[bookmark: _Hlk204781880]Figure S1 Soil carbon, soil nitrogen, and plant shoot biomass changes as affected by (A) (log-linearized) plant species richness, (B) plant functional group richness and (C) different plant functional identities. Colors in (AB) indicate the sampling block (B1 to B4), green dashed lines are based on the linear regression of each individual block, while the black line and shaded area represent the linear regression and 95% confidence interval independent of block. SOC: soil organic Carbon, TN: soil total nitrogen.
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Figure S2 Differentially abundant ASVs at low and high plant diversity, based on DESeq2. (A) Sum of differentially abundant ASVs in bacterial (16S-ASVs) and fungal (ITS-ASVs) communities at high plant species richness (PSR ≥ 4), and in plots containing grasses and/or legumes. Colors indicate significant (p < 0.05) upregulation (blue) or downregulation (red). (B) Differential abundance of individual ASVs for bacteria and fungi on Phyla level, based on DESeq2 (log2 fold changes). Differential abundances were tested between plots with low (PSR ≤ 2) and high plant diversity (PSR ≥ 4), between plots with and without grasses, and with and without legumes. Significant ASVs are colored in red, others in grey. FC: fold change. 
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Figure S3 Interspecies correlations of the bacterial and fungal communities along the plant diversity gradient. Co-occurrence network analysis derived from the bacterial (16S-ASVs) and fungal (ITS-ASVs) communities. Topological properties of the networks are given in Table S6. Each node represents a microbial taxon at ASV level, with edges depicting significant (p < 0.01) positive and negative correlations. Node size is proportional to betweenness centrality, and node color is proportional to the number of connections (degree), with darker color indicating a higher degree. Edges are colored based on their source node. Number of samples per network is 14.
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Figure S4 Plant functional group identity as a potential driver of microbial specialization. Multinomial species classification method for niche occupancy based on pairwise comparison between habitats with and without grasses and/or legumes for bacterial (16S-ASVs) and fungal (ITS-ASVs) communities. Generalists (grey), specialists (green and purple), and rare taxa (black) are indicated by their respective percentages.
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Table S1. ANOVA modeling of the effect of plant explanatory variables on microbial alpha diversity measures of the (A) bacterial (16S) and (B) fungal (ITS)communities. Significant p-values (p < 0.05) and trends (p < 0.1) have been emboldened and underscored, respectively. PSR: plant species richness, FG: functional group, df: degrees of freedom, F: F-value, p: p-value, %SS: percentage of the total sum of squares.
	Source of variation
	df
	Species richness
	Effective richness
	Pielou’s Evenness

	
	
	F
	p
	%SS
	F
	p
	%SS
	F
	p
	%SS

	(A) Bacteria (16S)
	
	
	
	
	
	
	
	
	
	

	   block 
	3
	1.020
	0.390
	3.863
	0.621
	0.604
	2.408
	10.963
	< 0.001 
	31.087

	   PSR 
	1
	
	
	
	
	
	
	
	
	

	      before
	
	0.097
	0.756
	0.123
	0.040
	0.842
	0.052
	0.932
	0.338
	0.881

	      after
	
	0.032
	0.858
	0.041
	0.031
	0.862
	0.040
	0.001
	0.972
	0.001

	   FG richness
	1
	
	
	
	
	
	
	
	
	

	      before
	
	1.090
	0.300
	1.376
	0.619
	0.434
	0.800
	4.265
	0.043
	4.032

	      after
	
	1.025
	0.315
	1.294
	0.610
	0.438
	0.787
	3.334
	0.072
	3.152

	   legumes present
	1
	8.756
	0.004
	11.054
	8.784
	0.004
	11.348
	0.123
	0.727
	0.116

	   grasses present
	1
	0.269
	0.606
	0.340
	0.081
	0.777
	0.105
	2.243
	0.139
	2.121

	   PSR × FG richness
	1
	0.002
	0.962
	0.003
	0.025
	0.874
	0.033
	0.272
	0.604
	0.257

	(B) Fungi (ITS)
	 
	
	
	
	
