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1. Gaussian smoothing formulation
To implement the proposed Gaussian smoothing method, the filtering operation is formulated as a discrete convolution:

			(1)

here, represents the original data, Ismoothed(x) denotes the smoothed data, and N is the half-width of the filtering window. G(x) is the Gaussian kernel, whose one-dimensional expression is given as follow:

			(2)
where σ is the standard deviation that controls the degree of smoothing, the larger the value of σ, the stronger the smoothing effect. To enhance computational efficiency in large-scale data processing, the filtering operation is implemented in the frequency domain40. According to the convolution theorem, the time-domain convolution can be equivalently performed as element-wise multiplication in the frequency domain:

			(3)


where  and  denote the Fast Fourier transform (FFT) and its inverse (IFFT), respectively. This method ensures effective filtering while significantly reducing computational complexity, making it well-suited for large-scale optimization of neural network structural parameters.
2. Numerical Estimation of Angle Correction




[bookmark: OLE_LINK1]In order to precisely model the large-angle incident phenomenon brought about by compact on-chip structures, we introduce  into the transmission function to correct the transmission coefficient under large-angle. And c represents the standard deviation of the Gaussian function,  is dynamically estimated based on the local wavevector gradient using the finite difference method. Assuming TE-mode illumination propagating along the x-direction, the incident optical field phase along y-direction can be expressed as  ,.with a corresponding wavevector . Let ∆y denote the sampling interval along the y-direction; then, the wavevector component along y-direction can be approximated by the phase difference between adjacent sampling points:

			(4)
At the edges of the computational domain, forward and backward first-order differences are employed.  The sine of the angle is determined by the ratio of the longitudinal component of the wavevector to the wavelength which is given as follows: 

			(5)
This dynamic estimation enables accurate modeling of spatially-varying transmission coefficients, particularly crucial for compact systems where paraxial approximations fail. The method provides a rigorous physical foundation for OC-DONN optimization, especially in ultra-compact designs. This dynamic estimation enables accurate modeling of spatially-varying transmission coefficients, particularly crucial for compact systems where paraxial approximations fail. The method provides a rigorous physical foundation for OC-DONN optimization, especially in ultra-compact designs.
Figure S1 demonstrates the fitting accuracy of transmission coefficients under various incidence angles. The incident wavelength is 1.55 μm, with a neuron period of 0.5 μm and a fixed slot width of 0.14 μm. Both real and imaginary parts of the transmission coefficient simulated under varying incidence angles and slot lengths show excellent agreement with the corresponding values calculated using the modified transmission function.
[image: ]
Figure S1. Fitting of transmission coefficients under various incidence angles. Real (a) and imaginary (b) parts of the transmission coefficient (blue) simulated under varying incidence angles and slot lengths, compared with the corresponding values (red) calculated using the modified transmission function. The incidence angle ranges from 0° to 60°; when it exceeds 60°, the transmission drops below 1%.
3. Mode Encoding Performance Analysis
For intensity encoding, the four-dimensional feature vectors are mapped to the input optical intensities across four input waveguides with 15 μm center-to-center spacing. The input optical field is coupled into the slab waveguide and propagates 50 μm before reaching the first metaline. Each metaline contains 301 neurons with a neuron size of 0.5 μm, optimized using the dual-optimization approach with 1.5 μm Gaussian kernel width. After passing through the final metaline, light propagates an additional 50 μm to reach the output detection plane.
The output layer consists of three linearly arranged detector regions, each corresponding to one of the Iris classes. Each detector region has a width of 10 μm, and the center-to-center distance between adjacent detector is 15 μm.
[image: ]
Figure S2. Classification performance of the Iris dataset using mode encoding with dual input channels. (a), (d), and (g) show the simulation process simulated by a two-layer GS-DONN. D1, D2, and D3 represent the prediction of the different kinds of Iris flowers. (b), (e), and (h) present the corresponding output power distributions. (c), (f), and (i) compare the optical fields at the output monitored by var-FDTD simulations (red curve) with GS-DONN simulation (blue curve).
[bookmark: _Hlk199842178]Table 1. Comparison of DONNs with Different Numbers of Channels on the Iris Dataset
	Number of Channels
	Number of Layers
	Test accuracy of the GS-DONN
	Test accuracy of the 2.5D variational FDTD
	Fidelity

