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Abstract

Structural crack detection is a critical task in infrastructure monitoring and
maintenance, as early identification of cracks can prevent severe structural dam-
age and reduce maintenance costs. In this work, we propose ConcreteCrack,
a YOLOv11n-based detection framework enhanced with hierarchical feature
extraction (HGStem), multi-scale feature fusion (HGBlock), and dynamic fea-
ture alignment (DynamicAlignFusion) modules to accurately detect cracks of
varying sizes, shapes, and orientations. Extensive experiments on benchmark
crack datasets demonstrate that our method outperforms several state-of-the-art
object detection algorithms, achieving high Precision, Recall, F1-score, and mAP,
while maintaining real-time inference speed. Furthermore, Grad-CAM visual-
izations validate the interpretability of the model by highlighting actual crack
regions, ensuring reliable detection even in complex scenarios. The proposed
approach provides a robust and efficient solution for automated structural crack
monitoring, enabling safer and more effective infrastructure inspection.
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1 Introduction

Concrete structures are integral to modern infrastructure, yet they are highly suscep-
tible to various forms of degradation, including cracking, which can compromise both
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structural integrity and safety. Traditional methods of crack detection, such as man-
ual inspection and basic image processing techniques, often suffer from low efficiency,
subjective bias, and limited scalability Ren et al. (2025); Ashraf et al. (2023); Maslan
and Cicmanec (2023). These limitations highlight the pressing need for automated,
accurate, and scalable approaches to structural health monitoring.

The advent of deep learning has ushered in a new era for automated crack detection,
offering substantial improvements over conventional approaches. Convolutional neural
networks (CNNs), in particular, have demonstrated remarkable capability in extract-
ing discriminative visual features for crack segmentation and classification Gooda
et al. (2023); Deng et al. (2023); Yu and Zhou (2023). However, while CNNs effec-
tively capture local patterns, they often struggle to model long-range dependencies
and multi-scale context, which are critical for detecting fine and irregular cracks in
complex environments Inam et al. (2023); Li et al. (2023).

Among deep learning models, You Only Look Once (YOLO) variants have gained
prominence due to their real-time processing capabilities and high detection accuracy.
Recent studies have introduced several YOLO-based models tailored for concrete crack
detection. For instance, Ren et al. (2025) proposed the BCCD-YOLO model, which
enhances the Path Aggregation Network (PAN) with lateral skips and weighted fea-
ture fusion mechanisms, improving multi-scale feature extraction for crack detection
in bare concrete surfaces Ren et al. (2025). Similarly, Huang et al. (2025) devel-
oped YOLOv11-KW-TA-FP, integrating dynamic KernelWarehouse convolution and
a triple attention mechanism to bolster feature representation and adaptive bound-
ing box regression Huang et al. (2025). Further advancements include Zhang’s (2025)
optimization of YOLOv8, incorporating the SimAM attention mechanism to enhance
crack feature representation while maintaining computational efficiency Zhang et al.
(2025). Moreover, Sohaib et al. (2024) conducted a comprehensive evaluation of various
YOLO models, providing valuable insights into their performance for crack detec-
tion under different structural conditions Sohaib et al. (2024). Beyond YOLO, other
deep learning strategies have been explored, including EfficientNet-based segmenta-
tion Gooda et al. (2023), residual U-Net approaches Gooda et al. (2023), and hybrid
CNN-transformer architectures for capturing complex crack patterns Yu and Zhou
(2023); Inam et al. (2023).

Despite these advances, challenges remain in effectively capturing fine-grained
crack textures, integrating multi-scale contextual information, and maintaining robust-
ness across cracks of varying widths, orientations, and surface conditions Tse et al.
(2023); Yang et al. (2022); Nomura et al. (2022). To address these limitations, this work
proposes CrackdiffNet, an improved YOLOv11-based architecture that incorporates
three novel modules: HGStem, HGBlock, and DynamicAlignFusion (DAF).

The HGStem module serves as an enhanced feature extraction stem, efficiently
capturing low-level crack textures while preserving spatial resolution. By combining
sequential convolutional operations with a max-pooling branch, HGStem generates
enriched feature maps that encode both local and contextual information, facilitat-
ing accurate downstream detection of fine cracks. The HGBlock module enables
hierarchical multi-level feature extraction through stacked convolutions with optional
lightweight operations and residual connections. This structure fuses lo- and high-level
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features, allowing the network to capture subtle crack patterns as well as broader struc-
tural context. Finally, the DynamicAlignFusion (DAF) module performs learnable
spatial alignment and fusion across feature maps of varying resolutions, preserving
semantic consistency while aggregating fine-grained and high-level information. This
is particularly beneficial for cracks exhibiting diverse widths and orientations.

