Single-cell profiling of gastric cancer ascites reveals immunosuppressive remodeling and an epithelial-immune dual phenotype signature predictive for PD-1 immunotherapy responses
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Supplementary Fig. 1. Quality control of single-cell transcriptome profiles. (A) Violin plots for different quality metrics in tissue samples before quality control. (B) Violin plots for different quality metrics in tissue samples after quality control.
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Supplementary Fig. 2. scRNA-seq profiling of cells and cell type abundance analyses. (A) UMAP plots of total cells of MA and PBMC, colored by cluster number, sample id, tissue type and patient. (B) UMAP plots of normalized expression of specific markers. (C) Bar plot of the proportion of cellular composition in different tissue types. (D) Statistically significant differences in the proportions of T cells, B cells and myeliod cells in MA and PBMC. Comparisons were made using the wilcox test. PBMC, n = 10 samples; MA, n = 10 samples.
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Supplementary Fig. 3. scRNA-seq profiling and marker gene expression in T cell subclusters. (A) UMAP plots of T cell subclusters in MA and PBMC. (B-G)[1–3] Dot plots of the overlap between marker genes for CDT and CD8T subclusters in previous studies and the cluster markers used in the present study. The size of the dots corresponds to the overlap between the cluster gene sets, while the color of the dots shown was determined by the Benjamini-Hochberg adjusted -log10(pvalues).
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Supplementary Fig. 4. T cell subclusters functional score analyses. (A) Heatmap showing the expression of 8 curated gene signatures in the CD8 T cell subclusters. (B) UMAP plots showing the expression of 8 curated gene signatures in the CD8 T cell subclusters.
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Supplementary Fig. 5. T cell subclusters abundance analyses. (A) Average proportion of T cell subclusters derived from each sample (left panel), and MA or PBMC (right panel). (B) Statistically significant differences in the proportions of all T cell subclusters in MA and PBMC. Comparisons were performed using the wilcox test. PBMC, n = 10 samples; MA, n = 10 samples.
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[bookmark: _Hlk200128658]Supplementary Fig. 6. T cell analyses based on integrated expression and TCR clonality. (A) UMAP plot highlighting the recovery of VDJ information. (B) UMAP plots comparing the clonal of T cells of MA and PBMC. (C) Stack plot of the number and relative proportion of cells by T subclusters assigned into specific frequency ranges. (D) The TCR repertoire overlap among MA and PBMC tissues from the same patients. The value is Morisita’s overlap index. (E) Migration potential of T cell subclusters across different tissues quantified by pairwise STARTRAC-migr indices. Data were presented as mean value. *p < 0.05; **p < 0.01; ***p < 0.001; permutation test (exact p values were provided in source data). (F) pSTARTRAC-tran indices of T01_CD8T, T02_CD8T, T03_CD8T and T04_CD8T cells for each patient with matched tissue samples, depicted by dots. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5× interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001, Kruskal-Wallis test. 
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Supplementary Fig. 7. Multiple algorithms for determining CD8+ T cell developmental trajectories. (A) UMAP plot of CD8+ T cells. (B) PAGA analysis of CD8+ T cells. Each dot represents a T cell subcluster. Node size reflects cluster connectivity strength. (C) CytoTRACE2-based developmental potential scoring across the CD8+ T cell trajectory. Higher scores indicated greater developmental plasticity. (D) CD8+ T cells developmental trajectories revealed by the slingshot algorithm. The direction of the arrow was the direction of the developmental trajectory.
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Supplementary Fig. 8. B cell subclusters abundance analyses. (A) UMAP plots of B cell subclusters in MA and PBMC. (B) Average proportion of B cell subclusters derived from each sample (left panel), and MA or PBMC (right panel). (C) Statistically significant differences in the proportions of B naïve, plasma and plasma cycling subclusters in MA and PBMC. Comparisons were performed using the wilcox test. PBMC, n = 10 samples; MA, n = 10 samples.
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Supplementary Fig. 9. B cell developmental trajectories. (A) Expression of naïve and memory-related genes on developmental trajectories.
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Supplementary Fig. 10. B cell analyses based on integrated expression and BCR clonality. (A) UMAP plot highlighting the recovery of VDJ information. (B) UMAP plots comparing the clonal of B cells of MA and PBMC. (C) Stack plot of the number of cells assigned to specific frequency ranges for MA and PBMC. (D) Stack plot of the proportion of cells assigned to specific frequency ranges for MA and PBMC. (E) Bar plot showing the percentage of different antibody isotypes in MA and PBMC. (F) Bar plot showing the percentage of different antibody isotypes in B cell subclusters. (G) Box plots show comparisons of the percentage of antibody isotypes in AtM B subcluster. Center line indicates the median value, lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5× interquartile range. *p < 0.05, **p < 0.01, ***p < 0.001, Kruskal-Wallis test.
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Supplementary Fig. 11. scRNA-seq profiling and marker gene expression in myeloid cell subclusters. (A) UMAP plots of myeloid cell subclusters in MA and PBMC. (B) UMAP plots showing the expression of curated genes in the myeloid cell subclusters. (C-D) Dot plots of the overlap between marker genes for DC and macrophage subclusters in previous studies and the cluster markers used in the present study. The size of the dots corresponds to the overlap between the cluster gene sets, while the color of the dots shown was determined by the Benjamini-Hochberg adjusted -log10(pvalues).
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Supplementary Fig. 12. Dual detection of epithelial immune phenotype cells and other cells. (A-B) Scatter plot of doublet scores against unique molecular identifier (UMI) counts and gene counts. Doublet scores were calculated by the R package DoubletFinder. (C-D) Violin plot of umi counts and gene counts between different cell types.
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