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1 Supplementary Table
1.1 Supplementary table 1: PEIVI architecture and training hyperparameters

Name Layer name Dimension Dropout Normalization Activation

Inputs
data – Num of Genes –
conditions – Num of Batches –
conditions – Dim of peak embedding –

Encoder
Layer_1 FC 256 0.1 BN LeakyReLU
Layer_2 FC 256 0.1 BN LeakyReLU
mean FC 50 Linear
var FC 50 Linear

Decoder
Layer_1 FC 256 0.1 BN LeakyReLU
Layer_2 FC 256 0.1 BN LeakyReLU
mean FC Num of Genes ReLU
theta FC Num of Genes Softplus

Hyperparameters
Loss NB
Optimizer Adam
Learning Rate 0.0001
Weight Decay 5e-4
Batch Size 512
clamp 0.01
training stage 1 50 epoch
training stage 2 100 epoch

Table 1. PEIVI architecture and training hyperparameters.
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1.2 Supplementary table 2: Peak encoder architecture and training hyperparameters.

Name Layer name Dimension Dropout Normalization Activation

Inputs
data – Num of Peaks –

Encoder
Layer_1 FC 256 0.1 LN LeakyReLU
Layer_2 FC 256 0.1 LN LeakyReLU
latent FC 50 Linear

Decoder
Layer_1 FC 256 0.1 LN LeakyReLU
Layer_2 FC 256 0.1 LN LeakyReLU
rate FC Num of Peaks Sigmoid

Hyperparameters
Loss BCE (with lib size)
Optimizer Adam
Learning Rate 0.0001
Weight Decay 5e-4
Batch Size 512

Table 2. Peak encoder architecture and training hyperparameters.

1.3 Supplementary table 3: Epipack classifier architecture and training hyperparameters.

Name Layer name Dimension Dropout Normalization Activation

Inputs
data – Dim of joint embedding –

Encoder
Layer_1 FC 64 0.1 BN ReLU
latent FC 30 Linear

Hyperparameters
Loss Combined loss
Optimizer Adam
Learning Rate 0.0001
Weight Decay 5e-4
Batch Size 128

Table 3. Classifier architecture and training hyperparameters.
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2 Supplementary Note
2.1 Supplementary Note 1: Heterogeneous transfer constraint term approximation

As mentioned in the Methods section, the loss function of PEIVI can be derived from the Evidence Lower
Bound (ELBO) as follows:

logPΘ(G) = log
∫

PΘ(G j | z j)p(z j | u j,b j)dz

≥ EZ∼QΦ(z j|G j,b j)

[
log

PΘ(G j | z j)P(z j | u j,b j)

QΦ(z j | G j)

]
= ∑

j
EZ∼QΦ(z j|G j,b j)

[
logPΘ(G j|z j,b j)

]
−αDKL

(
QΦ(Z|G j,b j)∥P(z j | u j,b j)

)
= ∑

j
EZ∼QΦ(z j|G j,b j)

[
logPΘ(G j|z j,b j)

]
−αDKL

(
QΦ(Z|G j,b j)∥P(z j)

)︸ ︷︷ ︸
KL term

−βD(QΦ(Z|G j,b j)∥U)︸ ︷︷ ︸
Generative constraint term

(1)

where u j represents a deterministic precomputed peak embedding vector. Among these terms, the prior vector
ui and its constraint on the latent embedding, referred to as the "Generative constraint term", play a crucial
role in enabling heterogeneous transfer in the latent space. Therefore, the key challenge lies in optimizing this
loss function, specifically in determining the appropriate metric D(QΦ(Z|G j,b j)∥U) to measure this distance.

And because the anchor U ∈ Rdz is a deterministic latent code, treating it as a Dirac measure δUi provides a
principled notion of proximity between the posterior and the anchor via the 2-Wasserstein distance1:

W 2
2
(
QΦ(Z |Gi,bi), δU

)
= EZ∼QΦ

[
∥Z−U∥2

2
]
.

