

Hybrid Switched-capacitor Three-phase Direct AC-AC Converter with Adjustable Output Voltage

Guanyu Yan

Northeast Electric Power University

Ruifeng Li

17643208037@163.com

Northeast Electric Power University

Chuang Liu

Northeast Electric Power University

Dongbo Guo

Tsinghua University

Mulin Han

Northeast Electric Power University

Fengyue Zhao

Northeast Electric Power University

Article

Keywords: Direct ac/ac converter, three phase, switched capacitor (SC).

Posted Date: October 7th, 2025

DOI: <https://doi.org/10.21203/rs.3.rs-7760201/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

1 **Hybrid Switched-capacitor Three-phase Direct AC-AC Converter**

2 **with Adjustable Output Voltage**

3 **Guanyu Yan^{1,2}, Ruifeng Li^{1,*}, Chuang Liu¹, Dongbo Guo³, Mulin Han¹, Fengyue Zhao¹**

4 ¹College of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, Jilin, China

5 ²College of Electrical and Information Engineering, Beihua University, Jilin, 132013, Jilin, China

6 ³Department of Electrical Engineering, Tsinghua University, Haidian District, 100084, Beijing, China

7 *e-mail: 17643208037@163.com

8 **Abstract**

9 A switched-capacitor (SC) three-phase direct ac/ac converter is presented in this paper. It includes
10 an additional inductor and two SC cells for each phase. Due to the introduction of the inductor, the
11 output voltage can be adjusted. The proposed converter operates in fixed switching frequency. One
12 of the features of this topology is that the voltage stresses across the switches and capacitors equal
13 half of high-side voltage. In addition, self-balancing capability of capacitor voltages and simple
14 modulation strategy are other characteristics. The main advantage of the proposed converter is the
15 employment of unidirectional switches (a single MOSFET), which avoids the commutation
16 problems in the bidirectional switches. A detailed description of the operation principle,
17 quantitative analysis, and design considerations for the proposed converter is provided. Eventually,
18 a prototype with 55V/220V and 3kW is designed to demonstrate the feasibility and validity of the
19 proposed converter.

20 **Key Words**

21 Direct ac/ac converter, three phase, switched capacitor (SC).

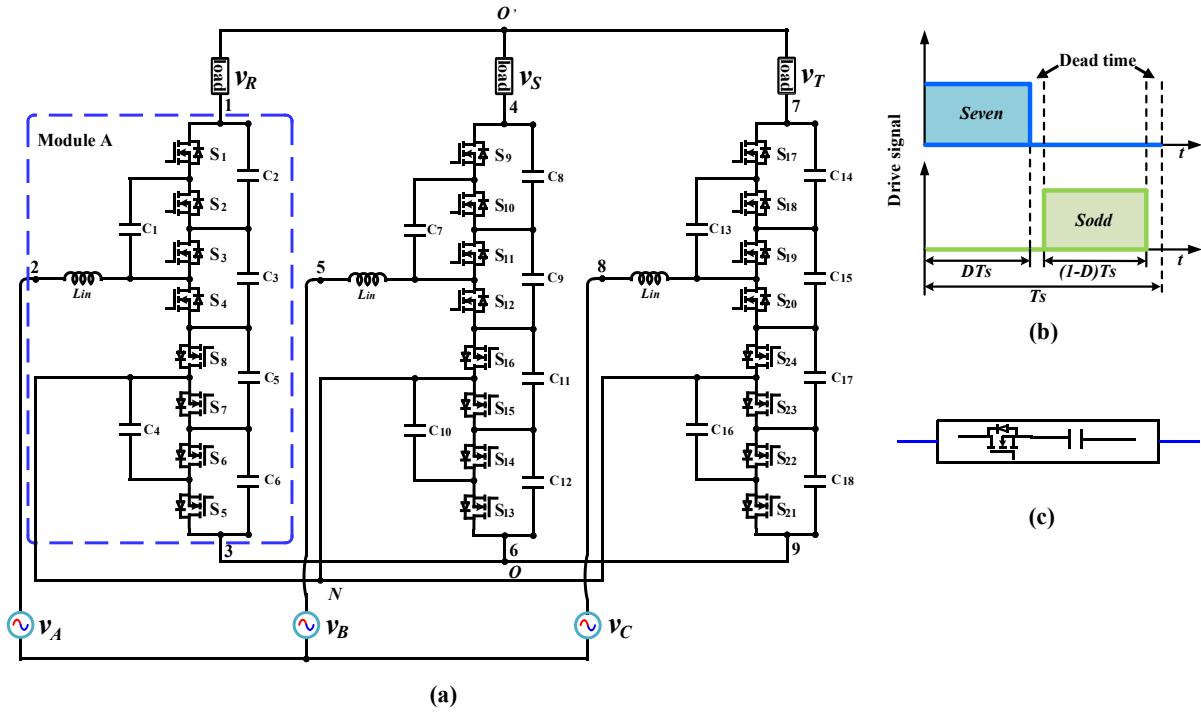
22 **Introduction**

23 As the penetration of distributed renewable energy like photovoltaic and wind power expands,
24 power quality concerns including voltage swell/sag and voltage fluctuations are attracting
25 increasing attention ¹. Moreover, the growth, diversity, and sensitivity of loads also impose higher
26 requirements on power quality ². Transformers, as commonly used devices in distribution

networks, can achieve voltage adjustment between power grid and equipment. If electrical isolation is not necessary, autotransformers are often employed to supply three-phase voltage to the loads. These devices have the disadvantages such as high cost, large size, saturation, and high inrush current ³. Furthermore, poor controllability and slow dynamic response fail to meet the voltage stability requirements of sensitive loads ⁴. Therefore, as a key equipment of renewable energy generation and utilization, the power electronic converter plays a vital role in resolving the above problems. The ac/ac converters, as an important branch of power electronic converters, are widely applied in industrial and commercial fields. The initial ac/ac conversion was performed by the employment of thyristor power converters, which can regulate the output voltage by implementing the phase angle control on the input voltage ⁵. Nevertheless, these converters present some notable drawbacks, such as low voltage gain, poor harmonic performance and low efficiency ^{6,7}. In order to avoid these disadvantages of the thyristor power converters, a large number of the PWM ac/ac converters have been proposed. These PWM ac/ac converters, as alternatives to transformers/autotransformers, can be generally divided into three categories: the indirect ac/ac converters ⁸⁻¹¹, matrix converters ¹²⁻¹⁵ and the direct ac/ac converters ¹⁶⁻¹⁹. The indirect ac/ac converter is a two-stage power converter, which requires a dc link to decouple the input and output. Therefore, this converter can adjust both the amplitude and frequency of the voltage. However, the dc link increases the volume and maintenance requirements of the converter. Consequently, in applications where only voltage amplitude adjustment is required, the benefits of the indirect converters are not significant. Matrix converters can regulate both the voltage amplitude and frequency simultaneously, but they usually exhibit obvious drawbacks such as complex modulation strategies, low voltage gain and input current THD ²⁰⁻²². Due to the absence of a dc link, the direct ac/ac converter is a single-stage conversion that has the advantages such as compact size, low cost, high efficiency, and high power density. This makes it more attractive for applications that only require adjusting voltage amplitude. The buck, buck-boost, and Cuk converters proposed in ^{18,19,23} have the characteristics of simple circuits and high efficiency. Nevertheless, due to the adoption of bidirectional switches, the components in the circuit may suffer from overvoltage stress, which can significantly degrade the reliability of these converters. Although the Z-source converters could achieve high voltage gain, they still have the commutation issues owing to the employment of bidirectional switches ²⁴⁻²⁶.