	One
	One
	33.33%
	33.33%
	100%

	
	Two
	97.33%
	91.33%
	93.83%

	
	Three
	100%
	96.7%
	96.7%

	Two
	One
	33.33%
	33.33%
	100%

	
	Two
	98%
	90%
	91.83%

	
	Three
	100%
	96%
	96%


Table 1 presents a comparison of GS-DONNs with different numbers of input channels on the Iris dataset.
[bookmark: OLE_LINK54][bookmark: OLE_LINK55]The proposed method achieves recognition accuracies exceeding 96% with a three-layer network, while maintaining over 96% fidelity with var-FDTD simulations. Moreover, it enables efficient encoding of the four-dimensional Iris dataset using only single-channel, effectively alleviating the limitation on the number of parallel input channels when encoding high-dimensional data1.
4. Computational Complexity Analysis
Here, Gt, St, and Nt represent the number of training iterations, the number of layers, and the number of neurons per layer of the OC-DONNs training network, respectively. Gnt, Snt, Nnt, and Dnt represent the number of training iterations, the number of layers, the number of neurons per layer, and the number of the training samples of the fitting neural network, respectively.
Neural Network Fitting Method Complexity
Neural network approaches require: (1) Training data generation through var-FDTD simulations, (2) Neural network training and fitting with complexity O(DntGntSnt4Nnt²). To simplify the analysis, we omit the computational complexity of nonlinear activation functions. It should be noted that the optical field information in training data is typically in complex form, containing both real and imaginary components, which requires the neural network to process twice the data dimensions, further increasing the training complexity. (3) Trained network inference is repeatedly called during DONN training with complexity O(GtStNtGntSnt4Nnt²). Therefore, the total computational complexity of the neural network method is:

			(6)
GS-DONN Complexity Analysis
The angle correction involves phase gradient calculation, wavevector computation, and transmission coefficient correction, each with O(Nt) complexity per layer. Total angle correction complexity: O(GtStNt).
The Gaussian smoothing uses frequency-domain convolution: forward FFT (O(NtlogNt)), element-wise multiplication with pre-computed Gaussian kernel (O(Nt)), and IFFT (O(NtlogNt)). Total Gaussian smoothing complexity: O(GtStNtlogNt). Combined GS-DONN complexity: 

			(7)
5. OC-DONN Model


The OC-DONNs designed herein adopts a layered architecture, comprising an input layer, multiple hidden layers (metaline), and an output layer. Each metaline consists of a one-dimensional array of subwavelength-scale slots filled with silicon dioxide (SiO2), where the slot length acts as the trainable parameter while the width and thickness remain fixed. We define this slot as a single neuron, and the interconnection between neurons is realized via free-space diffraction between adjacent metalines. According to the Huygens–Fresnel principle, each neuron in a given OC-DONN layer as a secondary wave source, emitting diffracted light that contributes to the forward propagation of the optical field. The diffracted wave between adjacent layers can be regarded as the superposition of secondary waves emitted by individual SiO2 slots. For the m-th layer of the network, the output function  of the p-th neuron at position  can be described as:


			 (8)

here,  denotes the input wave of the p-th neuron in the m-th layer. Each neuron on the diffractive layer is connected to the neurons in the next layer according to the Kirchhoff diffraction formula:

			(9)





where q represents the q-th neuron at the position  of the next layer, λ is the working wavelength, ,  represents the distance between the p-th neuron in layer m and q-th neuron in next layer, neff_slab represents the effective refractive index (ERI) of the slab waveguide.  represents an imaginary unit.  is the wave number that light travels in slots. βp,q is the amplitude normalization coefficient in the propagation function, introduced to ensure energy conservation during light propagation. 