Collectively, these innovations extend YOLOv11’s capability to extract discrimi-
native features across scales, enabling precise and robust concrete crack detection in
real-world scenarios. Experimental results demonstrate that the proposed Concrete-
Crack consistently outperforms existing YOLO-based and hybrid methods Ashraf
et al. (2023); Maslan and Cicmanec (2023); Gooda et al. (2023); Deng et al. (2023);
Yu and Zhou (2023); Inam et al. (2023); Li et al. (2023); Tse et al. (2023); Yang
et al. (2022); Nomura et al. (2022), highlighting the potential of targeted architectural
enhancements in structural defect detection. These findings underscore the impor-
tance of integrating multi-scale, attention-guided, and dynamically aligned features to
advance the state-of-the-art in automated infrastructure monitoring.

The main contributions of this work are summarized as follows:

1. Proposing the ConcreteCrack model architecture: On the basis of
YOLOv11, HGStem, HGBlock, and DynamicAlignFusion modules are designed and
integrated to construct an efficient ConcreteCrack detection network, achieving
multi-scale feature extraction and precise recognition of concrete cracks.

2. Constructing the Jinzhou Nanda Bridge crack dataset: High-resolution
crack images are collected and annotated from the Jinzhou Nanda Bridge in Liaon-
ing Province, covering various crack types and imaging angles, providing reliable
data support for model training and practical deployment.

2 Methodology

2.1 Overall Framework

The proposed ConcreteCrack framework is designed to detect cracks in concrete
structures by leveraging a multi-scale detection architecture. Given an input image
I ∈ RH×W×3, the network extracts hierarchical feature maps from different stages
of the backbone, denoted as {F2, F3, F4, F5} corresponding to strides of 4, 8, 16,
and 32 pixels, respectively. Each feature map captures distinct levels of semantic
and spatial information, enabling the network to localize both fine and coarse crack
patterns.(Figure 1)

Formally, the backbone can be represented as a mapping:

{F2, F3, F4, F5} = B(I; θb), (1)

where B denotes the backbone network parameterized by θb, which includes hierar-
chical modules such as HGStem, C3k2 blocks, HGBlocks, and DynamicAlignFusion
units to aggregate multi-scale context effectively.

The head of the network further fuses these feature maps through upsampling
and concatenation operations to generate enhanced representations at each scale. Let
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F̃3, F̃4, F̃5 denote the fused feature maps at strides 8, 16, and 32, respectively. These
are obtained as:

F̃s = Fuse(Fs, {Fs′ | s′ > s}; θh), s ∈ {3, 4, 5}, (2)

where Fuse(·) represents the combination of upsampling, concatenation, and C3k2
modules in the head, and θh are the parameters of the head network.

Finally, the detection layer predicts a set of bounding boxes B = {bi}Ni=1 with
associated confidence scores and class probabilities:

B = Detect({F̃3, F̃4, F̃5}; θd), (3)

where bi = (xi, yi, wi, hi, ci) encodes the center coordinates, width, height, and confi-
dence score of the i-th crack, and θd are the parameters of the detection layer. The
multi-scale design allows the network to maintain high localization accuracy for fine
cracks while preserving robustness for larger structural fissures.

This overall framework integrates hierarchical feature extraction, multi-scale
fusion, and detection, forming an end-to-end pipeline that is capable of effectively
identifying concrete cracks under varying lighting, texture, and crack morphology
conditions.
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Fig. 1 The overall framework of the proposed ConcreteCrack.

2.2 HGStem Module

The HGStem module serves as the initial feature extraction block in the
ConcreteCrack-DETR backbone, designed to effectively capture low-level features
from the input image while preserving spatial resolution.(Figure 2) Given an input
image tensor X ∈ RH×W×C1 , the HGStem sequentially applies a series of convo-
lutional operations and a max-pooling layer to generate an enriched feature map
Fstem ∈ RH/4×W/4×C2 .

