10 Correspondence: florian.strohl@uit.no

11

12 **Contents**

- 13 • Supplementary Methods
 - 14 S1. System design and operation
 - 15 S2. Sample preparation and labelling
- 16 • Supplementary Figures S1–S3
- 17 • Supplementary References

18 **Supplementary Methods**

19 **S1. System design and operation**

20 **S1.1 Optical layout and components**

21 This platform integrates oblique plane microscopy [1–3] (OPM) and projective
22 OPM [4,5] (pOPM) in a single optical path as shown in Figure S1. Illumination and
23 detection share the same high numerical aperture (NA) primary objective (O1),
24 enabling standard inverted-microscope mounting. A remote focusing system [6]
25 (RFS) reconstructs the oblique illuminated plane at a remote image space, which is
26 imaged by an angled tertiary objective (O3). The effective focal plane (EFP) is swept
27 through the sample by a galvanometric mirror (GM1) placed in a Fourier plane. For
28 pOPM, a second galvanometric mirror (GM2) imposes a synchronized shear on the
29 intermediate image during a single camera exposure, producing an optically
30 sectioned projection at a selectable viewing angle. A comprehensive part list, with
31 reference to Figure S1, is as follows:

Reference	Part name	Use
-----------	-----------	-----

O1	Nikon CFI SR HP Plan Apo Lambda S 100XC Sil	Primary objective
O2	Nikon CFI Plan Apochromat Lambda D 40X	Secondary objective
O3	ASI AMS-AGY v1	Tertiary objective
TL1-TL4	Thorlabs TTL200-A	Tube lens
SL1	Thorlabs CLS-SL	Scan lens
SL2	Thorlabs LSM03-VIS	Scan lens
M5	Thorlabs BBSQ2-E02	Mirror
M6	Thorlabs BB111-E02	Mirror
GM1/GM2	Thorlabs GVS211/M	Scanning mirror
DM2	AHF Quad Line Beamsplitter R405/488/561/635 lambda/5	Dichroic mirror
FW1/FW2	CAIRN OptoSpin25	Filter wheel
F1/F2/F3/F4	AHF F37-446, AHF F37-521, AHF F39-613, AHF F76-649	Filters
Camera1/Camers2	Teledyne Prime BSI Express	Camera
Laser 1	FISBA READYBeam™	Laser
Laser 2	COHERENT OBIS LS 561 nm	Laser
Col1	Nikon CFI Plan Fluor 4X	Collimating lens 1
Col2	Thorlabs AC254-100-A	Collimating lens 2
M1-M3	Thorlabs BBE1-E02	Mirror
DM1	AHF Laser-Shortpass-Beamsplitter zt 561 sprdc flat	Dichroic mirror
AS	Thorlabs VA100c/M	Adjustable slit
CL	Thorlabs ACY254-200-A	Cylindrical lens
DL	Thorlabs AC254-200-A	Lens
M4	Thorlabs CCM1-E02/M	Mirror
	National instruments PXIe-6738	Hardware controller
	Arduino UNO	Camera synchronizer

33 Henceforth, components will be referred to as the reference as shown in the left
34 column of the part list.

35 S1.2 OPM operation

36 In this system, a sample is placed on a stage like a conventional inverted
37 microscope. The system utilizes two lasers (Laser 1 and Laser 2) that are combined
38 into a common path using a dichroic mirror (DM1). The beams are passed through a
39 slit and a cylindrical lens (CL) and a doublet lens (DL) to create a light-sheet. The
40 light-sheet is passed into the imaging path using a dichroic mirror (DM2). The light-
41 sheet is then passed through the imaging system and into the sample.

42 The sample is imaged using a high-NA primary objective lens (O1). The back focal
43 plane (BFP) of O1 is conjugated onto the surface of a GM (GM1) using a tube lens
44 (TL1) and a scan lens (SL1). The mirror surface is then conjugated onto the BFP of
45 the secondary objective (O2) using a scan lens (SL2) and a tube lens (TL3). After O2,
46 the light passes through a tertiary objective (O3). The light then passes through an
47 imaging element (IE), which is a swappable optical element in a cage cube. For this
48 experiment, the IE used was a dichroic mirror (AHF F38-560_T3). Each beam passes
49 through a filter wheel (FW1/FW2) containing identical emission filters (F1/F2/F3/F4)
50 and a tube lens (TL4/TL5). In one beam path the light is passed over a GM (GM2),
51 then both beams are imaged using a camera (Camera1/Camers2). The system is
52 controlled using a NI DAQ board, and the cameras are synchronized using a
53 microcontroller (Arduino UNO).