The switched-capacitor converters (SCCs) were originally proposed for dc/dc conversion in

58 low-voltage and low-power applications ^{27,28}. Subsequently, a variety of topologies have been
59 applied in dc/dc, dc/ac and ac/dc. As most SCCs do not incorporate inductive components and only
60 employ switches and capacitors, they present advantages such as simple structure, compact size,
61 and high efficiency. Therefore, the SCCs have attracted widespread attention, and some
62 applications have already benefited from them. The equivalent circuit models were developed in
63 references ²⁹⁻³¹ to facilitate the description and analysis of SCCs behaviors. Furthermore, several
64 publications have discussed the impact of circuit parameters on SCCs, which can help to improve
65 the performance of SCCs ³²⁻³⁴. Recently, the SC principle was introduced into the direct ac/ac
66 converters. Reference ³⁵ presents a single-phase direct ac/ac converter, which consists of two SC
67 legs and can achieve a voltage conversion ratio of 1/2 or 2. It is characterized by the employment
68 of unidirectional switches, differential connection and low voltage stress across the components.
69 Reference ³⁶ proposes another non-differential bidirectional SC ac/ac converter composed of one
70 SC and four bidirectional switches, which achieves the same voltage conversion ratio as reference
71 ³⁵. The SCCs in the aforementioned references exhibit a fixed voltage conversion ratio. By
72 introducing magnetic components, reference ³⁷ develops a hybrid boost SCC that can adjust the
73 output voltage by varying the duty cycle. A SC three-phase ac/ac converter was proposed in
74 reference ³⁸, which is derived from reference ³⁶. It consists of three modules, each containing 3
75 capacitors and 4 bidirectional switches. The modules can be connected in either wye or delta
76 configuration. Reference ³⁹ presents another SC three-phase ac/ac converter with open-delta
77 configuration. Compared to reference ³⁸, it achieves a one-third reduction in component count.
78 According to reference ³⁵, a reduced switch count SC three-phase ac/ac converter was reported in
79 reference ⁴⁰. Due to the adoption of the differential structure, the introduced dc component enables
80 the employment of unidirectional switches, which reduces the number of switches compared to
81 references ^{38,39}. In summary, the results from references ³⁵⁻⁴⁰ are promising, and demonstrate that
82 the SC ac/ac converter can provide a new and effective solution for replacing traditional
83 autotransformer, particularly in scenarios where only voltage amplitude regulation is required.
84 However, the SC three-phase ac/ac converters with adjustable output voltage have not yet been
85 reported.

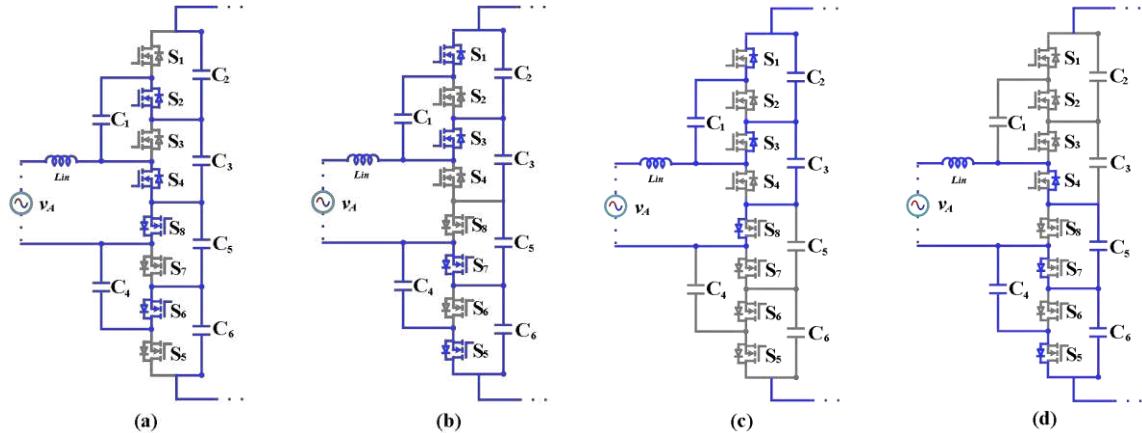

86 This paper presents a SC three-phase direct ac/ac converter. An important characteristic of the
87 proposed converter is the differential connection, which introduces dc components across all
88 capacitors and switches. Due to no negative voltages across the capacitors and switches,

89 unidirectional switches can be employed in the converter. Without bidirectional switches, the
90 converter requires only a simple modulation strategy to avoid commutation issues. Furthermore,
91 the switches and capacitors in this converter only withstand low voltage stresses. The capacitors
92 can achieve self-balanced voltages. On account of the inclusion of a small magnetic component,
93 the converter can realize a controllable output voltage by varying the duty cycle.

94 The rest of this paper is arranged as follows: in section 1, the topology of the proposed
95 converter and PWM modulation strategy are presented. In addition, the operation of the proposed
96 converter is analyzed. In section 2, the quantitative analysis is discussed. Then the design
97 considerations of the key components are analyzed in section 3. Subsequently, the experimental
98 results are reported in section 4. Finally, the conclusion is given in section 5.

99 1. Description Of the Proposed Three-Phase direct AC/AC Converter

100 1.1 Topology description and PWM modulation strategy



101
102 **Figure 1.** (a) Proposed SC three-phase ac/ac converter; (b) PWM drive signals; (c)
103 Simplified symbol for a module.

104 The proposed topology consists of three modules with a wye connection. The input voltages
105 (v_A , v_B and v_C) are connected at points 2, 5, and 8, and the load voltages (v_R , v_S and v_T) are available
106 at points 1, 4, and 7. Each phase is represented by one module. For instance, phase A is denoted by

107 module A as illustrated in Figure 1(a). Each module is composed of an input inductor (L_{in}) and
108 two symmetrical switched capacitor cells (2 switched capacitors, 4 output capacitors and 8
109 switches). Therefore, the entire converter has 3 input inductors, 18 capacitors ($C_1 \sim C_{18}$) and 24
110 switches ($S_1 \sim S_{24}$). Owing to the lack of available path for the current, direct ac/ac converters
111 usually suffer from the commutation problems, which will lead to voltage spikes across the
112 components ⁴¹. Hence, complex modulation strategy or snubber circuits are required to overcome
113 this problem. Due to the absence of bidirectional switches in the proposed converter, this converter
114 only needs a simple PWM modulation strategy to avoid the commutation problems. Consequently,
115 the employed modulation strategy is shown in Figure 1(b), in which switches S_{even} and S_{odd} are
116 driven in a complementary manner during one switching period. Besides, a dead time is needed to
117 prevent the shoot-through issue. Regardless of the direction of the current, there is always a current
118 path in the converter, which can improve the reliability of this converter. Figure 1(c) shows the
119 simplified symbol to denote a module and will be used in Figure 4.

120 1.2 Operation principle

121
122 **Figure 2.** Operational stages for module A. (a) Stage I: even switches are in on-state; (b) Stage II:
123 odd switches are in on-state. Circulating path for the inductor current i_L during dead time. (c)
124 $i_L > 0$; (d) $i_L < 0$.

125 The proposed converter has the same three operational stages for each module in a
126 switching period. Therefore, the analysis made here is only for module A during the positive
127 half-cycle of the input voltage, which is shown in Figure 2. For the negative half-cycle, the
128 module A presents the same operational stages except for the opposite current direction. The
129 operational stages are described as follows.

