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Abstract

Normative models of behavior typically assume that the goal of animals is to

optimize some measure of reward. It is well known, however that animals don’t

always conform to this ideal. Especially in tasks involving repeated trials, attention

waxes and wanes: sometimes performance is near optimal; other times it’s near

chance. Such variation in behavior must be driven by changes in the internal

state of the animal. To gain insight into this process, we examined three potential

measures of internal state in a two-alternative forced choice task: the complexity

of physical movements, the degree to which animals make use of the stimulus,

and pupil diameter. Pupil diameter was almost independent of behavior, whereas

the first two measures were strongly correlated with it – but in very different

ways. This suggests that the internal state is at least two dimensional. In our

experiments those dimensions corresponded to how much animals focus on the

current stimulus, and how much they use their priors over task variables. These

results add insight into internal states in general, and also provide a cautionary

tale: internal state is not one-dimensional, and it may take several measurements

to infer it accurately.

1 Introduction

In behavioral tasks in which animals perform the same action repeatedly, performance
often varies widely: periods of near-optimal performance are interleaved with periods
that resemble random guessing. A widely held explanation for this variability is that it
reflects fluctuations in the animal’s internal state, such as shifts in attention, motivation,
or arousal. Here we ask: what is the nature of the internal state?
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This is not a new question, and a number of approaches have been proposed. These
fall into two main categories: ones based purely on behavior [1–5], and ones based on
autonomic responses, such as pupil diameter [6–8]. Here, rather than considering only
one approach, we consider two behavioral measures and one autonomic response, all
within the context of the International Brain Laboratory [9]. The behavioral measures
are a new measure we introduce based on complex movements, and the degree to
which mice make use of the stimulus, as assessed by the GLM-HMM model [2, 3]; the
autonomic response is pupil diameter.

Do the three methods measure the same thing? To answer that, we determined
how the internal state, as inferred from the three methods, maps to various measures
of performance on the task. Excluding pupil diameter, which was weakly correlated
with behavior, we found that the mappings were very different, indicating that the
methods measure different things. We argue that the differences arise not because one
is right and the others are wrong, but because internal state has at least two axes:
how much animals pay attention to the current trial, as measured by the slope of the
psychometric curve, and how much they pay attention to past trials, as measured by
their ability to infer the current context.

2 Results

2.1 International Brain Lab Task

We apply our analysis to the International Brain Lab (IBL) task [9] – a classic
two-alternative forced choice task. Head-fixed mice are presented with visual stimuli
consisting of black-and-white gratings, displayed either on the left or right side of a
screen (Fig. 1a). The mice move the grating by turning a wheel. Movements that guide
the stimulus to the center of their visual field, corresponding to a wheel rotation of 0.3
radians in the correct direction, are rewarded with 1–3 µL of glucose water; movements
that displace the stimulus to the periphery, corresponding to a wheel rotation of 0.3
radians in the wrong direction, are classified as incorrect (typical wheel trajectories
are shown in Fig. 1b). If neither a correct nor incorrect threshold is reached within 60
seconds, the trial is classified as a time-out.

The difficulty of each trial is determined by the contrast of the grating. Contrasts
are drawn from the set ±{0, 0.0625, 0.125, 0.25, 1.0}, with positive values indicating
stimuli on the right and negative values indicating stimuli on the left. Each session
starts with 90 unbiased trials, where stimuli appear equally often on the left and
right. After that, trials are presented in biased blocks: the stimulus appears on one
side with 80% probability and on the other side with 20% probability. Block lengths
vary between 20 and 100 trials, sampled from a truncated exponential distribution.
The block transitions are not signaled; mice must infer the current bias from past
trials. Zero-contrast trials have no intrinsically correct choice. To encourage mice to
rely on prior information, these trials are rewarded according to the block bias: in a
right-biased block, choosing right yields reward with 80% probability and left with
20%, and vice versa in a left-biased block.

2



a b

0.00 0.15 0.30 0.45
Time (s)

0.3

0.2

0.1

0.0

0.1

0.2

Po
sit

io
n 

(ra
d)

0 4 8 12
Time (s)

Fig. 1: The IBL task. a. A grating appears on the screen, and to receive a reward
the mice have to move a wheel such that the grating moves to the center. b. Left:
sample trajectories characteristic of the rapid, ballistic movements, where decisions
are executed within a fraction of a second. Right: Longer, more variable trajectories,
potentially indicative of disengagement in the task.

2.2 Potential measures of internal state

Here we describe the three potential measures of internal state that we use in our
analysis. The first is based on wheel movements, which we compress into a relatively
low dimensional latent variable. The second is based purely on the choices the animals
make, under the assumption that the internal state changes slowly. The third is based
on an autonomic response, pupil diameter.

2.2.1 Wheel movements

Intuitively, we expect an animal’s internal state to affect its movements: when an
animal is engaged its movements should be fast and deliberate; when not engaged
movements should be slow and relatively random. Quantifying this expectation is,
however, nontrivial, as movements are typically high-dimensional, and so not easy
to categorize. Here we focus on wheel movements, which have the added complexity
that they are variable length. To address the high-dimensionality and variability in
length, we use a Variational Autoencoder (VAE) [10] to map the trajectories into a
low dimensional latent space, enabling a tractable representation of their underlying
structure.