54 The optical path from O1 to O2 creates a remote focus system [6]. This system aims
55 to create a stigmatic reconstruction of the sample volume at a remote image space,
56 allowing the sample to be re-imaged by O3. As the image is a stigmatic
57 reconstruction of the sample space, we can therefore re-image this volume at an
58 angle. This allows us to shoot the light-sheet into the sample from the edge of the
59 primary objective, creating a light-sheet coplanar with the effective focal plane (EFP)
60 of the system.

61 As the system contains a RFS, this also allows the system to benefit from focal plane
62 scanning using a GM [3]. By conjugating the GM onto the BFP of both O1 and O2,
63 rotating the GM will induce a linear shift in the EFP in sample space. By passing the
64 illumination and emission light over the same GM, the EFP and illumination plane will
65 remain coplanar throughout the imaging sequence. While imaging, the emission will
66 pass over the same GM, de-scanning the EFP by the same amount, keeping the EFP
67 static in the remote image space. This allows the entire volume to be imaged by
68 rotating a single GM without any additional moving parts.

69 As the system utilized light-sheet illumination, the segmentation and contrast of
70 images are increased. This allows the system to image at lower laser power while
71 keeping good signal to noise ratios, making the system minimally phototoxic. This low
72 phototoxicity in addition to the fast scanning allowed by GM scanning makes the
73 system capable of fast imaging over extended time series.

74 S1.3 pOPM operation

75 The operation principle of pOPM (main optical path shown in the secondary imaging
76 arm in Figure S1) is depicted in Figure S2. During a single image acquisition, the first
77 GM scans the EFP through the sample, while the second GM simultaneously scans
78 the image on the sensor to impose the required shear. Because only the in-focus
79 plane contributes signal at any instant, the integrated signal forms an optically
80 sectioned projection of the entire volume. By adjusting the shear magnitude, pOPM
81 yields projections at arbitrary angles about one rotation axis within a single camera
82 exposure.

83 Because pOPM integrates fluorescence from the entire volume within a single
84 exposure, it can operate with very short exposure times while still capturing
85 information from the full sample. Unlike conventional OPM, where the EFP is oblique
86 and requires post-processing to view in the lab frame, pOPM directly produces
87 projections at arbitrary viewing angles, including the lab-frame, without any
88 reconstruction. This enables a true live view of the whole specimen for navigation
89 and monitoring. Running at high frame rates over the full FoV, pOPM is well suited for
90 event detection where the system can watch for biological events and then switch to
91 OPM for volumetric acquisition. Consequently, pOPM is a valuable addition for both
92 user-friendly sample survey and rapid, gentle imaging when full 3D stacks are not
93 required.

94 The system also supports efficient 3D localization in sparse specimens. In bacterial
95 imaging, where only small regions contain signal within an otherwise empty FoV, two
96 pOPM projections acquired at distinct angles are sufficient to triangulate bacterial
97 positions in 3D without acquiring a full OPM volume. This approach substantially
98 reduces acquisition time, light dose, and data volume, and can run at higher temporal
99 resolution than conventional volumetric imaging. This can thus be used in
100 combination with OPM to acquire images of cells and bacteria using a single camera,
101 lowering the combined acquisition time and data volume significantly.

102 S1.4 pOPM triangulation for sparse 3D samples

103 For sparse, point-like signals (e.g., individual bacteria), we estimate 3D positions
104 from two pOPM projection images taken at different shear settings, avoiding a full 3D
105 stack. Conceptually, both projections share the same vertical axis in the image, while
106 the horizontal position shifts with the viewing angle. The script uses a simple,
107 orthographic model to assign coordinates: X is taken from the horizontal position in
108 projection 1, Z from the horizontal position in projection 2, and Y from the shared
109 vertical position (by default the average of the two). This provides fast 3D localization
110 with much lower light dose, acquisition time, and data volume than conventional
111 volumetric imaging, aligning with the pOPM goal of rapid survey in largely empty
112 fields of view.