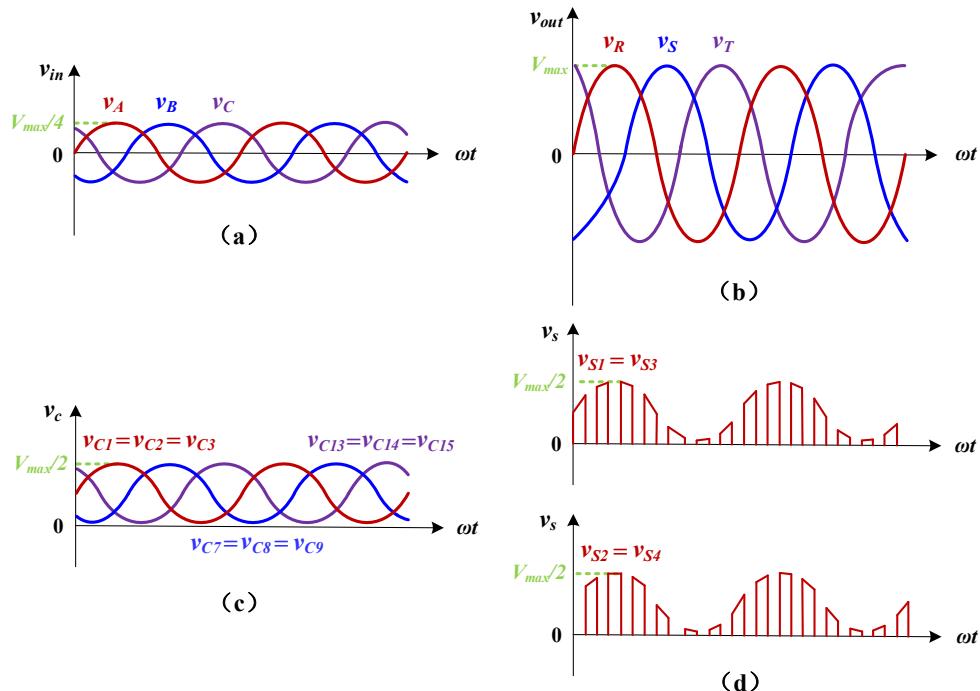
130 Stage I ($0 < t < DT_s$) starts when S_2, S_4, S_6 and S_8 are in on-state while S_1, S_3, S_5 and S_7 are in
 131 off-state. The input inductor L_{in} is directly connected to input voltage v_A and stores the energy.
 132 The capacitor C_1 is in paralleled connection with C_3 . Similarly, the capacitor C_4 is connected in
 133 parallel with C_5 . Capacitors C_2 and C_6 provide energy to the load during the whole DT_s interval.
 134 Switches S_2, S_4, S_6 and S_8 are turned-off by the end of stage I.

135 Stage II ($DT_s < t < T_s$) starts when S_1, S_3, S_5 and S_7 are in on-state while S_2, S_4, S_6 and S_8 are in
 136 off-state. The input inductor L releases the energy. The capacitor C_1 transfer the energy to C_2 and
 137 the load. The capacitor C_4 is charged by C_6 . As capacitor C_3 has been discharging the energy in
 138 the stage I, it will be charged during this stage. Likewise, capacitor C_5 will discharge the energy
 139 in this stage. Switches S_1, S_3, S_5 and S_7 are turned-off at the end of stage II.

140 In order to prevent the shoot-through problem, it is crucial to add an appropriate dead time
 141 denoted as stage III between the above two stages. If the input inductor current is positive, the
 142 body diodes of S_1, S_3 , and S_8 can provide the circulating path for the inductor current as shown in
 143 Figure 2(c). In the same way, the body diodes of S_4, S_5 , and S_7 can conduct the negative inductor
 144 current as well, which is illustrated in Figure 2(d). One switching period consists of the above
 145 stages.

146 1.3 Operation characteristic

147 By observing Figure 1(a), it can be seen that the middle part of each module is a boost
 148 converter, connected with two SC cells. Thus, the theoretical voltage gain of the module A is
 149 represented by (1). The other two modules have the same voltage gain.


$$150 \quad G_A = \frac{v_{13}}{v_A} = \frac{2}{1-D} \quad (1)$$

151 Considering the duty cycle $D=0.5$, the input and output voltages of each module are shown
 152 in Figure 3, where V_{max} is the maximum value of the output voltage v_{13} . For module A, the
 153 voltage v_{13} is applied to capacitors C_2, C_3, C_5 and C_6 . Therefore, equations (2) and (3) can be
 154 achieved.

$$155 \quad v_{c2} + v_{c3} - v_{c5} - v_{c6} = v_{13} \quad (2)$$

$$156 \quad v_{c2} + v_{c3} + v_{c5} + v_{c6} = V_{max} \quad (3)$$

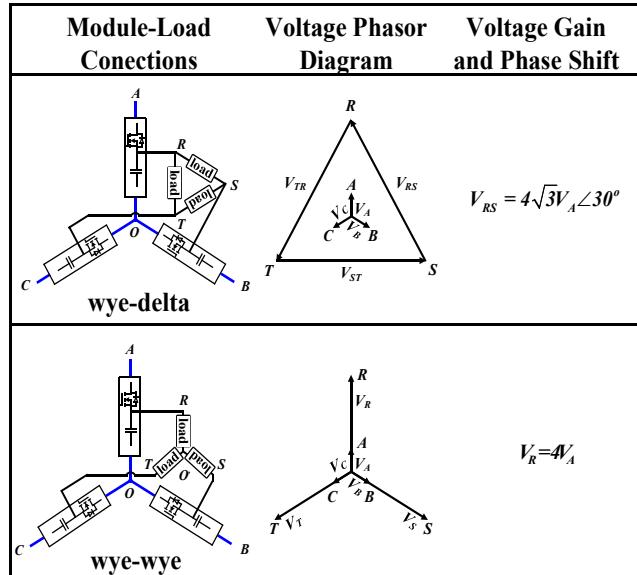
157 As mentioned previously, the capacitor C_1 will be connected to capacitors C_2 and C_3
158 respectively within a switching period and similarly, the capacitor C_4 will be connected to
159 capacitors C_5 and C_6 respectively during the same switching period. In other words, the switched
160 capacitor C_1 can maintain the voltage balance across C_2 and C_3 , while C_4 can keep the voltage
161 balance across C_5 and C_6 . This operation principle of module A can also apply to the modules B
162 and C. Therefore, rearranging equations (2) and (3), and collecting terms, equations (4) and (5)
163 can be yielded for module A.

164
165 **Figure 3.** Theoretical voltage waveforms of the proposed converter. (a) Input voltages; (b)
166 Output voltages; (c) Voltages across capacitors; (d) Voltages across switches.

167

$$v_{c1} = v_{c2} = v_{c3} = \frac{1}{4}V_{\max} + \frac{1}{4}v_{13} \quad (4)$$

168


$$v_{c4} = v_{c5} = v_{c6} = \frac{1}{4}V_{\max} - \frac{1}{4}v_{13} \quad (5)$$

169 As can be seen from equation (4), due to the differential connection, a dc component of
170 $1/4V_{\max}$ is introduced into the capacitors. Moreover, capacitors C_1 , C_2 , and C_3 are in phase with
171 the input voltage v_A and have an ac component of $1/4v_{13}$. Therefore, the total capacitor voltages
172 C_1 , C_2 , and C_3 are equal, each consisting of an ac component and a dc component. Their
173 maximum values are equal to $1/2V_{\max}$, which is another advantage of the proposed converter. In

174 the same way, capacitor voltages C_4 , C_5 , and C_6 have the same features, but they are out of phase
 175 with input voltage v_A as described in equation (5). The capacitor voltages of modules B and C are
 176 the same as those of module A, except they are phase-shifted by -120° and $+120^\circ$ with respect to
 177 v_A respectively as shown in Figure 3(c). All switches present the same shape as their
 178 corresponding capacitor voltages with the maximum value $1/2V_{\max}$, but they are high frequency
 179 quantities. The voltage waveforms of the switches S_1 , S_2 , S_3 and S_4 in module A are illustrated in
 180 Figure 3(d).

181 **1.4 Module Configuration**

182 In order to maintain the differential characteristic between the input and output, the three
 183 modules can only present a wye configuration. However, the three-phase load can be connected
 184 through a delta or wye connection. Therefore, there are two possible configurations (wye-delta
 185 and wye-wye) for the proposed converter. Different module-load connections lead to different
 186 voltage phasor configurations. Considering $D=0.5$, the voltage gain and phase shift between the
 187 input and output voltages are analyzed for each configuration. The detailed results are listed in
 188 Figure 4.