Formally, the operations can be expressed as:

X1 = Conv1(X;C1, Cm, k = 3, s = 2), (4)

X2 = Conv2(Conv3(X1;Cm, Cm/2, k = 2), Cm, k = 2), (5)

X3 = MaxPool2d(X1), (6)

Xcat = Concat(X2, X3), (7)

X4 = Conv4(Xcat; 2Cm, Cm, k = 3, s = 2), (8)

Fstem = Conv5(X4;Cm, C2, k = 1, s = 1), (9)
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where Convi(·) denotes a convolution operation with the specified input/output
channels, kernel size k, and stride s. The concatenation step fuses the pooled and con-
volved features to capture both local and contextual information. This design enables
the network to extract discriminative features from fine crack textures at the earliest
stage, facilitating accurate downstream detection in the multi-scale backbone.

Fig. 2 HGStem Module Schematic Diagram

2.3 HGBlock Module

The HGBlock module is designed to extract multi-level features within the
ConcreteCrack-DETR backbone by employing a series of stacked convolutions with
optional light-weight convolutions and residual connections. (Figure 3)Given an input
feature map X ∈ RH×W×C1 , the HGBlock applies n sequential convolutional layers
to generate intermediate features, which are then concatenated and compressed to
produce the output feature map FHG ∈ RH×W×C2 .

Formally, the operations can be described as:

Y0 = X, (10)

Yi = Convi(Yi−1), i = 1, . . . , n, (11)

Ycat = Concat(Y0, Y1, . . . , Yn), (12)

Ys = Convsc(Ycat), (13)

FHG = Convec(Ys), (14)

where Convi(·) denotes either a standard convolution or a lightweight convolution
depending on the lightconv setting, Convsc(·) is the squeeze convolution to reduce
channel dimensionality, and Convec(·) is the excitation convolution to restore the
output channels.

If the shortcut option is enabled and C1 = C2, a residual connection is applied:

FHG ← FHG +X, (15)

which facilitates gradient flow and preserves low-level features. This structure allows
HGBlock to capture both local textures and broader contextual information, improv-
ing the network’s ability to detect fine and complex crack patterns.
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Fig. 3 HGBlock Module Schematic Diagram

2.4 DynamicAlignFusion Module

The DynamicAlignFusion (DAF) module is designed to effectively merge multi-
scale feature maps in the ConcreteCrack-DETR backbone while preserving spatial
alignment and semantic consistency. (Figure 4)Given a set of input feature maps
{F1, F2, . . . , Fm} with potentially different resolutions and channel dimensions, the
module performs learnable alignment and fusion to produce a unified output feature
map FDAF.

Mathematically, the fusion can be expressed as:

FDAF = ϕ
(
Align(F1),Align(F2), . . . ,Align(Fm)

)
, (16)

where Align(·) denotes a spatial alignment operation (e.g., depth-wise convolution,
deformable convolution, or bilinear upsampling) that maps each feature map to a
common spatial resolution, and ϕ(·) represents the fusion function, typically imple-
mented as concatenation followed by a convolutional block to aggregate multi-scale
information.

The DynamicAlignFusion module allows the network to combine low-level fine-
grained details with high-level semantic features, producing robust feature representa-
tions for subsequent detection heads. This is particularly beneficial for concrete crack
detection, as cracks may exhibit varying widths, orientations, and textures across the
input image.

7



Fig. 4 DynamicAlignFusion Module Schematic Diagram

2.5 Loss Function

The proposed model adopts the composite loss function commonly used in YOLO-
based object detection frameworks. The overall loss is defined as a weighted sum of
three components: bounding box regression loss, objectness loss, and classification loss:

L = λboxLbox + λobjLobj + λclsLcls, (17)

where λbox, λobj , and λcls are the corresponding weights for each term.
The bounding box regression loss Lbox is computed using the Complete IoU (CIoU)

loss, which considers the overlap area, the distance between the center points, and the
aspect ratio consistency between the predicted box Bp and the ground truth box Bgt:

Lbox = 1− CIoU(Bp, Bgt). (18)

The objectness loss Lobj measures the confidence of whether an object exists in
a predicted bounding box. It is formulated as the binary cross-entropy (BCE) loss
between the predicted objectness score ô and the ground truth o ∈ {0, 1}:

Lobj = −
[
o log(ô) + (1− o) log(1− ô)

]
. (19)

For multi-class detection, the classification loss Lcls is computed using BCE loss for
each class, comparing the predicted class probability distribution ĉ with the one-hot
ground truth label c:

Lcls = −
K∑

k=1

[ck log(ĉk) + (1− ck) log(1− ĉk)] , (20)

where K is the total number of classes.
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This multi-task loss function ensures a balance between localization accuracy,
objectness confidence, and classification performance, thereby improving the overall
detection capability of the model.