113 To prepare the data, the script loads the two projection images (TIFF), converts them
114 to 8-bit if needed, and orients them so their vertical axes match. It then highlights
115 small bright spots on a dark background by enhancing local contrast around features
116 of the expected size, applies a light denoising step, and uses a robust, data-driven

117 threshold (based on the image median and variability) to separate spots from
118 background. A morphological operation connects faint pixels into coherent blobs.
119 From the resulting binary image, connected components are filtered by size to
120 suppress noise, and the center of each blob is measured to yield a set of 2D point
121 coordinates for each projection.
122 The script matches the same spot across the two projections by comparing vertical
123 positions only, which is both fast and reliable under the pOPM geometry. Vertical
124 coordinates are first normalized by image height to handle small size differences
125 between the two images. Spots are paired if their vertical positions agree within a
126 user-defined tolerance (specified in pixels or as a fraction of image height). When
127 multiple pairings are possible, a global matching step (Hungarian/optimal
128 assignment, with a greedy fallback) selects the overall best set of pairs. The code
129 provides an overlay visualization to inspect matched and unmatched detections for
130 quality control. Finally, 3D coordinates are computed directly from the matched pixel
131 positions as described above. Two output options are available: a straightforward
132 “absolute-pixel” mapping, and a configurable variant that allows per-axis centering,
133 scaling, and axis flips to align with a chosen world frame or physical units. Results
134 (matches and 3D points) are saved in standard CSV/NPZ formats. The method works
135 best when emitters are sparse and well separated along the vertical direction;
136 ambiguous cases can be mitigated by tightening the matching tolerance and
137 adjusting spot-size and area thresholds.

138 S1.5 Image analysis

139 After OPM acquisition, the volume needs to be processed before being analyzed.
140 Although the EFP is swept through the sample at an oblique angle as shown in
141 Figure S3a, the camera saves the frames as a conventional z-stack. Therefore, we
142 apply an affine transformation to shear and rotate the image planes to align the data
143 to the lab frame. The top row of Figure S3c shows the unsheared raw stack; The
144 bottom row of Figure S3c shows the corrected volume after affine transformation,
145 which accurately represents the sample geometry.

146 Using the OPM imaging mode, we acquired long time-lapse volumes to quantify
147 bacterial internalization. To analyze internalization, we implemented a Python pipeline
148 that classifies each bacterium based on its spatial relationship to the cell mask. The
149 workflow comprises four steps:

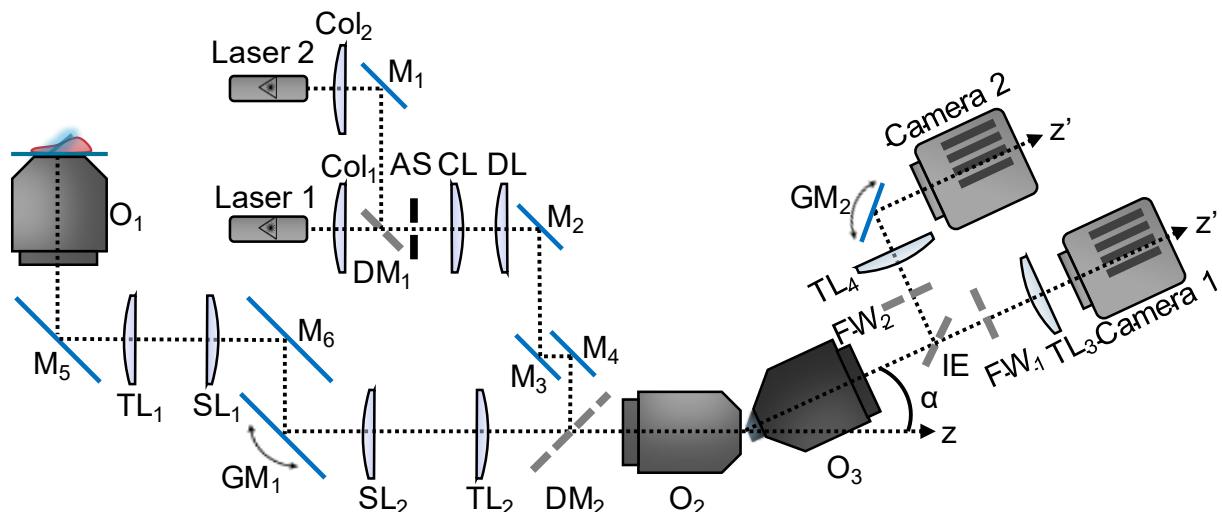
- 150 1. Cell segmentation: The cell channel is segmented to produce a binary mask of
151 cells against background, yielding a clean cell-volume mask.
- 152 2. Bacteria detection: The bacteria channel is background-thresholded to
153 generate a binary mask of bacteria.
- 154 3. Connected components: A 3D connectivity analysis is applied to the bacteria
155 mask to label individual bacteria or clusters. Objects below a size threshold
156 are removed to suppress noise, leaving only plausible bacterial objects.
- 157 4. Overlap-based classification: For each labeled bacterium B, we compute the
158 overlap fraction $f = |B \cap C| / |B|$, where C is the cell mask and $|\cdot|$ denotes voxel
159 count. Classification rules are:
 - 160 a. Internalized: $f \geq 0.98$