	
	
	
	
	

	   block 
	3
	1.161
	0.332
	5.185
	0.274
	0.844
	1.220
	0.381
	0.767
	1.664

	   PSR 
	1
	
	
	
	
	
	
	
	
	

	      before
	
	0.508
	0.479
	0.756
	0.099
	0.754
	0.147
	0.621
	0.434
	0.903

	      after
	
	0.011
	0.917
	0.016
	1.104
	0.298
	1.637
	1.598
	0.211
	2.323

	   FG richness
	1
	
	
	
	
	
	
	
	
	

	      before
	
	1.956
	0.167
	2.912
	2.016
	0.161
	2.989
	0.611
	0.437
	0.889

	      after
	
	1.459
	0.232
	2.172
	3.021
	0.087
	4.480
	1.588
	0.212
	2.309

	   legumes present
	1
	0.059
	0.809
	0.088
	1.963
	0.166
	2.911
	3.368
	0.071
	4.897

	   grasses present
	1
	0.070
	0.792
	0.104
	0.294
	0.590
	0.436
	0.169
	0.682
	0.246

	   PSR × FG richness
	1
	0.590
	0.446
	0.878
	0.231
	0.632
	0.343
	0.884
	0.351
	1.285


Table S2. Permutational multivariate analysis of variance (PERMANOVA) of dissimilarities, based on UniFrac distances of the (A) bacterial (16S) and (B) fungal (ITS) community compositions. Significant p-values (p < 0.05) and trends (p < 0.1) have been emboldened and underscored, respectively. PSR: plant species richness, FG: functional group, df: degrees of freedom, F: F-value, p: p-value, %SS: percentage of the total sum of squares.
	Source of variation
	df
	Community composition

	
	
	F
	p
	%SS

	(A) Bacteria (16S)
	
	
	
	

	   block 
	3
	2.141
	< 0.001
	4.107

	   PSR 
	1
	
	
	

	      before
	
	1.441
	0.008
	0.921

	      after
	
	1.174
	0.130
	0.751

	   FG richness
	1
	
	
	

	      before
	
	1.176
	0.106
	0.752

	      after
	
	0.909
	0.712
	0.581

	   legumes present
	1
	1.314
	0.029
	0.840

	   grasses present
	1
	1.167
	0.115
	0.746

	   PSR × FG richness
	1
	0.945
	0.618
	0.604

	(B) Fungi (ITS)
	 
	
	
	

	   block 
	3
	1.857
	< 0.001
	3.709

	   PSR 
	1
	
	
	

	      before
	
	2.100
	< 0.001
	1.398

	      after
	
	1.552
	0.002
	1.033

	   FG richness
	1
	
	
	

	      before
	
	1.930
	< 0.001
	1.285

	      after
	
	1.382
	0.008
	0.920

	   legumes present
	1
	2.157
	< 0.001
	1.436

	   grasses present
	1
	1.653
	0.002
	1.100

	   PSR × FG richness
	1
	1.240
	0.030
	0.826
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Table S3. P-values of the ANOVA modeling of the effect of plant explanatory variables on select (A) bacterial and (B) fungal functional potential. Significant p-values (p < 0.05) and trends (p < 0.1) have been emboldened and underscored, respectively. PSR: plant species richness, FG: functional group, AMF: arbuscular mycorrhizal fungi, ECM: ectomycorrhizal fungi, C: Carbon, N: Nitrogen.
	Source of variation
	p-value

	(A) Bacteria (16S)
	Multifunctionalitya
	Chemoheterotrophyb
	Aromatic C compound degradation
	Fermentation
	C fixationc
	N mobilizationd

	   block
	0.802
	< 0.001
	< 0.001
	0.581
	0.036
	0.806

	   PSR 
	
	
	
	
	
	

	      before
	0.479  
	0.113    
	0.917    
	0.022
	0.058
	0.546  

	      after
	0.988  
	0.143    
	0.800    
	0.021
	0.075
	0.961  

	   FG richness
	
	
	
	
	