189

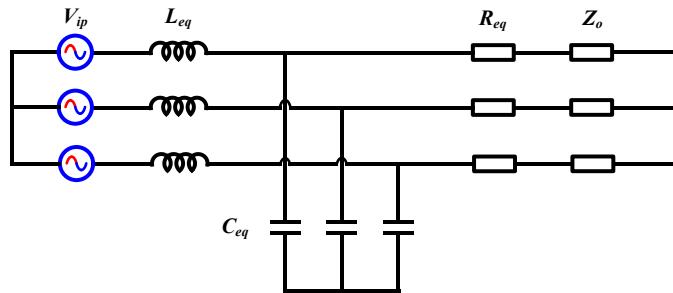
190 **Figure 4.** Analysis of voltage phasor for different module-load connections($D=0.5$)

191 **2. Quantitative Analysis**

192 **2.1 Operational modes of the proposed three-phase converter**

193 According to the charging or discharging capacitor current, the SC cell can be categorized

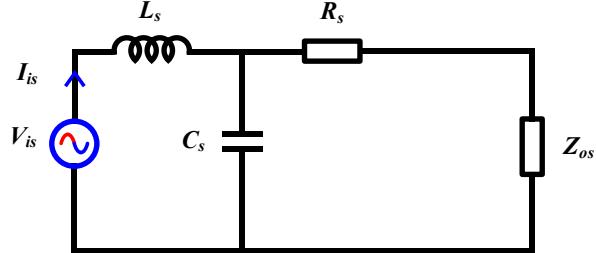
194 into three operational modes: no charge (NC), partial charge (PC) and complete charge (CC)^{30,31}.
 195 The CC mode indicates that the capacitor will complete the entire charging or discharging process,
 196 which leads to a high current and thereby reduces the efficiency. Hence, the CC mode is not
 197 recommended. In contrast, there is a low constant capacitor current value in NC mode, which can
 198 help improve the efficiency. Nevertheless, a large capacitor or high switching frequency is
 199 required in this mode, which will increase the costs. Capacitors are only partially charged in the PC
 200 mode. Compared to the NC mode, PC mode demonstrates similar advantages while requiring
 201 relatively lower capacitance and switching frequency. Therefore, the PC mode is a good choice for
 202 SC cell³⁶. The charging/discharging capacitor current will approach zero within a time interval of
 203 5τ ^{36,42}. τ is the time constant of the SC cell, which is represented by equation (8). To make the
 204 proposed converter operate in PC mode, the charging or discharging time interval must be less
 205 than 5τ , yielding.


$$206 \quad DT_s \leq 5\tau \quad (6)$$

$$207 \quad (1-D)T_s \leq 5\tau \quad (7)$$

$$208 \quad \tau = (2R_{DS(on)} + R_{ESR})C \quad (8)$$

209 where $R_{DS(on)}$ is the conduction resistance of one MOSFET switch, R_{ESR} is the equivalent series
 210 resistance of a capacitor, C is the capacitance for each capacitor utilized in the converter (all equal
 211 capacitors).


212 2.2 Equivalent circuit

213
 214 **Figure 5.** Three-phase equivalent circuit for wye-wye connection.

215 Under the condition of a balanced three-phase load, a three-phase equivalent circuit model
 216 seen by the load side with a wye-wye connection between the module and the load is established
 217 in Figure 5. This model includes the input equivalent inductors L_{eq} , the equivalent capacitances
 218 C_{eq} , the equivalent resistances R_{eq} and the output loads Z_o . For analytical convenience, the duty

cycle D is set to 0.5. The input line-to-neutral voltage is denoted by three voltage sources v_{ip} in wye configuration, which is four times the input line-to-neutral voltage from the grid side. The resistances R_{eq} represent the conduction losses caused by SCs in each module during the charging and discharging processes ³³. Within each switching period, the voltage across the capacitor can be regarded as approximately constant.

224

225 **Figure 6.** Proposed single-phase equivalent circuit.

226 Since the proposed converter shares the same operational process as the dc/dc SCC, its
 227 equivalent resistance R_{eq} is similar to that reported in previous studies ^{32,33}. As mentioned earlier,
 228 for module A, capacitor C_1 is connected in parallel with C_3 and C_2 during DT_s and $(1-D)T_s$
 229 respectively. Therefore, capacitor C_1 can be equivalent to the value of DC_1 and $(1-D)C_1$ in
 230 parallel with capacitors C_3 and C_2 , respectively ³⁶. Likewise, capacitor C_4 also has a value of DC_4
 231 and $(1-D)C_4$ to be connected to C_5 and C_6 separately. Considering $D=0.5$ and all equal capacitors,
 232 the equivalent capacitance C_{eq} for each module can be obtained in this manner. The parameters
 233 of the three-phase equivalent circuit seen by the load side are listed as follows

$$234 \quad R_{eq} = \frac{1}{2f_s C} \frac{\frac{1}{(e^{f_s \tau} - 1)}}{(1 - e^{\frac{D}{f_s \tau}} - e^{\frac{1-D}{f_s \tau}} + e^{\frac{1}{f_s \tau}})} \quad (9)$$

$$235 \quad L_{eq} = 16L_{in} \quad (10)$$

$$236 \quad C_{eq} = \frac{3C}{8} \quad (11)$$

237 where f_s is the switching frequency. To facilitate the analysis of different load connections, the
 238 proposed three-phase equivalent circuit can be simplified into a single-phase one as shown in
 239 Figure 6, where this single-phase circuit handles only one-third of the total output power. Its
 240 parameters can be calculated by using the equations mentioned above. The input voltage source is
 241 represented by v_{is} , the conduction losses are denoted by R_s , the reactive power in the circuit is

242 represented by L_s and C_s , and the output resistance is denoted by Z_{os} . Their specific values are
 243 listed in Table 1.

Connections (module-load)	v_{is}	L_s	C_s	R_s	Z_{os}
wye-wye	v_{ip}	L_{eq}	C_{eq}	R_{eq}	Z_o
wye-delta	v_{ip}	L_{eq}	C_{eq}	R_{eq}	$Z_o/3$

244 **Table 1.** Parameters for single-phase equivalent circuit

245 The analysis of the equivalent circuit illustrated in Figure 6 allows the derivation of key
 246 parameters, which are crucial for designing the proposed converter and will be discussed in the
 247 next section. These parameters also provide essential insights into the performance and
 248 characteristics of the proposed converter.

249 **2.3 Comparisons with other SC three-phase ac/ac converters**

Topology	Proposed converter	Ref. 38	Ref. 39	Ref. 40
Inductor count	1	0	0	0
Adoption of bidirectional switches	No	Yes	Yes	No
Switch count	24	24	16	12
Frequency	Fixed	Fixed	Fixed	Fixed
Capacitor count	18	9	6	9
Voltage stresses	$V_p/2$	$V_p/2$	$V_p/2$	V_p
Voltage regulation	Yes	No	No	No
Voltage gain	$2/(1-D)$	2 or 0.5	2 or 0.5	2 or 0.5
Complexity of modulation	Low	Low	Low	Low

250 **Table 2.** Comparisons between the proposed converter and other converters

251 Table 2 lists some features comparisons between the proposed converter and other
 252 converters. Due to the adoption of an additional inductor, the proposed converter can regulate the
 253 output voltage compared to other topologies. The voltage gain of each module in the proposed
 254 converter is twice that of those reported in ^{38,39} at the expense of more capacitors and switches
 255 ($D=0.5$). The maximum voltage of corresponding topology in the high voltage side is represented
 256 by V_p . It can be observed from Table 2 that this paper shares the same advantage of low voltage
 257 stresses across the components with ^{38,39}. Moreover, another advantage of the proposed converter

258 is the employment of unidirectional switches, which avoids the commutation problems of
259 bidirectional switches and improves the reliability.