Our VAE consists of an encoder that maps wheel trajectories, θ(t), to a Gaussian

distribution, and a decoder that produces a reconstructed trajectory, θ̂(t), from a sample
drawn from that distribution (see Fig. 2). Details are given in Methods, Sec. M.3.1; here
we provide a brief summary. The encoder consists of two stacked LSTM layers (which
naturally handle time-dependent input), followed by a feedforward ReLU network; this
produces the mean, µ, and the diagonal covariance, Σ, of an 8-dimensional Gaussian
latent distribution. The decoder starts with a latent vector sampled from the Gaussian
distribution N (µ,Σ); that is fed through two LSTM layers followed by a feedforward
ReLU network.

The model parameters are adjusted to minimize the difference between the input
and output sequence (the reconstruction loss), with a penalty to encourage latent
variables to have high entropy. This leads to the loss
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where n denotes trial, t denotes time within a trial, θn(t) is the input wheel trajectory

and θ̂n(t) is the output of the VAE, Tn is the duration of trial n, and N is the number of
trials. To handle variable length trajectories, time points in the input sequences beyond
the trial length are padded with a number outside the range of wheel trajectories,
and the reconstruction loss is masked so that only the actual trajectory contributes
to the error; see Methods, Sec. M.3.1 for details. As shown in Methods, Sec. M.3.2,
minimizing the loss is equivalent to maximizing the Evidence Lower Bound (ELBO)
on the log likelihood of the data.

θ(t) θ(t)

latent vector(μ,Σ)

^

Encoder Decoder

Fig. 2: Block diagram of the VAE model; see Methods, Sec. M.3.1 for additional
details. Despite the stochastic mapping from (µ,Σ) to the latents, after training the

output, θ̂(t), is remarkably similar to the input, θ(t).

We trained our Variational Autoencoder on wheel trajectories using 2,415 sessions
from 81 mice (see Methods, Sec. M.1 for details on data selection and inclusion
criteria). After training, for each trial the VAE mapped the trajectory to a latent
Gaussian distribution, as described above. To identify the most informative features,
we performed principal component analysis on the latent representations, which we
took to be the 16-dimensional vector consisting of (µi, log Σii, i = 1, ..., 8). The first two
principal components explained 89% of the total variance (62% and 27%, respectively);
we used these components for all of our analysis. We rotated the principal components
by 30° and flipped the x-axis to align the latent space with behavioral variables,
maximizing the correlation of one axis with choice direction while minimizing its
correlation with feedback.

Figure 3a shows the distribution in the space of the first two (rotated and flipped)
principal components; wheel trajectories sampled from this distribution are shown
in Fig. 3b. As can be seen from the latter figure, large values of the x-coordinate
correspond to nearly ballistic wheel movements while small values correspond to slow,
meandering trajectories, and large values of the y-coordinate correspond to right
choices while small values correspond to left choices. Based on the idea that ballistic
movements are a signature of an engaged state, we refer to the value of the x-coordinate
as the (z-scored) engagement index. Because we are interested in engagement, in
subsequent analysis we ignore the wheel direction and focus on the engagement index.
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Fig. 3: a. Scatterplot of the z-scored engagement index versus wheel direction, both
obtained by applying a linear transformation to the first two principal components
of the VAE representation (see main text for details). The black dots correspond to
the trajectories plotted in panel b. b. Trajectories corresponding to various values
of the first two principal components. The engagement index is z-scored to facilitate
comparison with other metrics.

2.2.2 The GLM-HMM model

Because the choices an animal makes depend on its internal state, it should be possible
to infer internal state purely from choices. Conceptually, this is straightforward: build
a model in which the current choice (in the case of the IBL task, right or left movement
of the wheel) depends parametrically on current and past sensory input, past choices,
and internal state; infer the parameters of the model; and then use those parameters
to estimate the internal state on each trial. Practically, though, this is difficult because
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Fig. 4: The GLM-HMM model for an example mouse a. GLM weights corresponding
a 3-state model. State 2 (green line) exhibits a strong stimulus weight, consistent with
an “engaged” decision-making mode. States 1 and 3 (orange and blue lines) show weak
stimulus dependence and strong rightward (state 1) and leftward (state 3) biases. b.
Probability matrix, Aij (see Eq. (2)) dictating state transition. Large diagonal values
indicate strong state persistence. c. Psychometric curves generated using the fitted
GLM-HMM. The four curves are the four combinations of choice and the outcome of
the previous trial; more concisely, they are plots of ϕ(wi1c+ wi2 ± wi3 ± wi4) versus
c for the four combinations of ±; see Eq. (3). d. Overall accuracy (gray) and state-
specific accuracies (using the same color code as in panels a and c).

the internal state predicts only the probability of a correct choice, and probability
cannot be measured on a trial by trial basis.

To get around this practical difficulty, the typical assumption is that the internal
state doesn’t change too rapidly. This is the approach taken by the GLM-HMM model
[2, 3], which assumes that there are discrete hidden states that change rarely, and
the degree to which the mouse pays attention to the sensory input is state-dependent.
Loosely, there are “engaged” states, where performance is near optimal given sensory
input, and “disengaged” states, where performance is suboptimal, and often biased
toward one side or another. For a complete description of the GLM-HMM, see [2, 3];
here we describe its basic elements, as they will be necessary to understand the analysis
in Sec. 2.3 below.