	

	      before
	0.126  
	0.533    
	0.465    
	0.616   
	0.485  
	0.154  

	      after
	0.174  
	0.913    
	0.444    
	0.539   
	0.850  
	0.195  

	   legumes present
	0.015
	0.564    
	0.630    
	0.030
	0.429  
	0.012

	   grasses present
	0.659  
	0.673    
	0.459    
	0.006
	0.382  
	0.387  

	   PSR × FG richness
	0.528  
	0.478    
	0.230    
	0.965   
	0.329  
	0.168  

	(B) Fungi (ITS)
	Multifunctionalitya
	Agonistic lifestylese
	Mutualistic lifestylesf
	ECM
	AMF
	Litter saprotroph
	Plant saprotroph

	   block
	0.222  
	0.178    
	0.098
	0.576    
	0.442  
	0.133  
	0.762

	   PSR
	
	
	
	
	
	
	

	      before
	0.187   
	0.020
	0.042
	0.023
	0.090
	0.084
	0.374

	      after
	0.731   
	0.228    
	0.454   
	0.047
	0.208
	0.038
	0.925  

	   FG richness
	
	
	
	
	
	
	

	      before
	0.029
	0.006
	0.003
	0.260    
	0.203
	0.013
	0.082

	      after
	0.072
	0.054
	0.020
	0.938    
	0.578  
	0.221  
	0.131

	   legumes present
	0.009
	< 0.001
	0.152  
	< 0.001
	0.149
	0.013
	0.235

	   grasses present
	0.828   
	0.031
	0.077
	0.592    
	0.555  
	0.155  
	0.820

	   PSR × FG richness
	0.500   
	0.008
	0.723  
	0.033
	0.682  
	0.075
	0.389


a Number of functions or fungal lifestyles, inferred by PICRUSt2 and FungalTraits, respectively
b Sum of functional abundances of chemoheterotrophy, excluding fermentation, cellulolysis, and aromatic compound degradation (inferred by FAPROTAX) 
c Sum of functional abundances of Carbon fixation, comprising phototrophy (inferred by FAPROTAX)
d Sum of functional abundances of Nitrogen mobilization, comprising Nitrogen fixation, nitrate reduction, and ureolysis (inferred by FAPROTAX)
e Sum of fungal guild abundances of agonistic lifestyles, including parasitism of fungi, plants, bryophytes, and lichens (inferred by FUNGuild)
f Sum of fungal guild abundances of mutualistic lifestyles, comprising endomycorrhizal fungi, ECM, AMF, endophytes, epiphytes, symbiotrophs, and lichens (inferred by FUNGuild)  

Table S4. Topological properties of the co-occurrence network analysis, derived from the combined 16S rRNA gene and ITS gene sequencing data, across the five plant species richness levels. Upwards (▲) and downwards (▼) arrows indicate the overall trend along the plant diversity gradient.
	Network properties
	Plant species richness
	