And represents its transmission function, which can be described as:

			(10)



here,  denotes the amplitude transmission coefficient,  denotes the incident angle of the optical field on each neuron, and  is the phase factor of the corresponding neuron. A critical limitation of conventional on-chip DONN modeling lies in the inaccurate treatment of transmission coefficients under oblique incidence conditions.
6. Parameter Optimization Analysis 
[bookmark: _Hlk209517137]Through systematic analysis of critical design parameters including Gaussian kernel width, network layer count, and interlayer distance, we establish a comprehensive theoretical framework for GS-DONN performance optimization, providing quantitative design guidelines for practical implementation.
Gaussian Kernel Width Optimization
[bookmark: _Hlk209517783]Our investigation reveals that Gaussian kernel width selection critically determines system performance (Figure S2(a)). Even minimal smoothing (σ = 0.5 μm) achieves substantial improvements, with mode purity enhancement ΔM = 62.61% and fidelity improvement Δη = 51.98%. This significant improvement stems from the Gaussian kernel's effective suppression of abrupt slot length variations, thereby reducing near-field coupling between adjacent structural elements. Optimal performance occurs when kernel width reaches 1.5-2.5 μm, where both mode purity and fidelity approach saturation. When kernel width increases to 3 μm, prediction-simulation mismatches persist due to fundamental differences between perfectly matched layer boundary conditions used in simulation and ideal periodic boundary conditions assumed during training. Additionally, Gaussian smoothing inherently improves transmission efficiency by minimizing scattering losses at slot boundaries through smooth structural transitions (Figure S3(d)).
Network Layer Architecture Scaling
The influence of layer number on GS-DONN performance exhibits predictable scaling characteristics (Figure S2(b)). Increasing layers from one to five significantly improves mode purity from 56% to 80.96% and fidelity from 95.55% to 98.36%, demonstrating enhanced mode conversion capability and modeling accuracy with increased network depth. However, further increasing from five to nine layers yields diminishing returns, with only 0.44% fidelity improvement and 16.69% mode purity enhancement. This diminishing return phenomenon results from accumulated optical losses and phase errors during interlayer light propagation, ultimately constraining continued performance improvement. The concurrent decrease in transmission efficiency with increasing layer count (Figure S3(e)) confirms this analysis, necessitating careful balance between performance enhancement and loss control in practical integrated DONN design.
[image: ]
Figure S3. Influence of the Gaussian kernel width and network parameters on the performance of the on-chip DONN. With all other parameters fixed, the mode purity (left axis) and the matching degree with var-FDTD simulations (right axis) of the on-chip DONN used for mode conversion are evaluated as functions of (a) the Gaussian kernel width of the spatial filter, (b) the number of diffractive layers, and (c) the interlayer distance. (d)–(f) present the corresponding transmittance for converting the TE00 mode into TE01 and TE02 modes under varying Gaussian kernel width, number of layers, and layer distance, respectively
Interlayer Distance Optimization
Interlayer separation critically affects neuron connectivity characteristics and overall network performance (Figure S3(c)). Shorter distances constrain optical propagation paths, resulting in predominantly local neuron connections. As distance increases, diffraction angles expand, enabling more fully connected neuron interactions, an effect more pronounced with larger neuron arrays, thereby enhancing network capacity and inference performance. Within the 20-100 μm range, both mode purity and fidelity consistently improve with increasing interlayer distance, attributed to enhanced optical connectivity and stabilized effective refractive index promoting better field shaping. However, beyond 150 μm, performance improvements become negligible, indicating saturation. Transmission efficiency decreases with longer propagation distances due to cumulative optical attenuation (Figure S3(f)), requiring optimal trade-offs between transmission and network performance for practical applications.
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