Given its name, it’s not surprising that the GLM-HMM combines a hidden Markov
model (HMM) with a generalized linear model (GLM) [2–4]. The Hidden Markov
Model is characterized by a state transition matrix, denoted Aij , which determines
transitions across trials,

Aij = p(state i on current trial | state j on previous trial) . (2)

Each state defines a distinct decision strategy via a weight vector, wi: the probability
of choosing right given state i is given by

p(choose right|state i) = ϕ(wi1ci + wi2 + wi3chi−1 + wi4wslsi−1) (3)

where ϕ(z) ≡ ez/(1 + ez) is the standard sigmoidal function, ci is the signed contrast,
chi represents choice (+1 for right and −1 for left), and wslsi encourages a win-stay-
lose-switch strategy (+1 for a rewarded right choice or unrewarded left choice; −1 for
a rewarded left choice or unrewarded right choice). The second weight, wi2, for which
xi1 is always 1, represents bias.
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We trained 3- and 4-state GLM-HMM models using the same sessions and mice we
used for the VAE (see Methods, Sec. M.1 for details on data selection and inclusion
criteria). In the main text we report results from the 3-state model, as they are repre-
sentative; the 4-state model yielded highly similar results (see Supporting Information).
The training yielded, for each mouse, a set of transition probabilities, Aij , and weights,
wi. Weights and transition probabilities from the 3-state model are plotted in Fig. 4a
and 4b for a typical mouse; note that each color in Fig. 4a corresponds to a vector
of weights for a different state. The first component of the weight (wi1 in state i),
denoted “contrast” in Fig. 4a, is the GLM coefficient of the signed stimulus contrast;
thus, high wi1 suggests high task engagement. This is reflected in the psychometric
curves (Fig. 4c) and in state accuracy (Fig. 4d).

Once we know the parameters for a particular session, we can use the choices of
the animal to determine, on each trial, the probability, pi, that an animal is in each
state, as described in [2, 3]. We then compute the degree to which the mouse is using
the stimulus, denoted s(n), via

s(n) =
∑

i

pi(n)wi1 (4)

where n denotes trial and pi(n) is the posterior probability of being in state i on trial
n, as inferred by the GLM-HMM model. We call s(n) the “stimulus coefficient”, and it’s
what we use in our analysis in the main text. An alternative measure of engagement
is the probability of being in the engaged state (Methods, Sec. M.4). As we show in
Supporting information, that gives nearly identical results as the stimulus coefficient.

2.2.3 Pupil diameter

Pupil diameter is known to be associated with arousal and attention [6–8, 11]. Although
its relationship with these internal states might not be monotonic [12], it’s still a
potential indicator of internal state. To extract pupil diameter, we used the Lighting
Pose algorithm [13]. We had access to pose on a subset of the trials used to train the
GLM-HMM and VAE (145 sessions from 44 mice). To ensured that the recorded pupil
data reflected meaningful physiological variability, we included only those sessions in
which pupil diameter showed reliable sensitivity to stimulus contrast, as assessed by a
stimulus-period pupillometry analysis. That resulted in 93 sessions from 35 mice (see
Methods, Sec. M.2, for details).

Pupil diameter does not reflect only internal state; it also changes reflexively in
response to visual stimulus features such as luminance and contrast [14–16]. To avoid
these visual stimulus-driven responses, we analyzed pupil dilation at 600 ms preceding
stimulus onset.

2.2.4 Comparison of the measures

Despite the fact that all three measures are intended to assess internal state, they are
almost completely uncorrelated. Figures 5a-c show density plots of the three measures
against each other, across all mice and sessions. Visually, no clear relationships are
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Fig. 5: Comparison of our three measures via pairwise density plots (see Methods,
Sec. M.5 for details). For all panels the axes are z-scores. a-c: Direct comparison. d-f :
Comparison of temporal autocorrelation (Eq. (15)).

apparent, and this is confirmed by the low correlation coefficients: 0.061, -0.127 and
0.091 in Figs. 5a-5c respectively.

We also assessed the temporal stability of our three measures using the the auto-
correlation across sessions with a trial lag of 1 (see Methods, Sec. M.5; in particular
Eq. (15)). As can be seen in Figs. 5d-5f, the three measures have very different tempo-
ral structure: for the GLM stimulus the autocorrelation coefficient is near 1, indicating
that it is very persistent; for the engagement index it’s centered only slightly above
zero, indicating that it is short-lived, and for the pupil diameter the autocorrelation is
somewhere in-between.

2.3 Task Behavior as a Readout of Internal State

Here we investigate how our potential measures of internal state – engagement index,
GLM-HMM stimulus coefficient, and pupil diameter – are related to behavior. In Fig. 6
we plot psychometric curves versus these three quantities. In each panel there are three
curves, corresponding, from top to bottom, to the right biased blocks, unbiased blocks,
and left biased blocks. We extracted two features from these plots: the slope of the
psychometric curves (which we average over the three curves), and the gap between
the top and bottom curves at zero contrast. The latter is a measure of how much the
mice pay attention to the prior; we refer to it as the prior-induced gap.

Plots of the slope, prior-induced gap, and performance versus z-score are shown
in Fig. 7. Both the slope and the gap have different behavior as a function of our
measures of internal state. The slope increases rapidly versus stimulus coefficient, but
it depends much more weakly on both engagement index and pupil diameter (Fig. 7a).
The gap increases rapidly versus the engagement index, generally decreases versus the
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Fig. 6: Psychometric curves averaged over all sessions. The three curves in each
panel correspond to the right, unbiased and left blocks, respectively (corresponding to
rightward probability of 80%, 50% and 20%). Each panel corresponds to a different
quantile of the z-score. a. GLM-HMM stimulus coefficient. b. Engagement index. c.
Pupil diameter.

stimulus coefficient, and is more or less flat versus pupil diameter (Fig. 7b). Although
the slope and bias behave very differently with respect to the stimulus coefficient and
engagement index, the performance on the task is very similar for these two measures
(compare the blue and orange lines in Fig. 7c). And consistent with the first two plots,
performance is almost completely independent of pupil diameter.