	
	1
	2
	4
	8
	16
	

	Number of nodesa
	782
	925
	880
	826
	887
	

	Number of edgesb
	2936
	3767
	3944
	2885
	4159
	▲

	   Positive edges
	1638 (56%)
	2292 (61%)
	2400 (61%)
	1633 (57%)
	2525 (61%)
	▲

	   Negative edges
	1298 (44%)
	1475 (39%)
	1544 (39%)
	1252 (43%)
	1634 (39%)
	▲

	   Bacteria-Bacteria
	296 (10%)
	246 (7%)
	211 (5%)
	223 (8%)
	249 (6%)
	▼

	   Bacteria-Fungi
	997 (34%)
	1093 (29%)
	1001 (25%)
	1016 (35%)
	1235 (30%)
	▲

	   Fungi-Fungi
	1643 (56%)
	2428 (64%)
	2732 (70%)
	1646 (57%)
	2675 (64%)
	▲

	Modularityc
	0.684
	0.685
	0.670
	0.687
	0.670
	

	Number of communitiesd
	20
	21
	21
	19
	16
	

	Network diametere
	11
	14
	12
	11
	9
	

	Clustering coefficientf
	0.371
	0.385
	0.418
	0.379
	0.402
	▲

	Path lengthg
	4.597
	4.533
	4.600
	4.526
	4.199
	

	Connectivityh
	7.509
	8.145
	8.964
	6.985
	9.378
	▲

	Weighted degreei 
	4.999
	5.405
	5.944
	4.600
	6.243
	▲


a Microbial taxon with at least one significant (p < 0.01) strong (SparCC >0.7 or <−0.7) correlation 
b Number of correlations obtained by SparCC analysis, with positive and negative correlations featuring a magnitude of >0.7 and <−0.7, respectively
c Capability of nodes to form highly connected communities (inferred by Gephi)
d Groups of internally densely connected nodes (inferred by Gephi)
e Longest distance between nodes in the network, measured in number of edges (inferred by Gephi)
f Average tendency of nodes to form tightly-knit clusters (inferred by Gephi)
g Average length of all edges in the network (inferred by Gephi)
h Average number of connections per node (inferred by Gephi) 
i Average number of connections per node, weighted by their connectivity distribution
Table S5. Known carbon compound (CC) utilization by top key nodes identified in table 2 at the lowest taxonomic classification based on literature. Fungal key nodes are shaded grey. sCC: simple carbon compounds (Carbon atoms < 9); cCC: complex carbon compounds (Carbon atoms ≥ 10).
	Taxa
	Ecological role
	Carbon compound utilization 
	References 

	Actinobacteria
	Metabolically diverse degraders of plant-derived complex CC
	· Various cCC (i.e., chitin, cellulose)
· Various sCC (i.e., maltose, sorbitol)
	[1]

	Agromyces
	Metabolically diverse carbohydrate degraders
	· Various sCC (i.e., glucose, xylose)
· aromatic & aliphatic hydrocarbons
	[2, 3]

	Blastocatellaceae
	Protein degraders
	· Various cCC (i.e., cellulose, chitin, starch)
· Complex proteinaceous compounds
	[4, 5]

	Blastococcus 
	Metabolically diverse degraders of various simple & complex CC
	· Various sCC (i.e., malate, sucrose)
· Various cCC (i.e., arbutin, trehalose)
· Organic acids 
	[6, 7]

	Candidatus Alysiosphaera
	Metabolically diverse degraders easily available CC
	· Short-chain fatty acids
· sCC
· Amino acids 
· Alcohols
	[8]

	Chitinophagaceae
	Degraders of wood & hydrocarbons
	· Various cCC (i.e., chitin, cellulose)
· Various sCC (i.e., glucose, sucrose)
	[9, 10]

	Dongia 
	Metabolically diverse degraders simple sugars, carbohydrates
	· Various sCC (i.e., glucose, xylose)
· cCC: cellobiose
	[4, 11]

	Gaiellales
	Degraders of exclusively simple sugars & amino acids 
	· P-containing compounds
· sCC
· amino acids (i.e., alanine, asparagine)
	[12, 13]

	Gitt-GS-136 
	Degraders of dissolved organic matter
	· Dissolved organic carbon
· Byproducts of photosynthetic activity 
	[14]

	[bookmark: _GoBack]MB-A2-108
	Degraders of dissolved organic matter
	· high molecular weight organic carbon compounds
	[15]

	Methyloligellaceae
	Methane cycling
	· Methane
	[16]

	Nocardioides 
	Degraders of wood & plant-derived CC 

	· Aromatic compounds & lignocelluloses
	[17, 18]

	Reyranella
	Metabolically diverse degraders of various simple & complex CC
	· Various sCC (i.e., fructose, malate)
· Various cCC (i.e., inosine, trehalose)
· Organic acids 
	[4, 19]

	Rubrobacter
	Metabolically diverse degraders of various simple & complex CC
	· Various sCC (i.e., malate, arabinose)
· Various cCC (i.e., cellobiose, trehalose)
· Amino acids (i.e., glutamate, proline)
	[20, 21]

	Subgroup 11
	Degraders of dissolved organic matter
	· high molecular weight organic CC
	[15, 22]