161 b. Membrane-associated (edge): $0.05 \leq f < 0.98$
162 c. Extracellular (background): $f < 0.05$

163 The pipeline was applied to every FoV at each time point. For each sample, nine
164 preselected FoVs were imaged at 10-minute intervals over a 3-hour period, yielding
165 20 time points per FoV (180 volumes per sample). This protocol was repeated for
166 three independently prepared samples imaged at 4 h, 28 h, and 52 h post-infection,
167 respectively, providing three 3-hour time-lapse series spaced approximately 24 hours
168 apart.

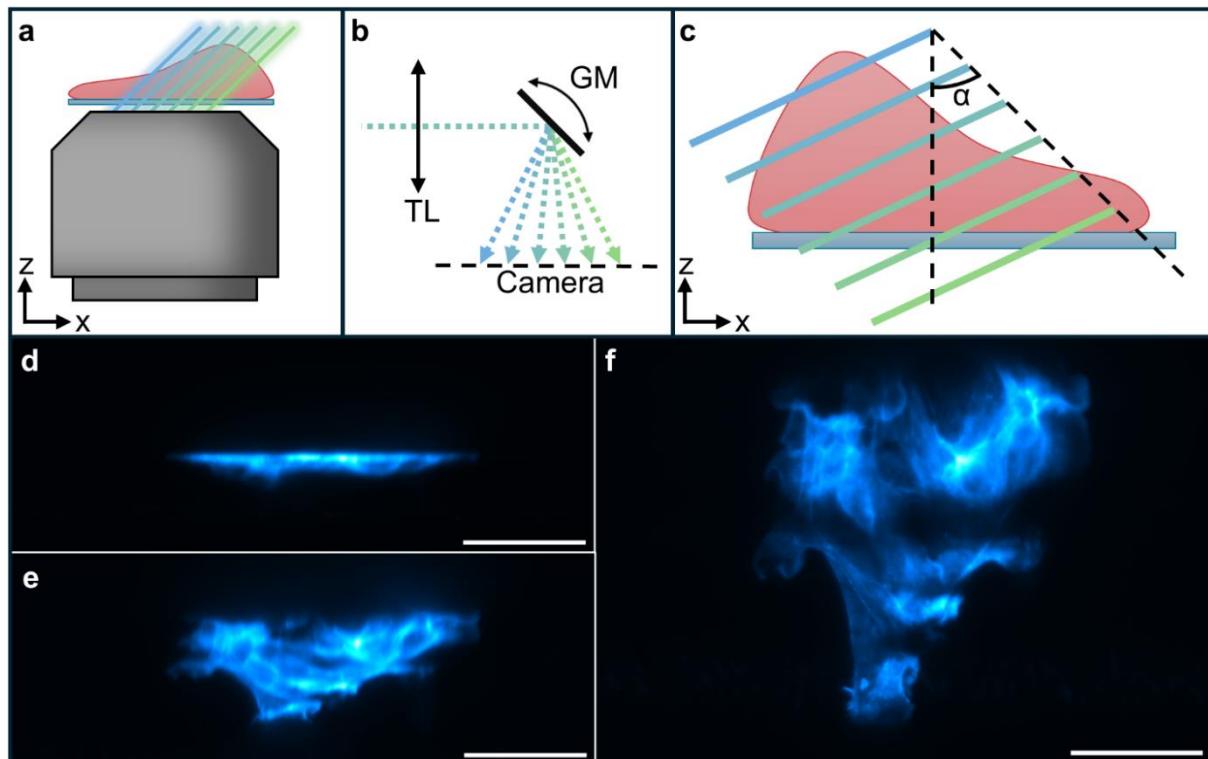
169 To approximate native conditions prior to imaging, samples were stored at 4°C and
170 then transferred to the microscope. Imaging was conducted at a stable 21°C due to
171 the absence of stage/objective cooling and because the immersion primary objective
172 is not compatible with low-temperature operation. While this temperature shift is a
173 limitation that may influence cellular dynamics, the temperature was held constant
174 during each time-lapse to ensure internal consistency across FoVs and time points.