Given that the pupil diameter has very little effect on performance, in what follows
we’ll mainly ignore it, and focus on the GLM-HMM stimulus coefficient and the
engagement index. To better illustrate the relationship between the prior-induced gap
and the slope shown in Figs. 7a and 7b, in Fig. 8a we plot these quantities against each
other. For the GLM stimulus coefficient (blue), the gap initially increases with slope,
followed by a relatively slow decrease, such that the overall range of the prior-induced
gap is not very large. The engagement index (orange) behaves very differently. As
with the stimulus coefficient, the prior-induced gap initially increases with slope. Here,
though, the increase is much more rapid. And after a slope of about 3.5 the gap isn’t
even single-valued. Moreover, the slope has a much smaller range than the stimulus
coefficient, and the prior-induced gap has a much larger range.

The plots in Fig. 8a are somewhat abstract; to make sense of them we build a
Bayesian model of the task parameterized by two quantities: observation noise, and
the assumed prior probability that the grating appears on the right. The model starts
with the assumption that mice observe a variable, ξ, that is probabilistically related
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Fig. 7: Behavioral metrics versus our measures of internal state, all versus z-score.
Blue: stimulus coefficient; orange: engagement index; red: pupil diameter. Solid lines
are mean; shaded regions are standard deviation; see Methods, Sec. M.6 for details. a.
Slope of psychometric curves at c = 0. b. Gap between the psychometric curves for
the left and the right block at c = 0. c. Fraction of correct choices.
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√
2πσ.

to the true contrast, c, via

P (ξ|c) = e−(ξ−c)2/2σ2

√
2πσ2

(5)

where σ is the standard deviation of the observation noise. Given this model, it’s
straightforward to compute psychometric curves of our “Bayesian” mouse (see Methods,
Sec. M.7). These curves – and thus the slope and prior-induced gap – depend on the
noise, σ, and on the assumed prior that the grating appears on the right hand side,
denoted p̂r. We can, therefore, map each point on Fig. 8a (which are parameterized
by slope and prior-induced gap) to its corresponding value of σ and p̂r The mapping
from slope to σ is straightforward; it’s just 1/

√
2πσ – exactly what is expected for

Gaussian noise. The mapping from gap to assumed prior is more complicated, but it’s
mainly linear in (p̂r − 1/2), although with a slope that depends on σ (see Methods,
Fig. M.2, and Eq. (36) for an analytic expression).

Figure 8b shows the same curves as in Fig. 8a, but plotted versus 1/
√
2πσ and p̂r.

These curves are nearly identical to the ones in Fig. 8a. This in itself is not especially
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surprising. But it’s important, as it allows us to interpret the slope and prior-induced
gap in terms of easily understood parameters: observation noise and assumed prior
that the grating appears on the right side.

The different dependencies for the stimulus coefficient and engagement index
illustrated in Figs. 8a and 8b suggest that these quantities measure different things.
In particular, a change in the stimulus coefficient mainly causes the slope of the
psychometric curve to change, without much affect on the prior used by the animals,
whereas a change in the engagement index mainly causes the prior to change. A
natural interpretation is that the stimulus coefficient measures how much the mice
pay attention to the current stimulus, without much reference to the prior, while
the engagement index measure how much the mice pay attention to the prior, with
relatively less attention placed on the current stimulus.

Despite their difference, performance versus stimulus coefficient and engagement
index is very similar (Fig. 7c). This seems hard to reconcile with the very different
slopes of the psychometric curves. To understand why it happens, in Fig. 9 we plot the
performance of our Bayesian model, measured as fraction correct, versus the assumed
prior, p̂r, for various levels of the noise, σ. This figure shows that increasing their
assumed prior can have a large effect on performance, especially in the range used
by the mice (0.5-0.7; see Fig. 8b). It’s this large increase in prior-induced gap with
engagement index (which, via Fig. 8b, corresponds to a large increase in p̂r) that leads
to the performance gains for large engagement index.
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Fig. 9: Fraction correct versus assumed prior, p̂r, given that the true prior is 0.8.
The different curves correspond, from bottom to top, of slopes ranging from 1 to 6;
alternatively, from noise ranging from to 1/(

√
2πσ) to 1/(6

√
2πσ).

3 Discussion

Decision-making in animals is shaped not only by the immediate stimulus, but also by
internal state – motivation, for instance, has a huge effect on performance. But how
complex is the internal state? Is it primarily one-dimensional, say degree of motivation?
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Or is it a multi-dimensional variable, with different dimensions affecting behavior in
different ways?

To address this question, we considered three potential measures of internal state,
all within the context of the International Brain Lab [9]: engagement index, which is a
measure of the complexity of wheel movements; stimulus coefficient, which is the degree
to which mice pay attention to the stimulus as assessed by the GLM-HMM model; and
pupil diameter, an autonomic response. For each of them we asked how they affected
behavior, as assessed by the slope of the psychometric curve, the prior-induced gap at
zero contrast, and performance (Fig. 7).