	Vicinamibacteraceae
	Degraders of simple sugars, complex proteinaceous compounds 
	· sCC
· Complex proteinaceous compounds
· Organic acids 
	[23, 24]

	Xanthobacteraceae
	Metabolically diverse degraders of organic acids & alcohols
	· Alcohols
· Organic & amino acids 
· cCC: raffinose
· sCC: glucose
	[25, 26]

	Ascobolus 
	Metabolically diverse saprotrophs, plant parasites
	· cCC: cellulose, chitin, lignin
· sCC: xylan, sucrose
· Amino acids (i.e., cysteine, isoleucine)
	[27, 28]

	Botryotrichum 
	Degraders of plant- & animal-derived complex CC
	· Various cCC (i.e., cellulose, keratin)
	[29]

	Chrysosporium
	Degraders of keratin & litter
	· Various cCC (i.e., cellulose, mucilage, keratin)
	[30, 31]

	Clavaria
	Degraders of plant-derived CC 
	· Various cCC (i.e., starch, cellulose) 
	[32]

	Fusarium
	Metabolically diverse degraders of plant-derived CC, plant pathogens 
	· Various cCC (i.e., cellulose)
· Various sCC
· Amino acids

	[33–35]

	Mortierella
	Metabolically diverse degraders of wood,  plant-derived CC, and simple sugars 
	· Various cCC (i.e., lignin, hemicellulose)
· Various sCC
	[35, 36]

	Periconia
	Metabolically diverse degraders of plant-derived CC
	· Various cCC (i.e., starch, cellulose, lignin-derived compounds)
	[37, 38]

	Phizophlyctis
	Saprotroph
	· sCC: glucose
· cCC: cellulose
	[39, 40]

	Pyronemataceae
	Degraders of plant-derived CC 
	· Pyrolyzed cCC, ash, charcoal 
	[41]

	Rhizophydiales
	Degraders of pollen, plant parasite
	· Various cCC (i.e., pollen, chitin, cellulose)
	[39, 42]

	Solicoccozyma
	Degraders of simple sugars, promote plant growth
	· Various sCC (i.e., lactose, maltose)
· cCC: starch 
· Glyphosates 
	[43, 44]

	Sordariales
	Degraders of litter
	· Various cCC (i.e., lignocellulose)
	[45]

	Tetracladium 
	Degraders of wood & litter, root-associated endophyte
	· Various cCC (i.e., lignin, cellulose)
· Various sCC (i.e., xylan, sucrose)
	[46, 47]

	Thelebolaceae
	Degraders of animal dung
	· Various cCC found in dung
	[48]


Table S6. Topological properties of the co-occurrence network analysis, derived from the (A) 16S rRNA and (B) ITS gene sequencing data, across the five plant species richness levels.
	Network properties
	Plant species richness

	
	1
	2
	4
	8
	16

	(A) Bacteria (16S)
	
	
	
	
	

	   Number of nodesa
	171
	172
	152
	159
	186

	   Number of edgesb
	185
	208
	154
	165
	248

	       Positive edges
	69 (37%)
	135 (65%)
	99 (64%)
	106 (64%)
	125 (50%)

	       Negative edges
	116 (63%)
	73 (35%)
	55 (36%)
	59 (38%)
	123 (50%)

	   Modularityc
	0.864
	0.863
	1.013
	0.862
	0.796

	   Number of communitiesd
	32
	27
	31
	32
	25

	   Network diametere
	13
	14
	17
	17
	11

	   Clustering coefficientf
	0.372
	0.428
	0.289
	0.303
	0.312

	   Path lengthg
	4.730
	5.723
	6.571
	6.742
	4.846

	   Connectivityh
	2.164
	2.419
	2.026
	2.075
	2.667

	   Weighted degreei 
	0.381
	0.507
	0.391
	0.393
	0.033

	(B) Fungi (ITS)
	
	
	
	
	

	   Number of nodesa
	551
	623
	619
	654
	643

	   Number of edgesb
	2489
	2926
	3555
	2518
	2458

	       Positive edges
	1496 (40%)
	1939 (66%)
	2354 (66%)
	1645 (65%)
	1659 (68%)

