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Supplementary Information

	Composition
	Feature size (nm)
	Device area (cm2)
	Ioff 
(A)
	Joff (MA/cm2)
	Tx 
(°C)

	Si-Te (This Work)
	5000
	2.5∙10-7
	6.0∙10-5
	2.4∙10-4
	400

	Si-Ge-Te (This Work)
	5000
	2.5∙10-7
	5.29∙10-6
	2.1∙10-5
	300

	N-Si-Ge-Te (This Work)
	5000
	2.5∙10-7
	5.8∙10-9
	2.3∙10-8
	400

	Si-Te1
	100
	10-10
	8.0∙10-10
	8.0∙10-6
	-

	Zn-Te2
	200
	4.0∙10-10
	6.0∙10-6
	1.5∙10-2
	-

	C-Te3
	30
	9.0∙10-12
	5.0∙10-9
	5.5∙10-4
	450

	B-Te3
	30
	9.0∙10-12
	10-8
	1.1∙10-3
	450

	Ge-S4
	130
	1.7∙10-10
	10-9
	5.9∙10-6
	350

	N-Si-Te-As-Ge5
	30
	9.0∙10-12
	10-6
	1.1∙10-1
	600

	Si-Te-As-Ge-Sb6
	350
	1.2∙10-9
	1.9∙10-9
	1.6∙10-6
	350

	Ge-Se7
	50
	2.5∙10-11
	10-6
	4.0∙10-2
	350

	Ge-Se-Si8
	200
	4.0∙10-10
	2.0∙10-7
	5.0∙10-4
	-

	Ge-Se-As9
	350
	1.2∙10-9
	10-8
	8.3∙10-6
	450

	Ge-Se-N10
	50
	2.5∙10-11
	2.0∙10-9
	8.0∙10-5
	600

	GSSN11
	350
	1.2∙10-9
	10-10
	8.3∙10-8
	400


Supplementary Table T1: Comparative performance table of state-of-the-art selector devices.1-11

	Composition
	Device area (um2)
	Energy
(pJ/spike)
	Normalization 
(pJ/um2)
	Frequency 
(MHz)

	N-Si-Ge-Te (This Work)
	25
	14 
	0.56
	1.4-8.6

	Ge-Se12
	100
	1000
	10
	0.1-100

	NbOx13
	0.0007069
	50
	70740.4
	0.01-0.1

	B-Te13
	0.0007069
	30
	42444.2
	0.01-0.1

	Ag/HfO213
	0.04909
	20
	407.3
	0.01-0.1

	NbOx14
	25
	50
	2
	0.1-1

	ZnO15
	100
	1.442
	14.42
	0.00030-0.000185

	WSe216
	0.2
	2.26
	11.30
	1.77

	MOSFET17
	0.25
	10
	40.00
	0.00002

	SONOS18
	0.25
	30
	120.00
	3

	PD-SOI19
	1.8
	35
	19.44
	20

	PCM20
	0.5
	5
	10
	0.05


Supplementary Table T2: Comparative performance table of state-of-the-art artificial neuron devices.12-20
	System
	