As can be seen in Fig. 7, pupil diameter (red curves) is a poor predictor of behavior:
it has virtually no effect on slope, prior-induced gap, or performance. This suggests
that it is only weakly correlated with internal state – at odds with previous work
showing that pupil diameter is associated with arousal and attention [6–8, 11]. However,
there are at least two technical reasons why pupil diameter doesn’t reflect internal
state in this task. First, the inter-trial interval is very short (< 2s), so the visual
stimulus and reward from the previous trial may influence pupil diameter. Second,
pupil diameter was estimated from a camera capturing not just the eye, but also the
head and hands, making extraction challenging. Thus, our results don’t in general rule
out pupil diameter as a measure of internal state.

The stimulus coefficient and engagement index, on the other hand, are strongly
correlated with behavior. But they are correlated in very different ways, both for
the slope and prior induced-gap. In particular, the slope of the psychometric curve
increases approximately linearly with stimulus coefficient over the whole range of z-
scores, whereas the slope increases with engagement index only for negative z-scores,
while for positive z-scores (about half the data), it decreases (Fig. 7a). And the
prior-induced gap exhibits first a small increase with stimulus coefficient, followed
by a slightly larger decrease, but with overall very little change, whereas it increases
monotonically, and relatively rapidly, with engagement index (Fig. 7b).

Given Fig. 8, which shows that the prior-induced gap is a reasonable proxy for
the prior assumed by the mice, p̂r, and the slope is proportional to the inverse of the
observation observation noise, σ, the following picture emerges. When the stimulus
coefficient is high, the mice are paying close attention to the stimulus, in a way that
reduces their internal noise. They are, though, a bit overconfident in their ability:
their performance would have been better if they had relied more on past trials (by
increasing the prior probability that the grating is on the right) relative to their sensory
evidence. When the engagement index is high, on the other hand, the animals pay
less attention to the stimulus, in the sense that their observation noise is higher, but
to make up for it they rely more on the prior. Somewhat surprisingly, the different
strategies yield nearly identical performance (Fig. 7c).

Taken together, this suggests that the internal state is at least two-dimensional.
One dimension determines how much the animals rely on the immediate stimulus, and
the other determines how much they take into account the prior. There is, though, a
large difference in the stability of these dimensions: the degree to which the animals
rely on the immediate stimulus changes slowly from one trial to the next; the amount
they take into account the prior changes rapidly (Fig. 5d). Because the prior must be
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computed from past trials, this makes the prediction that information about the prior
is always present, but the animals sometimes pay attention to it and sometimes don’t.
This gives animals the flexibility to “space out” – to pay less attention to the current
stimulus and use their knowledge of the world to make decisions. This is a very useful
ability, as it allows animals to do more than one thing at a time without much loss in
performance.

Methods

M.1 Wheel Data Preprocessing

The IBL dataset consists of sessions with variability in the set of contrasts used
for the grating and in the block probabilities. To allow for easy comparison, we
restricted our analysis to sessions in which the contrasts were drawn from the set
±{0, 0.0625, 0.125, 0.25, 1.0}, and the sessions began with unbiased blocks and then
alternated between rightward probabilities of 0.2 and 0.8. We also excluded sessions
with:

• fewer than 400 trials;
• missing wheel movement recordings (typically due to hardware malfunction) on

more than 10% of the trials;
• error rate on 100% contrast trials exceeding 50%;
• no decision within 60 seconds on more than 10% of the trials.

Finally, only animals contributing at least 13 valid sessions were retained. Given these
criteria, the final dataset consisted of 2,415 sessions from 81 mice.

Wheel trajectories in the IBL experiment were recorded at non-uniform time
intervals [9]. This irregular sampling poses challenges for modeling with sequential
methods such as variational autoencoders. To address this, we linearly interpolated
wheel position between measurements and resampled the trajectories at 50 Hz.

M.2 Pupil Data Selection

We obtained pupil data, via the Lightning Pose estimation algorithm [13], from a subset
of the sessions and mice used for the VAE and GLM-HMM: 145 sessions from 44 mice.
Pupil diameter measurements derived from the Lightning Pose estimation algorithm
can be compromised by poor illumination, partial occlusion, and periods when the
animal closes its eyes or turns away from the camera. To ensure that only high-quality,
interpretable pupil data was included, we applied a session-level selection criterion
based on stimulus-driven modulation. On each trial we took the pupil diameter to be
the average in a window ranging from 1-2 s after stimulus onset. We then fit a linear
regression model relating trial-by-trial fluctuations in mean pupil size to the absolute
value of stimulus contrast, following the approach described in [17]. Only sessions
exhibiting a significant correlation coefficient (p < 0.05, ordinary least squares) were
retained for subsequent analyses. That left us with 93 sessions from 35 mice.
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M.3 VAE

Input sequence
Wheel trajectory (N)

LSTM (256)

LSTM (128)

Dense (64, ReLU)

dense → µ (8-d) dense → logΣ (8-d)

Latent z = µ+Σ⊙ ε

ε ∼ N (0, I)

LSTM (128)

LSTM (256)

Time-distributed Dense
Output sequence

Fig. M.1: VAE architecture.