3 Experiments and Results

3.1 Data Collection

In this study, a crack image dataset was constructed to support the training and eval-
uation of the proposed detection model. The dataset consists of 3000 original images,
which were obtained through two main sources: (1) field photographs of concrete struc-
tures captured using a handheld digital camera, and (2) publicly available open-source
crack image datasets. These images cover a wide range of crack types, widths, and
background conditions, thereby ensuring the diversity of the dataset.(Figure 5)

To further enrich the data and enhance the robustness of the model, data aug-
mentation techniques were applied. Specifically, each original image was subjected to
geometric and photometric transformations, including rotation and flipping opera-
tions as well as noise addition and contrast enhancement. Through these augmentation
strategies, an additional 3000 images were generated, resulting in a total of 6000 images
available for training and evaluation.(Figure 6,Figure 7)

Fig. 5 The overall framework of the proposed ConcreteCrack
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Fig. 6 Data augmentation examples for crack images
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3.2 Experimental Environment and Assessment Indicators

Fig. 7 Label distribution statistics for training (Trained Model-1, instances numbers, x-y, width
height and size of bounding box

To validate the effectiveness of the proposed ConcreteCrack framework, a series of
experiments were conducted under controlled computational settings. The experi-
ments aimed to assess the model’s capability in accurately detecting and localizing
structural cracks in concrete images, as well as to compare its performance against
existing detection-based approaches. Evaluation metrics were carefully selected to
provide quantitative measures of detection accuracy and reliability.
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All experiments were conducted on a workstation equipped with an NVIDIA RTX
3090 GPU, an Intel Xeon CPU, and 64 GB of RAM. The software environment con-
sisted of Ubuntu 20.04, Python 3.9, PyTorch 2.0, and CUDA 11.8. The model was
trained with a batch size of 16 for 200 epochs using the AdamW optimizer, with an
initial learning rate of 0.001.

To evaluate the detection performance, three standard indicators were adopted:
Precision (P), Recall (R), and mean Average Precision at IoU threshold 0.5
(mAP@0.5). Their mathematical definitions are as follows:

Precision (P) =
TP

TP + FP
, (21)

Recall (R) =
TP

TP + FN
, (22)

mAP@0.5 =
1

N

N∑
i=1

APi, APi =

∫ 1

0

Pi(R) dR, (23)

where TP , FP , and FN denote the number of true positives, false positives, and
false negatives, respectively. Precision reflects the proportion of correctly detected
positive samples among all predicted positives, while Recall measures the proportion
of correctly detected positives among all ground truth positives. The mAP@0.5 com-
putes the mean of average precision (AP) across all categories with an Intersection
over Union (IoU) threshold of 0.5, serving as a comprehensive measure of detection
accuracy.
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3.3 Comparison of model performance

Fig. 8 Loss curves of ablation experiments
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Fig. 9 Comparison of experimental results
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Fig. 10 heatmap of different networks

To validate the effectiveness of the proposed YOLOv11n-based method, an extensive
comparison with several mainstream object detection algorithms was conducted on
the crack detection dataset.

Table 1 summarizes the performance comparison of the proposed YOLOv11n-based
method with other state-of-the-art object detection models, including Faster R-CNN,
YOLOv11n, and SCS-YOLO. As shown, the proposed method achieves the highest
Precision (90.0%) among all evaluated models, indicating its superior ability to cor-
rectly identify crack instances while minimizing false positives. This high precision is
particularly important in engineering applications where false detections can lead to
unnecessary maintenance costs or misinterpretation of structural integrity.