260 **3. Design Considerations of the Proposed Converter**

261 Based on the above analysis, the selection guidelines of the key parameters for the proposed
262 converter are provided. The main specifications are as follows: output power $P_o=3\text{kW}$, input
263 line-to-neutral voltage $V_{in}=55\text{V}$, output line-to-neutral voltage $V_{out}=220\text{V}$, line frequency $f=50\text{Hz}$,
264 input power factor $PF>0.92$ and duty cycle $D=0.5$.

265 **3.1 Input inductor selection**

266 The input inductor is used to reduce the ripple of input current. In each module, the voltage
267 across the inductor is equal to the input voltage during stage I. Therefore, the inductance L_{in} can
268 be expressed as

$$269 \quad L_{in} = \frac{DV_{in}}{\Delta i_{in} f_s} \quad (12)$$

270 where Δi_{in} is the input current ripple. Considering $D=0.5$, the minimum inductance can be
271 represented by

$$272 \quad L_{in} \geq \frac{3V_{in}^2}{2P_o f_s \Delta i_{in} \%} \quad (13)$$

273 where $\Delta i_{in} \%$ is the ratio of Δi_{in} to the input current, which is taken the value of 0.2 in this paper.

274 **3.2 Capacitance Calculation**

275 Neglecting the conduction losses, the input reactive power of the proposed converter as
276 shown in Figure 6 can be expressed as

$$277 \quad Q_i = 6\pi f L_s I_{is}^2 - 6\pi f V_{os}^2 C_s \quad (14)$$

278 Furthermore, the input power factor PF is represented by

$$279 \quad PF_i = \frac{P_i}{\sqrt{P_i^2 + Q_i^2}} \quad (15)$$

280 Based on the above equations and the requirement of the power factor, the maximum
281 capacitance C_s can be obtained by

282

$$C_s = C_{eq} \leq \frac{1}{6\pi f V_{os}^2} (6\pi f L_s I_{is}^2 + P_o \frac{\sqrt{1-PF_i^2}}{PF_i}) \quad (16)$$

283 Replacing equation (11) into (16), the maximum value for capacitors C_1 to C_{18} can be
284 expressed as

285

$$C = \frac{8}{3} C_{eq} \leq \frac{4}{9\pi f V_{os}^2} (6\pi f L_s I_{is}^2 + P_o \frac{\sqrt{1-PF_i^2}}{PF_i}) \quad (17)$$

286 In addition, the charging or discharging time interval must be less than 5τ to ensure that the
287 SC cells can operate in PC mode, as mentioned earlier. Considering $D=0.5$ and substituting
288 equation (8) into (6), the minimum capacitance can be represented by

289

$$C \geq \frac{0.1}{(2R_{DS(on)} + R_{ESR})f_s} \quad (18)$$

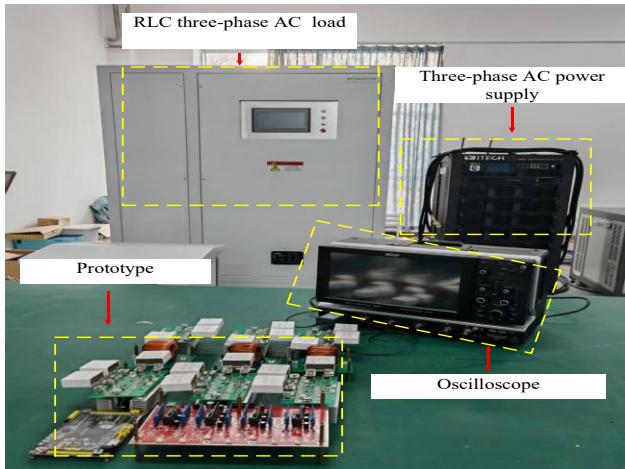
290 **3.3 Switches and Switching frequency**

291 In order to obtain a low conduction resistance, a MOSFET IPDD60R037CM8, which has an
292 $R_{DS(on)}$ value of $37\text{m}\Omega$, was selected to implement the unidirectional switches. By substituting the
293 values of $R_{DS(on)}$, R_{ESR} and C into equation (18), the minimum switching frequency that ensures
294 the converter operates in PC mode can be obtained by

295

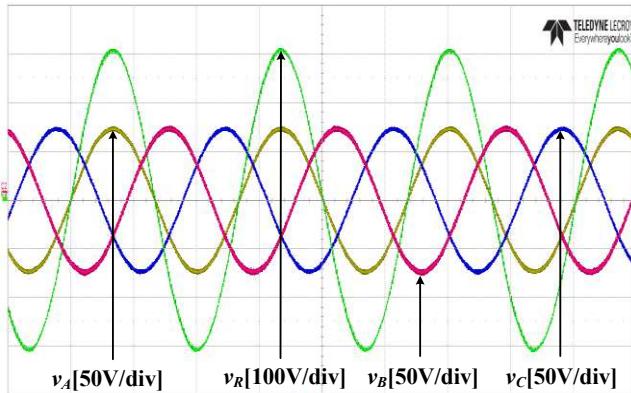
$$f_{s\min} \geq \frac{0.1}{(2R_{DS(on)} + R_{ESR})C} \quad (19)$$

296 Furthermore, the feasibility of the switching frequency f_s in practical implementation should
297 also be considered. Therefore, the switching frequency f_s was selected as 50kHz.


Parameters	Quantity	Values
Input line-to-neutral voltage (v_A, v_B, v_C)	-	55Vrms
Line frequency f	-	50Hz
Output power P_o	-	3000W
Output line-to-neutral voltage (v_R, v_S, v_T)	-	220Vrms
Switching frequency f_s	-	50kHz
Input inductor L_{in}	1	150 μH
Capacitors ($C_1 \sim C_{18}$)	18	60 μF /4 $\text{m}\Omega$
MOSFETs ($S_1 \sim S_{24}$)	24	IPDD60R037CM8

298 **Table 3.** Main specifications and components of the prototype

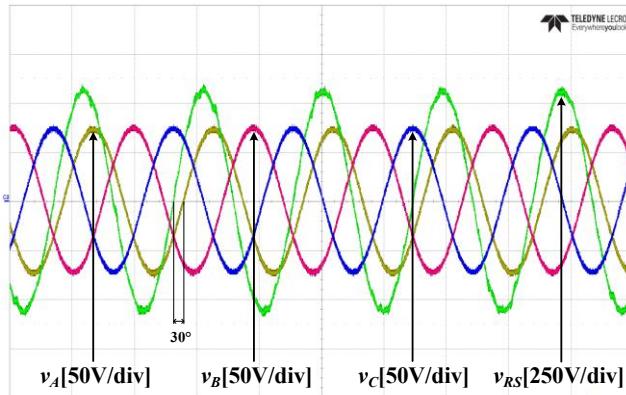
299 **4. Analysis Of Experimental Result**


300 To demonstrate the previous analysis and operation of the proposed converter, a 3kW
 301 prototype is built as shown in Figure 7. The specific experimental parameters of the prototype,
 302 which are based on the methodology in section 3, are summarized in Table 3.