	Peak A
	Peak B
	Peak C
	Peak D
	Peak E
	Peak G

	ST
	1/(cm-1)
	88.50
	103.00
	
	122.10
	139.30
	160.00

	
	Area%
	5.97%
	4.43%
	
	55.03%
	27.69%
	6.89%

	SGT
	1/(cm-1)\
	88.50
	103.00
	120.00
	123.30
	138.50
	154.20

	
	Area%
	4.50%
	7.19%
	18.79%
	32.91%
	19.85%
	16.75%

	NSGT
	1/(cm-1)
	91.290
	100.40
	120.80
	123.90
	140.40
	153.00

	
	Area%
	4.10%
	5.28%
	21.58%
	41.43%
	17.31%
	10.31%


Supplementary Table T3: Deconvoluted peaks from Raman spectra of ST, SGT, and NSGT. Peak A, B, D and E correspond to Te-Te bonds. Peak C corresponds to Ge-Te units in SGT and NSGT. Peak G is related with Si-Te units.  
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Supplementary Fig. S1 | Device fabrication process and top view of fabricated device. a, Schematic of the single OTS selector’s fabrication procedure from a bare SiO2 wafer to the final device. The purple substrate represents the SiO2 wafer, the orange film represents the photoresist (AZ5214E), the red film represents the chalcogenide film, and the grey film represents tungsten electrode. b, Optical microscope image of the top view of the fabricated device. 
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Supplementary Fig. S2 | Device-to-device variation of DC I-V characteristics of a, ST, b, SGT, and c, NSGT devices. 
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Supplementary Fig. S3 | Delay time measurements of ST, SGT, and NSGT OTS selectors. OTS selector’s response to trapezoidal voltage pulse train with increasing pulse amplitudes with a, binary ST (0.1 V~2.0 V), d, ternary SGT (0.1 V~1.5 V), and g, quaternary NSGT (0.1 V~1.2 V) devices, with an equivalent test circuit shown in the inset. Enlarged views of the first device response with input pulse and output device response showing discrete on/off states in b, ST, e, SGT, and h, NSGT. Enlarged views of the panels b,e, and h for delay time evaluation, highlighting the device response to Vth and the corresponding rise in Vout. c, ST (td=10 ns), f, SGT (td=15 ns), and i, NSGT (td=5 ns). 
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Supplementary Fig. S4 | X-ray photoelectron spectroscopy (XPS) spectra and deconvoluted spectral peaks for a, Si 2p, b, Ge 3d and c, N 1s. In SGT, the Ge–O bond was commonly detected in both the Ge 3d21,22. In NSGT, N-related bonds were formed with Si and Ge. The Si–N bond was consistently observed in the Si 2p23 and N 1s regions23, while the Ge–N bond was commonly identified in the Ge 3d and N 1s24 regions.
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Supplementary Fig. S5 | Radial distribution function (RDF) of a, ST, b, SGT, and c, NSGT. Prominent peaks corresponding to the dominant bonds are observed, with the appearance of a peak associated with the Ge–Te bond length induced by Ge-doping, and additional shorter bond-length peaks arising from N-doping. All RDF results are calculated using the ASE Python library from amorphous structural models. 
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Supplementary Fig. S6 | Density of states (DoS) from –16 eV to 12 eV (eV) a, ST, b, SGT, and c, NSGT. In all three materials, the Te p-orbitals dominate near the band edges, while the Te s-orbitals are located in deep-lying states.
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Supplementary Fig. S7 | Bond angle distributions for Ge-related bonds in a, SGT and b, NSGT. In the amorphous SGT structural model, the bond angles of Ge–Te bonds are centered on Ge around 100°. After N-doping, this distribution shifts to 80° and 110°, indicating distortion of the Ge–Te structure.


[image: ]Supplementary Fig. S8 | Spiking characteristics of artificial NSGT-based neuron depending on synapse resistor, a, Rs = 2.4 k Ω and b, 1.2 k Ω. (with identical load resistance RL = 10 kΩ) An increase in resistance resulted in a decrease in spiking frequency.


Supplementary Method C1 | Computation of glass transition temperature (Tg) based on Lankhorst’s model
The Tg for a binary chalcogenide system A₁₋xBₓ is determined through the following steps:
1. The constituent elements and their relative composition ratios are calculated.
2. The dominant element in terms of compound composition, , where  represents the coordination number of element  is identified as follows:

3. The bond concentration around this dominant element  is determined as follows:
(1) If  0 <  < , A-rich system:


(2) If  , <  < 1, B-rich system:


4. The heterogeneous bond enthalpy  is computed as:

5. The atomization enthalpy  is calculated as:

6. The glass-transition temperature TgT is estimated using Lankhorst’s equation:

Major bond enthalpies for homopolar and heteropolar bonds in ST, SGT, and NSGT are summarized in Table a, and the calculated Tg based on the Lankhorst model and the measured crystallization temperature (Tx) are presented in Table b.
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