M.3.1 Architecture

The architecture of the VAE is shown in Fig. M.1. The encoder (top) consists of two
stacked Long Short-Term Memory (LSTM) layers to capture the temporal structure
of each trajectory. The first LSTM, with 256 units, takes the wheel position as input.
Because wheel trajectories in the IBL dataset are not all the same length, missing
items are padded with -2 – a value chosen to be outside the range of actual wheel
position, which are constrained to lie between −0.3 and +0.3 radians. The output of
the first LSTM is a sequence of hidden states, preserving information at each time
point. The second LSTM, with 128 units, compresses the sequence into a single fixed-
size vector summarizing the trajectory. This vector is further processed by a dense

14



layer with 64 units and ReLU activation. Two parallel dense layers then compute the
mean and diagonal covariance of an 8-dimensional latent Gaussian distribution, which
serves as the representation of the trajectory.

The decoder mirrors the encoder. A sample, z, drawn from the latent space is
turned into a constant 8-dimensional time series (i.e., z(t) = z for all time points,
t). This is passed through two LSTM layers (128 units followed by 256 units). A
time-distributed dense layer generates the predicted wheel position at each time step,
producing the reconstructed trajectory.

Training minimizes the loss given in Eq. (1). To allow gradients to flow through the
stochastic sampling process, a sample from the corresponding Gaussian distribution is
passed to the decoder using the reparameterization trick [18], which is then used to
reconstruct the original input.

M.3.2 Evidence Lower Bound

Here we show that the loss given in Eq. (1) corresponds to the Evidence Lower Bound
(ELBO) [10, 19]. For the observed wheel trajectory θn on trial n, the VAE defines a
generative model

pϕ(θn, zn) = pϕ(θn | zn), p(zn), (6)

where p(zn) = N (0, I) is the prior over latents, and pϕ(θn | zn) is the distribution over
trajectories generated by the decoder. The log-likelihood of the data is

log pϕ(θn) = log

∫
pϕ(θn | zn) p(zn) dzn . (7)

This is generally intractable, so we introduce an approximate posterior,

qϕ(zn | θn) = N (µn,Σn) . (8)

This leads to the Evidence Lower Bound (ELBO) [10, 19],

log pϕ(θn) ≥ Ezn∼qϕ(zn|θn)

[
log pϕ(θn | zn)

]
−DKL

(
qϕ(zn | θn) ∥ p(zn)

)
. (9)

Choosing

log pϕ(θn | zn) = − 1

λ

∫ Tn

0

dt
(
θn(t)− θ̂n(t)

)2
+ constant , (10)

we see that the first term in Eq. (9) is proportional to the negative of the reconstruction
error given in Eq. (1). Taking into account the second term, Eq. (9) is proportional
to the negative of our VAE loss, Eq. (1). Thus, maximizing the ELBO is equivalent
to minimizing our VAE loss. As mentioned in the main text, for variable-length
trajectories, the reconstruction term is computed only over the actual (non-padded)
time indices, ignoring any padding.
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M.4 Measures of engagement for the GLM-HMM

The GLM-HMM algorithm produces, on trial n, pi(n) – the probability that the animal
is in state i [2, 3]. Two measures can be derived from these probabilities. The one we
use in the main text is the stimulus coefficient, s(n), which is a weighted average of
wi1 (Eq. (4)). An alternative measure is the probability of being in the engaged state.
Qualitatively, an engaged state is one for which wi1 is large. For the 3-state model
there is typically only one large weight, so we set the probability of being engaged,
denoted pengaged, to the probability associated with the largest weight,

p3-state
engaged(n) = pi∗(n)

i∗ = argmax
i

wi1(n) .
(11)

For the 4-state model, however, there are often two large weights, corresponding to
two engaged states. To take this into account, we instead use

p4-state
engaged(n) =

∑

wi1 ≥αwmax

pi(n) (12)

where the sum is over state, i, and

wmax ≡ max
i

wi1 . (13)

In our analysis we used α = 0.75.

M.5 Association between engagement measures

In Fig. 5, we show the pairwise relationships between engagement index, GLM-HMM
stimulus coefficient and pupil diameter using kernel density estimation. These were
constructed as follows. Using zn to denote z-score on trial n, the density is given by

f(x, y) =
1

Z

∑

n

e−
1

2h2
((x−zk

n)
2+(y−zl

n)
2) (14)

where k and l refer to engagement index, GLM-HMM stimulus coefficient, or pupil
diameter; h is the kernel bandwidth (determined automatically by the Python library);
and Z is chosen so that the maximum value of f(x, y) is 1.

To probe temporal dependencies, we analyzed session-level lag-1 autocorrelations
for each measure in Figs. 5d-5f. For a variable X in session i with N trials, we define
the lag-1 autocorrelation of variable X in session i as

ρk1i =
Cov(Xk

n, X
k
n−1)

Var(Xk
n)

. (15)
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where again k refers to engagement index, GLM-HMM stimulus coefficient, or pupil
diameter. The density maps were constructed as in Eq. (14), with zki and zli replaced
by ρk1i and ρl1i. Note that the density maps for the lag-1 autocorrelation is taken over
sessions, not trials.

M.6 Prior-Induced Gap, Slope and Performance

In Fig. 7 we plot the slope of the psychometric curve, prior-induced gap and performance
versus z-score. The first two quantities depend on the probability of a rightward choice
given contrast and z; the last depends on the probability that the animal made a
correct choice and z. For the first two,

Slope(z) =
p̂r(z, c2, 1)− p̂r(z,−c2, 0)

2c2
(16a)

Gap(z) = p̂r(z, 0, 1)− p̂r(z, 0, 0) (16b)

where p̂r(z, c, b) is the estimate of the probability that the animal chooses right given z,
c (contrast), and b (prior block; 0 for a left and 1 for a right). Recall that c2 = 0.0625,
chosen because it’s the smallest nonzero contrast. Note that we are slightly abusing
notation, since we use p̂r for the assumed prior, but p̂r is distinguishable from p̂r(z, c, b)
because the latter has arguments.