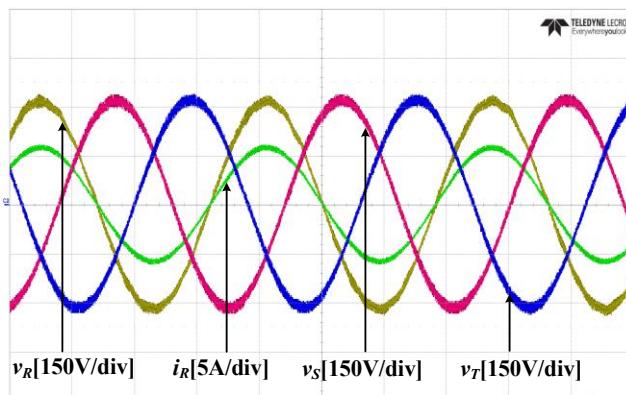
303 The experiments were conducted with D close to 0.5, and the input was fed by three-phase ac
 304 power. Figure 8 shows waveforms of the three line-to-neutral input voltages (v_A , v_B , and v_C) and
 305 one output voltage (v_R) for resistive load connected in a wye configuration. The output voltage v_R
 306 is in phase with the input voltage v_A . Furthermore, the amplitude of v_R is nearly four times that of v_A
 307 at $D=0.5$, which validates the voltage phase analysis in Figure 4. The line-to-neutral input voltages
 308 (v_A , v_B , and v_C) and line-to-line output voltage (v_{RS}) waveforms for the resistive load with delta
 309 connection are illustrated in Figure 9. As described in Figure 4, there is a 30° phase-shift between
 310 the v_{RS} and v_A , and the amplitude of v_{RS} is $4\sqrt{3}$ times that of v_A .

311
 312

Figure 7. Picture of prototype.



313
 314

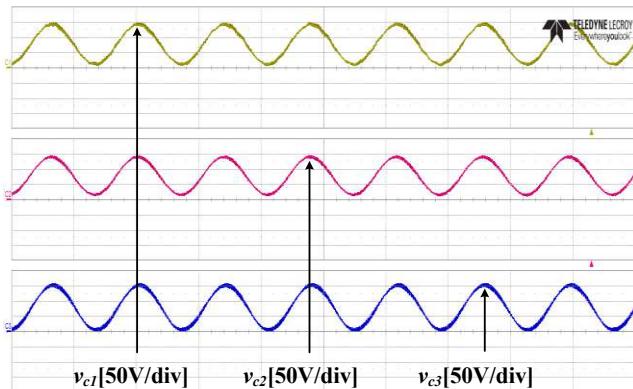
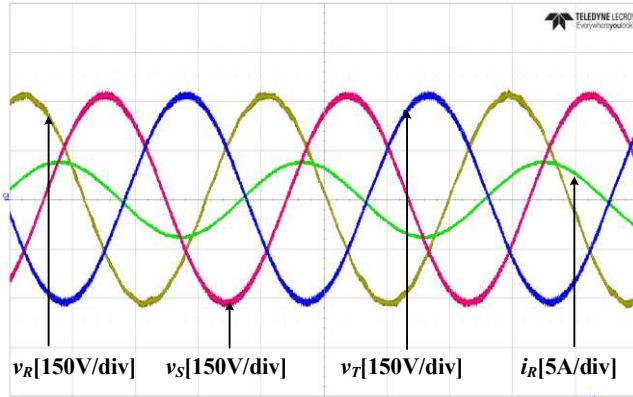

Figure 8. Experimental waveforms of output voltage v_R and input voltages v_A , v_B and v_C .

315 The line-to-neutral output voltages v_R , v_S , and v_T for the resistive load with a wye connection
 316 (48Ω per-phase) and line-to-neutral output current i_R are shown in Figure 10. It can be seen that i_R
 317 is in phase with v_R under the resistive load. Moreover, the output voltages v_R , v_S , and v_T are
 318 phase-shifted by 120° from each other.

319 Figure 11 illustrates the line-to-neutral output current i_R and line-to-neutral output voltages v_R ,
 320 v_S , and v_T for the inductive load (0.61 power factor) with a wye connection. As expected, the
 321 current i_R under the inductive load lags behind output voltage v_R .

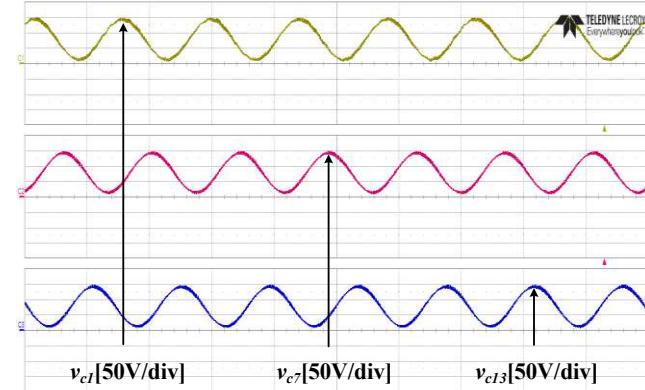
322
 323 **Figure 9.** Experimental waveforms of output voltage v_{RS} and input voltages v_A , v_B and v_C .

324
 325 **Figure 10.** Experimental waveforms of line-to-neutral output voltages v_R , v_S , and v_T and
 326 line-to-neutral current i_R under resistive load.



327

328 **Figure 11.** Experimental waveforms of line-to-neutral output voltages v_R , v_S , and v_T and
329 line-to-neutral current i_R under inductive load.

330 The voltage waveforms for capacitors C_1 , C_2 and C_3 in module A are shown in Figure 12. It
331 can be observed that the capacitor voltages are approximately equal to half of the peak value of
332 output voltage v_R , which is one of the advantages of this converter. Figure 13 shows capacitor
333 voltages of C_1 , C_7 , and C_{13} . Since the capacitors are in different modules, their voltages have a
334 phase shift of 120° . The voltages across S_1 and S_2 in module A are illustrated in Figure 14.
335 Similarly, the voltage waveforms of switches exhibit the same characteristics as the corresponding
336 capacitor voltages.


337

338 **Figure 12.** Experimental waveforms of capacitor voltages C_1 , C_2 , and C_3 in module A.

339

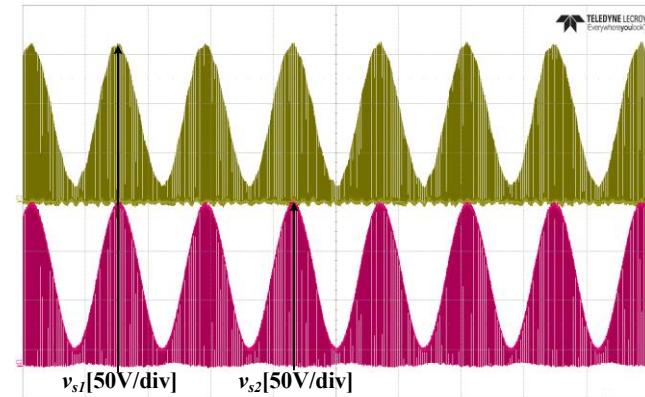

340

Figure 13. Experimental waveforms of capacitor voltages C_1 , C_7 , and C_{13} .

341

342

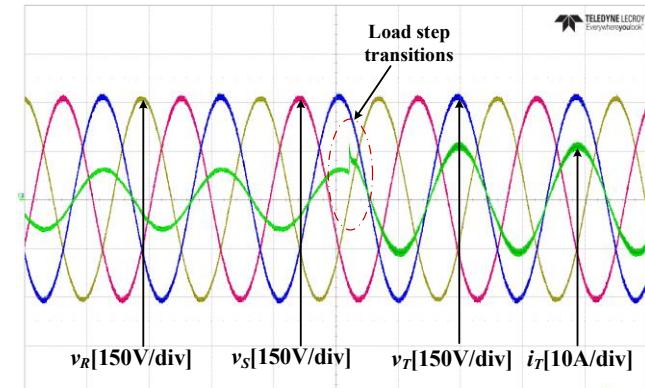


Figure 14. Experimental waveforms of switches S_1 and S_2 in module A.

343

344

345

Figure 15. Experimental waveforms of line-to-neutral output voltages and line-to-neutral current for an unbalanced load.

346

347

348

349

The line-to-neutral output voltages and current for an unbalanced load are shown in Figure 15.

Although one module handles more power than the other two (1kW for two modules and 2W for one module), the output voltages can still be maintained balanced. This is due to the self-balancing capability of capacitor voltages.