175 **S2. Sample preparation and labelling**


176 **S2.1 Cell Isolation**

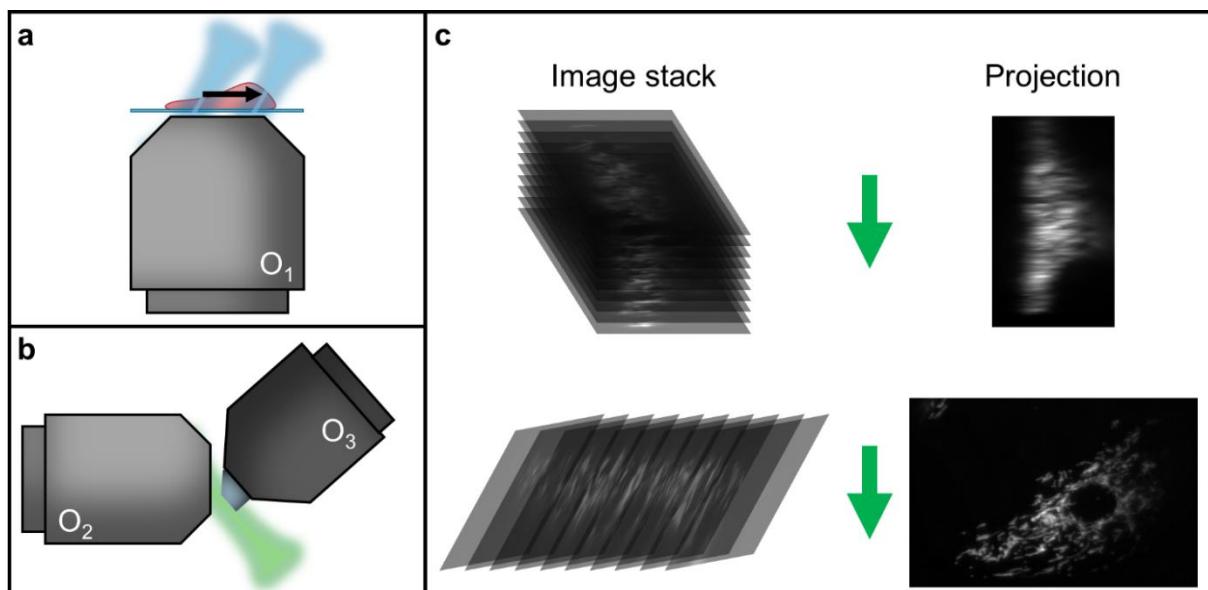
177 Keratocytes from scales were obtained in the lab like previous studies⁵. Briefly, for
178 skin keratocytes, individual scales were pulled from skin using clean forceps and
179 placed in either cell culture dishes or glass bottom dishes according to the
180 requirement. The scales were left in the dish for 6-10 minutes before adding HBSS
181 mix (10ml of 1000U penicillin/100µg streptomycin mix and 4ml 100µg of
182 amphotericin). About 2-3 days after scale harvesting and seeding (4°C) cell sheets of
183 avalanches were formed.

184 **S2.2 Bacterial culture and infection**


185 Glycerol stocks of *M. viscosa*, were obtained from Nofima as a kind gift. These have
186 been described before. Glycerol stock were streaked onto blood agar plates with
187 2%NaCl (provided by National Veterinary Institute, Ås, Norway) and incubated at 12°C
188 until colony formation. At approximately 48 hours colonies were formed from all the
189 strains; these colonies were tested to confirm the presence of respective bacterial
190 species using the Mono aqua-test system (Bionor laboratories AS). After confirmation
191 of each strain, single colonies were picked and grown in liquid media. MV were grown
192 in FAMP media (5g tryptone, 15g Marine broth, 700ml Milli-Q water, and 300ml
193 saltwater). Once OD reached OD ~0.6-0.8, bacterial cells were harvested by
194 centrifuging at 10000 rpm at 4°C for 10 minutes. Cell pellets were washed using 0.9%
195 NaCl before the bacteria were suspended in HBSS. After washing, the bacterial pellets
196 were re-suspended and diluted to 10⁻²/ml and this dilution which was used to expose
197 the keratocyte cells. Cell Mask green (C37608) were purchased from ThermoFisher
198 Scientific (USA). BactoView live fluorescent bacteria stains from Biotium ([40102-T](#))
199 was used to stain live bacteria for visualization of bacterial internalization in
200 keratocytes.