To compute p̂r(z, c, b), and the probability of making a correct choice given z (see
Eq. (21) below), from data, we make use of the fact that on every trial our data
consists ot the z-score (of engagement index, stimulus coefficient, and pupil diameter),
contrast, block, the direction the animal chose, and whether or not it was correct. We’ll
denote this as a 5-tuple, (zn, cn, bn, dn, rn), where n denotes trial, zn is the z-score of
the variable of interest, dn is the direction the animal chose (1 for right, 0 for left), and
rn is the reward the animal receives (1 for correct, 0 for incorrect). To get a smooth
estimates using this 5-tuple, we’ll use kernel density estimation. For the probability of
a rightward choice given contrast and block, the kernel density estimator is

p̂r(z, c, b) =
1

Z(z, c, b)

∑

n : cn=c,bn=b

f(z − zn)dn (17)

where Z(z, c, b) is the contrast-dependent normalization,

Z(z, c, b) =
∑

n : cn=c,bn=b

f(z − zn) , (18)

and we take f(·) to be Gaussian,

f(z) =
e−

z2

2h2

√
2πh2

. (19)
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To determine the error bars, we treat dn as Bernoulli random variable with mean
p̂r(zn, cn, bn). Thus,

Var[p̂r(z, c, b)] =
∑

n : cn=c,bn=b

(
f(z − zn)

Z(z, c, b)

)2

p̂r(zn, cn, bn)
(
1− p̂r(zn, cn, bn)

)
. (20)

To compute the mean slope, Eq. (16a), and prior-induced gap, Eq. (16b), we simply
insert Eq. (17) into these equations. Equation (20) can then be used to compute error
bars. In practice, we estimate the variance using the kernel-weighted empirical variance
of the Bernoulli samples (i.e., a plug-in estimator), which is equivalent to Eq. (20) up
to finite-sample corrections.

The kernel density estimator for the probability of making a correct choice given z
is similar to Eq. (17), except with dn replaced by rn and the summation is now over
trials,

pcorrect(z) =
1

Z(z)

∑

n

f(z − zn)rn (21)

where Z(z) (distinguishable from Z(z, c, b) by its arguments) is the normalization,

Z(z) =
∑

n

f(z − zn) (22)

and again f(z) is given by Eq. (19). As above we treat rn as a Bernoulli random
variable with mean pcorrect(zn), so the variance of pcorrect(zn) is given by

Var[pcorrect(z)] =
∑

n

(
f(z − zn)

Z(z)

)2

pcorrect(zn)
(
1− pcorrect(zn)

)
. (23)

In our analysis we use h = 0.4.

M.7 Bayesian model

To gain further insight into the internal variables, we build a parametric Bayesian
model of behavior, and then use behavioral data to infer the parameters. As discussed
in Sec. 2.3, we assume that the mice observe a variable ξ that is probabilistically
related to the true contrast, c, via Eq. (5). The probability that the right side was
rewarded given ξ is

P (right-rewarded|ξ) =
∫ ∞

0

dc′
P (ξ|c′)P̂0(c

′)

P (ξ)
(24)

where P̂0(c) is the prior assumed by the mice when making decisions. Note that we
have equated reward with positive contrast. Because contrast can be zero this is not
strictly true; we take care of this shortly with a small adjustment to the prior.
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The likelihood is determined solely by the internal noise, σ, so we just need to
parameterize the prior, P̂0(c). For that we start with the true prior, P0(c), which is
given by

P0(c) =
pr
Nc

Nc∑

i=1

δ(c− ci) +
pl
Nc

Nc∑

i=1

δ(c+ ci) (25)

where pr and pl are the true probabilities that the grating appears on the right
and left side, respectively, and Nc is the number of contrasts. The set of contrasts,
ci, correspond to the positive contrasts used in the experiments: {c1, ..., cNc

} =
{0, 0.0625, 0.125, 0.25, 1.0}. Since the mice see a large number of trials, we’ll assume
they know the ci with high accuracy (approximated by delta-functions). However,
the prior, pr, has to be inferred on a trial-by-trial basis, and so carries a great deal
of uncertainty. Thus, for the prior assumed by the mice, we’ll replace pr and pl in
Eq. (25) with p̂r and p̂l(≡ 1− p̂r), the prior assumed by the mice, giving us

P̂0(c) =
p̂r
Nc

Nc∑

i=1

δ(c− ci) +
p̂l
Nc

Nc∑

i=1

δ(c+ ci) . (26)

Our model thus consists of two parameters: internal noise, σ, and the rightward prior
assumed by the mice, p̂r. We’ll infer these from the average slope of the psychometric
curve and the gap between the curves associated with the rightward and leftward block,
both evaluated at zero contrast (see Eqs. (33) and (34) below). As just mentioned, there
is a small, but important, technical issue: the probability of reward at zero contrast
is not well defined. Here we follow the experiments, where the reward probability
matches the prior probability on zero contrast trials: it’s 0.8 for choosing right and
0.2 for choosing left when in rightward biased blocks, and the opposite, 0.2 and 0.8,
when in leftward biased blocks. To implement this in our analysis, we let c1 take on
an infinitesimally small positive value. Thus, when we integrate contrast with a lower
bound of 0 in Eq. (24), we pick up only the rightward probabilities. Consequently,
inserting Eq. (26) into Eq. (24), we arrive at