	       Negative edges
	993 (60%)
	987 (34%)
	1201 (34%)
	873 (35%)
	799 (32%)

	   Modularityc
	0.671
	0.689
	0.650
	0.701
	0.764

	   Number of communitiesd
	15
	11
	15
	15
	18

	   Network diametere
	10
	11
	11
	10
	11

	   Clustering coefficientf
	0.384
	0.419
	0.466
	0.4011
	0.439

	   Path lengthg
	4.018
	4.226
	4.153
	4.496
	4.699

	   Connectivityh
	9.034
	9.393
	11.486
	7.700
	7.645

	   Weighted degreei 
	6.119
	6.266
	7.685
	5.101
	5.065


a Microbial taxon with at least one significant (p < 0.01) strong (SparCC >0.7 or <−0.7) correlation 
b Number of correlations obtained by SparCC analysis, with positive and negative correlations featuring a magnitude of >0.7 and <−0.7, respectively
c Capability of nodes to form highly connected communities (inferred by Gephi)
d Groups of internally densely connected nodes (inferred by Gephi)
e Longest distance between nodes in the network, measured in number of edges (inferred by Gephi)
f Average tendency of nodes to form tightly-knit clusters (inferred by Gephi)
g Average length of all edges in the network (inferred by Gephi)
h Average number of connections per node (inferred by Gephi) 
i Average number of connections per node, weighted by their connectivity distribution 
Table S7. List of plant species sown in the Jena Experiment, classified into 4 functional groups.
	Legumes
	Grasses
	Tall herbs
	Small herbs

	Lathyrus pratensis
	Alopecurus pratensis
	Achillea millefolium
	Ajuga reptans

	Lotus corniculatus
	Anthoxanthum odoratum
	Anthriscus sylvestris
	Bellis perennis

	Medicago lupulina
	Arrhenaterum elatius
	Campanula patula
	Glechoma hederacea

	Medicago x varia
	Avenula pubescens
	Carum carvi
	Leontodon autumnalis

	Onobrychnis viciifolia
	Bromus erectus
	Cardamine pratensis
	Leontodon hispidus

	Trifolium campestre
	Bromus hordeaceus
	Centaurea jacea
	Plantago lanceolata

	Trifolium dubium
	Cynosurus cristatus
	Cirsium olearaceum
	Plantago media

	Trifolium fragiferum
	Dactylis glomerata
	Crepis biennis
	Primula veris

	Trifolium hybridum
	Festuca pratensis
	Daucus carota
	Prunella vulgaris

	Trifolium pratense
	Festuca rubra
	Galium mollugo
	Ranunculus repens

	Trifolium repens
	Holcus lanatus
	Geranium pratense
	Taraxacum officinale

	Vicia cracca
	Luzula campestris
	Heracleum sphondylium
	Veronica chamaedrys

	 
	Phleum pratense
	Knautia arvensis
	 

	 
	Poa pratensis
	Leucanthemum vulgare 
	 

	 
	Poa trivialis
	Pastinacea sativa
	 

	 
	Trisetum flavescens
	Pimpinella major
	 

	 
	 
	Ranunculus acris
	 

	 
	 
	Rumex acetosa
	 

	 
	 
	Sanguisorba officinalis
	 

	 
	 
	Tragopogon pratensis
	 


Table S8. Primers used for Illumina MiSeq amplicon sequencing, along with their respective sequences and references. 
	Target gene
	Primer
	Sequence (5’-3’)
	Amplified Region
	Reference

	Bacterial 16S rRNA gene
	Bact_341F
	CCTACGGGAGGCAGCAG
	V3 and V4 regions
	[49, 50]

	 
	Bact_806R
	GGACTACHVGGGTWTCTAAT
	
	

	Fungal ITS gene
	fITS7f
	GTGARTCATCGAATCTTTG
	ITS subregion 2
	[51]

	 
	ITS4r
	TCCTCCGCTTATTGATATGC
	
	


W = A or T; V = A, C or G; H = A, C or T.
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