201 **Supplementary Figures**

202
203 Supplementary Figure S1. Detailed optical schematic of the OPM+pOPM instrument.
204 Full optical diagram showing lasers, beam combination (DM1), light-sheet formation
205 (slit, CL, DL), injection dichroic (DM2), primary objective (O1), Fourier-plane relay
206 (TL1, SL1, GM1, SL2, TL3), secondary objective (O2), tertiary objective (O3),
207 imaging element IE splitting into two detection arms (FW1/FW2, TL4/TL5, cameras),
208 and the projective shear mirror (GM2) in one detection arm.


209

210
211 Supplementary Figure S2. Depiction of pOPM imaging. Panel a show how the focal
212 plane scans through the sample from the starting position (green plane) to the end
213 position (blue plane). Panel b shows how the light goes through the last tube lens
214 and is scanned onto the camera by the second GM, inducing a shear in the volume

215 between the optical axis at the start of the acquisition (green line) and the end of the
216 acquisition (blue line). Panel c shows how this shear in image volume shifts the focal
217 plane in the sample space from the start of the acquisition (green line) to the end of
218 the acquisition (blue line). In panels a-c, the scan is shown by a series of lines of
219 gradually shifting color, indicating how the scan is performed. Panels d-f show
220 projection images at 90°, 65°, and 0° respectively. The projection images are of
221 SKCs, stained with Phalloidin–Atto 647N. All scale bars are 50 μ m.

222

223
224 Supplementary Figure S3. Figure showing the acquisition process of the OPM
225 system. Panel a show how the light-sheet, and equivalently the effective focal plane,
226 is translated through the sample. During a full volume acquisition, the light-sheet is
227 translated linearly through the sample, as shown by the two blue beam waists and
228 the black arrow showing the translation direction. Panel b shows how the focal plane
229 is reconstructed in the remote image plane. Due to the de-scanning effect of the GM,
230 the effective focal plane will always be at a static plane in the remote space, being
231 able to be re-imaged by O3. Panel c shows how the data is acquired by the
232 acquisition engine and reconstructed by an affine transformation. The top row shows
233 how the data is stored during an acquisition, while the bottom row shows the data
234 after an affine transformation. The stacks in each row are projected along the axis
235 indicated by the green arrow, resulting in the projection shown to the right of the
236 stacks.

237 Supplementary References

238 1. C. Dunsby, "Optically sectioned imaging by oblique plane microscopy," (2008).
239 2. M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann,
240 R. M. Bruno, and E. M. C. Hillman, "Swept confocally-aligned planar excitation
241 (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms,"
242 *Nature Photon* **9**, 113–119 (2015).

243 3. M. Kumar, S. Kishore, J. Nasenbeny, D. L. McLean, and Y. Kozorovitskiy,
244 "Integrated one- and two-photon scanned oblique plane illumination (SOPi)
245 microscopy for rapid volumetric imaging," *Opt. Express* **26**, 13027 (2018).

246 4. B.-J. Chang, J. D. Manton, E. Sapoznik, T. Pohlkamp, T. S. Terrones, E. S. Welf,
247 V. S. Murali, P. Roudot, K. Hake, L. Whitehead, A. G. York, K. M. Dean, and R.
248 Fiolka, "Real-time multi-angle projection imaging of biological dynamics," *Nat
249 Methods* **18**, 829–834 (2021).

250 5. B. Chen, B.-J. Chang, S. Daetwyler, F. Zhou, S. Sharma, D. M. Lee, A. Nayak, J.
251 Noh, K. Dubrovinski, E. H. Chen, M. Glotzer, and R. Fiolka, "Projective light-sheet
252 microscopy with flexible parameter selection," *Nat Commun* **15**, 2755 (2024).

253 6. E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, "An optical technique for
254 remote focusing in microscopy," *Optics Communications* **281**, 880–887 (2008).

255