350 **5. Conclusion**

351 This paper proposes a three-phase ac/ac converter based on SC principle. The main features
352 of this converter are simple modulation strategy, low voltage stresses across the components and
353 capacitor voltage self-balancing capability. Because of the adoption of an input inductor, this
354 converter can adjust the output voltage. Furthermore, the employment of unidirectional switches
355 overcomes the commutation issues of bidirectional switches. The operation principle of the
356 converter is analyzed. Subsequently, the quantitative analysis and design consideration are
357 conducted. At last, the experimental results verify the theoretical analysis and its advantages. The
358 proposed converter is suitable as an alternative to the conventional three-phase autotransformer.

359 **Data availability**

360 The data that support the findings of this study are available from the corresponding author on
361 reasonable request.

362 **References**

- 363 1. Trindade, F. C. L., Nascimento, K. V. d. & Vieira, J. C. M. Investigation on Voltage Sags Caused by DG
364 Anti-Islanding Protection. *IEEE Transactions on Power Delivery* **28**, 972-980,
365 doi:10.1109/TPWRD.2012.2237419 (2013).
- 366 2. Strasser, T. *et al.* A Review of Architectures and Concepts for Intelligence in Future Electric Energy
367 Systems. *IEEE Transactions on Industrial Electronics* **62**, 2424-2438, doi:10.1109/TIE.2014.2361486
368 (2015).
- 369 3. Newman, M. J., Holmes, D. G., Nielsen, J. G. & Blaabjerg, F. A dynamic voltage restorer (DVR) with
370 selective harmonic compensation at medium voltage level. *IEEE Transactions on Industry Applications*
371 **41**, 1744-1753, doi:10.1109/TIA.2005.858212 (2005).
- 372 4. Kaniewski, J., Szczesniak, P., Jarnut, M. & Benysek, G. Hybrid Voltage Sag\Swell Compensators: A
373 Review of Hybrid AC\AC Converters. *IEEE Industrial Electronics Magazine* **9**, 37-48,
374 doi:10.1109/MIE.2015.2404350 (2015).
- 375 5. Lo, K. Y. & Wang, W. Y. Bidirectional Isolated Single-Stage Single-Phase AC-AC Converter. *IEEE
376 Journal of Emerging and Selected Topics in Power Electronics* **9**, 6828-6836,
377 doi:10.1109/JESTPE.2021.3074307 (2021).
- 378 6. Nguyen, M. K., Jung, Y. G. & Lim, Y. C. Single-Phase AC-AC Converter Based on Quasi-Z-Source
379 Topology. *IEEE Transactions on Power Electronics* **25**, 2200-2210, doi:10.1109/TPEL.2010.2042618
380 (2010).
- 381 7. Khan, A. A., Cha, H., Ahmed, H. F. & Kim, H. G. in *2016 IEEE 8th International Power Electronics and
382 Motion Control Conference (IPEMC-ECCE Asia)*. 1200-1205.
- 383 8. Costa, A. E. L. d., Jacobina, C. B., Rocha, N., Silva, E. R. C. d. & Filho, A. V. d. M. L. A Single-Phase
384 ac\dc\ac Unidirectional Three-Leg Converter. *IEEE Transactions on Industrial Electronics* **68**,
385 3876-3886, doi:10.1109/TIE.2020.2987261 (2021).
- 386 9. Yang, L., Zhao, H., Wang, S. & Zhi, Y. Common-Mode EMI Noise Analysis and Reduction for AC-DC-
387 AC Systems With Paralleled Power Modules. *IEEE Transactions on Power Electronics* **35**, 6989-7000,
388 doi:10.1109/TPEL.2019.2957358 (2020).

389 10. Li, T. *et al.* Online Condition Monitoring of DC-Link Capacitor for AC/DC/AC PWM Converter. *IEEE*
 390 *Transactions on Power Electronics* **37**, 865-878, doi:10.1109/TPEL.2021.3092429 (2022).

391 11. Ebrahimian, A., Vahid, S., Weise, N. & Refaie, A. E.-. Two Level AC-DC-AC Converter Design with a
 392 New Approach to Implement Finite Control Set Model Predictive Control. *2021 22nd IEEE International*
 393 *Conference on Industrial Technology (ICIT)*. 514-520.

394 12. Sun, Y. *et al.* Carrier-Based Modulation Strategies for Multimodular Matrix Converters. *IEEE*
 395 *Transactions on Industrial Electronics* **63**, 1350-1361, doi:10.1109/TIE.2015.2494871 (2016).

396 13. Qiu, L., Xu, L., Wang, K., Zheng, Z. & Li, Y. Research on Output Voltage Modulation of a Five-Level
 397 Matrix Converter. *IEEE Transactions on Power Electronics* **32**, 2568-2583,
 398 doi:10.1109/TPEL.2016.2581831 (2017).

399 14. Vijayagopal, M., Silva, C., Empringham, L. & Lillo, L. d. Direct Predictive Current-Error Vector Control
 400 for a Direct Matrix Converter. *IEEE Transactions on Power Electronics* **34**, 1925-1935,
 401 doi:10.1109/TPEL.2018.2833495 (2019).

402 15. Jayaprakasan, S., Ashok, S. & Ramchand, R. Analysis of Current Error Space Phasor for a Space
 403 Vector-Modulated Indirect Matrix Converter. *IEEE Transactions on Industrial Electronics* **69**, 4451-4459,
 404 doi:10.1109/TIE.2021.3078348 (2022).

405 16. Basu, K. & Mohan, N. A Single-Stage Power Electronic Transformer for a Three-Phase PWM AC/AC
 406 Drive With Source-Based Commutation of Leakage Energy and Common-Mode Voltage Suppression.
 407 *IEEE Transactions on Industrial Electronics* **61**, 5881-5893, doi:10.1109/TIE.2014.2311393 (2014).

408 17. Khan, A. A., Cha, H. & Kim, H. G. Magnetic Integration of Discrete-Coupled Inductors in Single-Phase
 409 Direct PWM AC-AC Converters. *IEEE Transactions on Power Electronics* **31**, 2129-2138,
 410 doi:10.1109/TPEL.2015.2427455 (2016).

411 18. Sharifi, S., Monfared, M. & Nikbahar, A. Highly Efficient Single-Phase Direct AC-to-AC Converter With
 412 Reduced Semiconductor Count. *IEEE Transactions on Industrial Electronics* **68**, 1130-1138,
 413 doi:10.1109/TIE.2020.2970652 (2021).

414 19. Jong-Hyun, K., Byung-Duk, M., Bong-Hwan, K. & Sang-Chul, W. A PWM buck-boost AC chopper
 415 solving the commutation problem. *IEEE Transactions on Industrial Electronics* **45**, 832-835,
 416 doi:10.1109/41.720341 (1998).

417 20. Kolar, J. W., Schafmeister, F., Round, S. D. & Ertl, H. Novel Three-Phase AC-AC Sparse Matrix
 418 Converters. *IEEE Transactions on Power Electronics* **22**, 1649-1661, doi:10.1109/TPEL.2007.904178
 419 (2007).

420 21. Rodriguez, J., Rivera, M., Kolar, J. W. & Wheeler, P. W. A Review of Control and Modulation Methods
 421 for Matrix Converters. *IEEE Transactions on Industrial Electronics* **59**, 58-70,
 422 doi:10.1109/TIE.2011.2165310 (2012).

423 22. Empringham, L., Kolar, J. W., Rodriguez, J., Wheeler, P. W. & Clare, J. C. Technological Issues and
 424 Industrial Application of Matrix Converters: A Review. *IEEE Transactions on Industrial Electronics* **60**,
 425 4260-4271, doi:10.1109/TIE.2012.2216231 (2013).

426 23. Hoyo, J., Alcala, J. & Calleja, H. A high quality output AC/AC Cuk converter. *2004 IEEE 35th Annual*
 427 *Power Electronics Specialists Conference (IEEE Cat. No.04CH37551)*. 2888-2893 Vol.2884.