P (right-rewarded|ξ) = p̂rf(ξ, σ)

p̂rf(ξ, σ) + p̂lf(−ξ, σ)
(27)

where

f(ξ, σ) ≡ 1

Nc

Nc∑

i=1

e−(ξ−ci)
2/2σ2

. (28)

To construct psychometric curves, we need to know the probability of choosing
right as a function of contrast. We’ll assume that the mice choose the side that’s
most likely to be rewarded; that is, they choose if P (right-rewarded|ξ) > 1/2 and left
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otherwise. Thus, using Eq. (27), we have

P (choose-right|c) =
∫ ∞

−∞

dξ P (ξ|c)Θ
(
p̂r f(ξ, σ)− p̂lf(−ξ, σ)

)
(29)

where Θ is the Heaviside step function. Letting ξ∗ satisfy

p̂r f(ξ
∗, σ)− p̂lf(−ξ∗, σ) = 0 , (30)

we have

P (choose-right|c) = Φ

(
c− ξ∗(p̂r, σ)

σ

)
(31)

where Φ(·) is the cumulative normal function,

Φ(z) ≡
∫ z

−∞

dy
e−y2/2

√
2π

. (32)

With this model, the slope of the psychometric curve evaluated at c = 0 and
p̂r = 1/2 (the latter implying, by symmetry, that ξ∗ = 0) is

slope =
dP (choose-right|c)

dc

∣∣∣∣
c=ξ∗=0

=
1√
2πσ

. (33)

The gap at zero contrast is slightly more complicated; it’s given by

gap = Φ

(−ξ∗(p̂r, σ)

σ

)
− Φ

(−ξ∗(p̂l, σ)

σ

)

= 2Φ

(−ξ∗(p̂r, σ)

σ

)
− 1

(34)

where the second line follows from symmetry. A plot of the gap versus p̂r is shown in
Fig. M.2.

Note that this expression is easily inverted. First using the second line of Eq. (34),
we have

ξ∗ = −σΦ−1

(
gap + 1

2

)
. (35)

Second, we can use Eq. (30) to express p̂r in terms of ξ∗,

p̂r =
f(−ξ∗, σ)

f(ξ∗, σ) + f(−ξ∗, σ)
. (36)
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Fig. M.2: Gap (right hand side of Eq. (34)) versus p̂r, for σ = 1/(n
√
2π), n = 1, ..., 6

(top to bottom), which corresponds to slopes 1, ..., 6. Only four lines are visible because
the curves for n = 4, 5 and 6 lie on top of each other.

Finally, performance, measured as the probability of making the correct choice, is
equal to the probability of choosing right given that the right side was rewarded plus
the probability of choosing left given the left side was rewarded. That’s given by

Pcorrect =
pr
Nc

Nc∑

i=1

Φ

(
ci − ξ∗(p̂r, σ)

σ

)
+

pl
Nc

Nc∑

i=1

Φ

(−ci − ξ∗(p̂l, σ)

σ

)
. (37)

This expression is plotted in Fig. 9.
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Supporting Information

In the main text we focused on the 3-state GLM-HMM model, and our measure of
internal state was the stimulus coefficient (see Eq. (4)). Here we provide results for
the 4-state model, and for the probability of being in the engaged state.

Figure S.1 shows the psychometric curves versus stimulus coefficient for the 3-
and 4-state models (panels a and c) and probability engaged for the 3- and 4-state
models (panels b and d). Panel a, which is included for comparison, is equivalent to
Fig. 6b of the main text. The psychometric curves are nearly identical in all four
panels, suggesting that our results are robust to the number of states and choice of
stimulus coefficient versus probability engaged.

a

-2.96 -0.99 -0.43 -0.16 0.19 0.81 4.27
GLM Stimulus Coeff.

b

-1.55 -1.41 -0.59 0.4 0.82 1.0 1.13
Probability Engaged

c

-3.0 -0.98 -0.44 -0.16 0.25 0.91 4.02
GLM Stimulus Coeff.

d

-1.7 -1.52 -0.31 0.48 0.77 0.93 1.01
Probability Engaged

Previous Choice
R + Rewarded L + Rewarded R + Not Rewarded L + Not Rewarded

Fig. S.1: Alternative psychometric curves for the GLM-HMM model. As in the main
text, the x-axis is z-score. a. 3-state model versus stimulus coefficient, for comparison
(same as Fig. 6b). b. 3-state model versus probability engaged. c. 4-state model versus
stimulus coefficient. d. 4-state model versus probability engaged.
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In Fig. S.2 we plot the slope, prior-induced gap and fraction correct versus z-
scored stimulus coefficient and probability engaged. The solid blue lines, included for
comparison, are equivalent to the solid blue lines in Fig. 7; the other lines are either for
the 4-state model or plots versus z-scored probability engaged. All curves are similar;
the main difference being a smaller range of z for probability engaged, which is likely
due to the fact that probability must be between 0 and 1. This further confirms that
our results are robust.
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Fig. S.2: Behavioral metrics versus z-scored measures of internal state in the GLM-
HMM algorithm. The solid line in each graph is the 3-state GLM-HMM coefficient we
plotted in Fig. 7. K is the number of states used in the GLM-HMM.
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