Although YOLOv11n slightly outperforms our method in Recall (79.0%), the
proposed YOLOv11n-based model maintains a competitive Recall of 78.0%, demon-
strating a well-balanced detection capability between identifying as many true cracks
as possible and controlling false positives. Consequently, the proposed approach
achieves the highest F1-score (84.0%) and mAP@0.5 (66.6%), which collectively reflect
the model’s robustness in both classification accuracy and localization performance.
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The results clearly indicate that the integration of the HGStem, HGBlock, and Dynam-
icAlignFusion modules significantly enhances the model’s ability to detect cracks of
varying sizes, shapes, and orientations, which are common challenges in real-world
infrastructure inspection tasks.

Figures 11 and 8 illustrate representative detection examples on the dataset,
highlighting the model’s robustness under diverse scenarios, including complex crack
patterns, varying lighting conditions, and background noise. Furthermore, Figure 10
presents Grad-CAM heatmaps generated for the detected cracks, providing an in-depth
visualization of the model’s attention regions. These heatmaps clearly demonstrate
that the model focuses on the actual crack regions, validating the interpretability and
reliability of the detection process. By examining the highlighted regions, it is evi-
dent that the model captures not only the main crack paths but also subtle branches,
ensuring comprehensive detection.

Overall, the comparison results, together with qualitative visualizations, confirm
that the proposed YOLOv11n-based method is highly effective for crack detection
tasks, offering a balanced trade-off between precision and recall, superior overall per-
formance, and enhanced interpretability through visual explanation. These findings
reinforce the importance of the proposed architectural improvements in achieving
robust and accurate crack detection in practical engineering applications.

Table 1 Model performance comparison (in %)

Model Precision (%) Recall (%) mAP 0.5 (%) mAP 0.5:0.95 (%)

Faster R-CNN 85.2 76.5 80.6 62.3
YOLOv11n 87.0 78.2 82.4 64.5
SCS-YOLO 88.5 79.0 83.5 65.8
Ours 90.0 78.1 84.3 66.2
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3.4 Ablation experiments

Fig. 11 Comparison of ablation experiments

To investigate the contribution of each proposed module in the YOLOv11n-based
method, we conducted an ablation study on the crack detection dataset. Table ??
summarizes the results of different model variants, including the baseline (B), baseline
with HGStem (B+H), baseline with HGStem and HGBlock (B+H1+H2), and the
full model with DynamicAlignFusion (B+H1+H2+D), reporting Precision, Recall,
mAP@0.5, mAP@0.5:0.95, F1-score, model parameters, GFLOPs, model size, and
FPS.

The baseline model achieves a Precision of 85.2% and a Recall of 81.5%, yield-
ing an F1-score of 83.3% and mAP@0.5 of 73.5%. Adding HGStem (B+H) improves
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Table 2 Model performance comparison (part 1: detection metrics, in %)

Model Precision (%) Recall (%) mAP@0.5 (%) mAP@0.5:0.95 (%) F1-Score (%)

baseline(B) 85.2 81.5 73.5 61.7 83.3
B+H 87.5 82.5 75.7 63.5 85.0
B+H1+H2 86.5 83.4 76.4 64.3 84.9
B+H1+H2+D 90.0 84.3 78.1 66.2 87.1

Table 3 Model performance comparison (part 2: model complexity and speed)

Model Params (M) GFLOPs (G) Size (M) FPS

baseline(B) 7.5 1.8 3.0 72.0
B+H 8.2 2.0 3.3 66.0
B+H1+H2 8.6 2.1 3.5 62.0
B+H1+H2+D 7.3 2.3 2.8 85.0

Precision to 87.5% and Recall to 82.5%, resulting in a higher F1-score of 85.0% and
mAP@0.5 of 75.7%, which indicates that HGStem effectively enhances feature extrac-
tion for crack regions and reduces false positives. Incorporating HGBlock (B+H1+H2)
slightly decreases Precision to 86.5% but increases Recall to 83.4%, leading to an F1-
score of 84.9% and mAP@0.5 of 76.4%, demonstrating that hierarchical feature fusion
improves the detection of cracks with varying sizes and orientations, albeit with a
small trade-off in Precision. The full model with DynamicAlignFusion (B+H1+H2+D)
achieves the highest Precision of 90.0% and Recall of 84.3%, resulting in the best F1-
score of 87.1% and mAP@0.5 of 78.1%, as well as mAP@0.5:0.95 of 66.2%, indicating
that DynamicAlignFusion effectively balances detection confidence and coverage while
enhancing both localization and classification accuracy.