428 24. Tang, Y., Zhang, C. & Xie, S. Z-Source AC-AC Converters Solving Commutation Problem. *2007 IEEE*
 429 *Power Electronics Specialists Conference*. 2672-2677.

430 25. He, L., Duan, S. & Peng, F. Safe-Commutation Strategy for the Novel Family of Quasi-Z-Source AC-AC
 431 Converter. *IEEE Transactions on Industrial Informatics* **9**, 1538-1547, doi:10.1109/TII.2013.2245333
 432 (2013).

433 26. Ahmed, H. F., Cha, H., Khan, A. A. & Kim, H. G. A Family of High-Frequency Isolated Single-Phase
 434 Z-Source AC-AC Converters With Safe-Commutation Strategy. *IEEE Transactions on Power Electronics*
 435 **31**, 7522-7533, doi:10.1109/TPEL.2016.2539216 (2016).

436 27. Umeno, T., Takahashi, K., Oota, I., Ueno, F. & Inoue, T. New Switched-Capacitor DC-DC Converter with
 437 Low Input Current Ripple and Its Hybridization. *Proceedings of the 33rd Midwest Symposium on Circuits*
 438 *and Systems*. 1091-1094 vol.1092.

439 28. Ioinovici, A. Switched-capacitor power electronics circuits. *IEEE Circuits and Systems Magazine* **1**, 37-42,
 440 doi:10.1109/7384.963467 (2001).

441 29. Ben-Yaakov, S. & Evzelman, M. Generic and unified model of Switched Capacitor Converters. *2009*

442 *IEEE Energy Conversion Congress and Exposition.* 3501-3508.

443 30. Ben-Yaakov, S. Behavioral Average Modeling and Equivalent Circuit Simulation of Switched Capacitors
444 Converters. *IEEE Transactions on Power Electronics* **27**, 632-636, doi:10.1109/TPEL.2011.2171996
445 (2012).

446 31. Evzelman, M. & Ben-Yaakov, S. Average-Current-Based Conduction Losses Model of Switched
447 Capacitor Converters. *IEEE Transactions on Power Electronics* **28**, 3341-3352,
448 doi:10.1109/TPEL.2012.2226060 (2013).

449 32. Kimball, J. W. & Krein, P. T. Analysis and design of switched capacitor converters. *Twentieth Annual*
450 *IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005.* 1473-1477 Vol. 1473.

451 33. Kimball, J. W., Krein, P. T. & Cahill, K. R. Modeling of capacitor impedance in switching converters.
452 *IEEE Power Electronics Letters* **3**, 136-140, doi:10.1109/LPEL.2005.863603 (2005).

453 34. Cheung, C. K., Tan, S. C., Tse, C. K. & Ioinovici, A. On Energy Efficiency of Switched-Capacitor
454 Converters. *IEEE Transactions on Power Electronics* **28**, 862-876, doi:10.1109/TPEL.2012.2204903
455 (2013).

456 35. Lazzarin, T. B., Andersen, R. L., Martins, G. B. & Barbi, I. A 600-W Switched-Capacitor AC-AC
457 Converter for 220 V/110 V and 110 V/220 V Applications. *IEEE Transactions on Power Electronics* **27**,
458 4821-4826, doi:10.1109/TPEL.2012.2203318 (2012).

459 36. Andersen, R. L., Lazzarin, T. B. & Barbi, I. A 1-kW Step-Up/Step-Down Switched-Capacitor AC-AC
460 Converter. *IEEE Transactions on Power Electronics* **28**, 3329-3340, doi:10.1109/TPEL.2012.2222674
461 (2013).

462 37. Dall'Asta, M. S., Barbi, I. & Lazzarin, T. B. AC-AC Hybrid Boost Switched-Capacitor Converter. *IEEE*
463 *Transactions on Power Electronics* **35**, 13115-13125, doi:10.1109/TPEL.2020.2992490 (2020).

464 38. Lazzarin, T. B., Andersen, R. L. & Barbi, I. A Switched-Capacitor Three-Phase AC-AC Converter. *IEEE*
465 *Transactions on Industrial Electronics* **62**, 735-745, doi:10.1109/TIE.2014.2336625 (2015).

466 39. Vecchia, M. D., Lazzarin, T. B. & Barbi, I. A Three-Phase AC-AC Converter in Open-Delta Connection
467 Based on Switched Capacitor Principle. *IEEE Transactions on Industrial Electronics* **62**, 6035-6041,
468 doi:10.1109/TIE.2015.2426673 (2015).

469 40. Silva, R. L. d., Lazzarin, T. B. & Barbi, I. Reduced Switch Count Step-Up/Step-Down
470 Switched-Capacitor Three-Phase AC-AC Converter. *IEEE Transactions on Industrial Electronics* **65**,
471 8422-8432, doi:10.1109/TIE.2018.2808900 (2018).

472 41. Shin, H. H., Cha, H., Kim, H. G. & Yoo, D. W. Novel Single-Phase PWM AC-AC Converters Solving
473 Commutation Problem Using Switching Cell Structure and Coupled Inductor. *IEEE Transactions on*
474 *Power Electronics* **30**, 2137-2147, doi:10.1109/TPEL.2014.2330351 (2015).

475 42. Mayo-Maldonado, J. C. *et al.* A contribution to the dynamic modeling of switched-capacitor converters.
476 *2011 IEEE Energy Conversion Congress and Exposition.* 1284-1290.

477 **Acknowledgements**

478 All authors of this paper would like to thank all the participants who have improved the quality
479 of this work.

480 **Author contributions**

481 G.Y.Y. designed the topology and drafted the manuscript. R.Y.L. designed and completed the
482 experiment. C.L. provided necessary resources for the research. D.B.G. analyzed the operational
483 principle. M.L.H. participated in deriving formulas related to operational analysis. F.Y.Z.
484 participated in the simulation modeling of the topology. All authors reviewed the manuscript.

485 **Funding**

486 This work is supported by Scientific Research Project of Jilin Province Department of Education
487 (JKH20250865KJ) and The National Natural Science Foundation of China (52407195).

488 **Competing interests**

489 The authors declare no competing interests.

490 **Figure legends**

491 Figure 1. (a) Proposed SC three-phase ac/ac converter; (b) PWM drive signals; (c) Simplified
492 symbol for a module.

493 Figure 2. Operational stages for module A. (a) Stage I: even switches are in on-state; (b) Stage II:
494 odd switches are in on-state. Circulating path for the inductor current i_L during dead time. (c)
495 $i_L > 0$; (d) $i_L < 0$.

496 Figure 3. Theoretical voltage waveforms of the proposed converter. (a) Input voltages; (b)
497 Output voltages; (c) Voltages across capacitors; (d) Voltages across switches.

498 Figure 4. Analysis of voltage phasor for different module-load connections($D=0.5$).

499 Figure 5. Three-phase equivalent circuit for wye-wye connection.

500 Figure 6. Proposed single-phase equivalent circuit.

501 Figure 7. Picture of prototype.

502 Figure 8. Experimental waveforms of output voltage v_R and input voltages v_A , v_B and v_C .

503 Figure 9. Experimental waveforms of output voltage v_{RS} and input voltages v_A , v_B and v_C .

504 Figure 10. Experimental waveforms of line-to-neutral output voltages v_R , v_S , and v_T and
505 line-to-neutral current i_R under resistive load.

506 Figure 11. Experimental waveforms of line-to-neutral output voltages v_R , v_S , and v_T and
507 line-to-neutral current i_R under inductive load.

508 Figure 12. Experimental waveforms of capacitor voltages C_1 , C_2 , and C_3 in module A.

509 Figure 13. Experimental waveforms of capacitor voltages C_1 , C_7 , and C_{13} .

510 Figure 14. Experimental waveforms of switches S_1 and S_2 in module A.

511 Figure 15. Experimental waveforms of line-to-neutral output voltages and line-to-neutral current
512 for an unbalanced load.