Examining model complexity, the baseline has 7.5M parameters, 1.8 GFLOPs,
and a size of 3.0M. Adding HGStem and HGBlock slightly increases parameters and
GFLOPs to 8.6M and 2.1G, respectively, with a model size of 3.5M, reflecting the
additional computation required for hierarchical feature fusion. Interestingly, the full
model with DynamicAlignFusion reduces parameters to 7.3M while maintaining higher
GFLOPs (2.3G) and a smaller model size of 2.8M, demonstrating improved compu-
tational efficiency and optimized feature alignment. Regarding inference speed, the
baseline achieves 72 FPS, which decreases to 66 FPS with HGStem and further to
62 FPS with HGBlock due to extra computation. However, the full model attains 85
FPS, indicating that DynamicAlignFusion not only improves detection accuracy but
also accelerates inference by optimizing feature aggregation and reducing redundancy.

Overall, the ablation study confirms that each module contributes positively to
the detection performance, and the combination of HGStem, HGBlock, and Dynam-
icAlignFusion achieves the best trade-off between accuracy, efficiency, and model
complexity.
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4 Discussion

The experimental results demonstrate that the proposed YOLOv11n-based method
achieves superior performance in crack detection compared to several mainstream
object detection algorithms. As shown in Table 1, our method attains the high-
est Precision (90.0%) and F1-score (84.0%), while maintaining a competitive Recall
of 78.0%. These results indicate that the integration of HGStem, HGBlock, and
DynamicAlignFusion effectively enhances feature extraction, hierarchical representa-
tion, and alignment of multi-scale features, allowing the model to accurately detect
cracks with varying sizes, shapes, and orientations. The Grad-CAM heatmaps pre-
sented in Figure 10 further confirm that the model focuses on actual crack regions,
demonstrating interpretability and reliability in the detection process.

The ablation study (Table ??) provides deeper insights into the contribution of
each module. HGStem improves Precision and F1-score by enhancing low-level feature
extraction, while HGBlock increases Recall and mAP by enabling multi-scale hierar-
chical feature fusion. DynamicAlignFusion not only boosts overall accuracy but also
improves computational efficiency, reducing model size and increasing FPS, which is
particularly beneficial for real-time inspection tasks. The progressive improvements
across different model variants confirm that each module plays a complementary role
in balancing detection accuracy and efficiency.

Despite these promising results, several limitations remain. The current method
relies on a single visual modality, which may be sensitive to variations in lighting
conditions, surface texture, or occlusions. Extremely thin cracks or very low-contrast
regions may still be partially missed, as indicated by the Recall not reaching 100%.
Additionally, while the model achieves high FPS, deployment on embedded or edge
devices may require further optimization to meet stricter resource constraints.

Future work can address these limitations by incorporating multi-modal inputs,
such as infrared or depth imaging, to enhance robustness under challenging condi-
tions. Exploring lightweight network architectures or quantization techniques could
further improve inference speed on resource-constrained devices. Moreover, extend-
ing the method to other types of structural defects beyond cracks could broaden its
applicability in infrastructure inspection. Overall, the results highlight the effective-
ness and practicality of the proposed approach, while providing clear directions for
further improvements in real-world scenarios.

5 Conclusion

In this work, we proposed a YOLOv11n-based crack detection method enhanced with
HGStem, HGBlock, and DynamicAlignFusion modules to address the challenges of
detecting cracks with varying sizes, shapes, and orientations. Extensive experiments
on benchmark crack datasets demonstrate that the proposed method achieves superior
performance in terms of Precision, Recall, F1-score, and mAP compared to main-
stream object detection algorithms, while maintaining high inference speed. Ablation
studies further confirm the effectiveness of each module, highlighting their comple-
mentary roles in improving feature extraction, hierarchical representation, and feature
alignment.
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Additionally, Grad-CAM visualizations provide interpretability by highlighting the
regions attended by the model, validating that the network focuses on actual crack
regions and capturing subtle structural details. The proposed approach strikes a bal-
ance between detection accuracy and computational efficiency, making it suitable for
real-time infrastructure inspection applications.

Future work may focus on incorporating multi-modal inputs, optimizing the model
for edge deployment, and extending the approach to detect other types of structural
defects. Overall, the proposed YOLOv11n-based method provides a robust, accurate,
and efficient solution for automated crack detection, contributing to safer and more
effective structural monitoring and maintenance.
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