This identity shows that the squared Euclidean distance between a posterior sample and Ui is a stochastic, un-
biased estimator of an optimal-transport distance to the point anchor2,3. Concretely, drawing a reparameterized
sample zi = µi +σi⊙ ε with ε ∼N (0, I) yields

D̂i = ∥z j−u j∥2
2, E

[
D̂i
]
=W 2

2
(
QΦ,δu j

)
,

and averaging L samples 1
L ∑

L
ℓ=1 ∥z

(ℓ)
i −u j∥2

2 reduces estimator variance if desired. In contrast, the KL diver-
gence to a Dirac target is ill-posed (infinite for any posterior with nonzero variance), so the Wasserstein route
both avoids degeneracy and endows the constraint with a true metric geometry.

Operationally, adding the penalty β∥z j−u j∥2
2 to the objective injects scATAC-derived information into the latent

code by exerting a sample-level pull toward U . The gradient ∂∥z j−u j∥2
2/∂ z j = 2(z j−u j) propagates through

the reparameterization to the encoder parameters Φ, encouraging draws z j ∼ QΦ(Z | G j,b j) to concentrate
near U while the standard ELBO terms preserve data reconstruction and prior regularization. Thus,

D
(
QΦ(Z |G j,b j)∥U

)
≈ ∥z j−u j∥2

2

is not a heuristic, but the Monte-Carlo instantiation of W 2
2
(
QΦ,δU

)
, providing a simple, differentiable, and

theoretically grounded mechanism to fuse the anchor U into the latent space.
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2.2 Supplementary Note 2: Pseudo-code of PEIVI

Algorithm 1 PEIVI mappable latent space construction (two-stage training)

Input: scATAC-seq batches {b j}J
j=1; stage lengths E1 = 50, E2 = 100

1: for j = 1 to J do
2: Compute gene activity score matrix G j for b j
3: end for
4: Obtain shared gene matrix G =

⋂J
j=1{G j}

5: for j = 1 to J do
6: Initialize batch-specific autoencoder u j with parameters ωu j ; train independently
7: while not converged (or until max epoch) do
8: ωu j ← argmin L = BCELoss(b j, b̃ j)
9: end while

10: Return batch-specific latent embedding u j
11: end for
12: Initialize bridge autoencoder with parameters Φ,Θ
13: Stage 1 (warm-up, E1 = 50 epochs): optimize Lelbo +D
14: for e = 1 to E1 do
15: Compute standard ELBO loss Lelbo on {z j}
16: Compute alignment regularizer D = ∑

J
j=1 ∑i

∥∥z(i)j −u(i)j

∥∥2
2

17: (Φ,Θ)← argmin
(
Lelbo +D

)
18: end for
19: Stage 2 (regularized integration, E2 = 100 epochs): optimize Lelbo +D+LMMD
20: for e = E1 +1 to E1 +E2 do
21: Compute Lelbo on {z j}
22: Compute D = ∑

J
j=1 ∑i

∥∥z(i)j −u(i)j

∥∥2
2

23: Compute batch-wise MMD loss LMMD between {z j}
24: (Φ,Θ)← argmin

(
Lelbo +D+LMMD

)
25: end for
26: Return integrated latent embedding z{z j}J

j=1
Output: Integrated embedding z, pre-trained model with parameter set θ re f = (Φ,Θ)
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2.3 Supplementary Note 3: Datasets preprocessing

(1). Small mouse scATAC-seq datasets (2 batches)
The mouse scATAC-seq batch integration dataset includes two scATAC-seq datasets. For these two datasets,
we retrieved peak count matrix and fragment files from the 10X Genomics data portal. The batch 1 dataset is
collected from "8k Adult Mouse Cortex Cells, ATAC v2, Chromium Controller" ( https://www.10xgen
omics.com/datasets/8k-adult-mouse-cortex-cells-atac-v2-chromium-contr
oller-2-standard).

The batch 2 dataset is collected from "8k Adult Mouse Cortex Cells, ATAC v2, Chromium X" (https:
//www.10xgenomics.com/resources/datasets/8k-adult-mouse-cortex-cells
-atac-v2-chromium-x-2-standard).

Both datasets are aligned on the GRCm38 (mm10) reference genome. We first preprocessed both datasets
by filtering low quality cells and peak regions according to the standard tutorial of Signac. Then the gene
score matrix is calculated for each dataset by the Signac GeneActivity function with default parameters (2kb
upstream of the TSS), and the datasets were concatenated. As the peaks called per dataset differ, we used
the union of the two peak files to obtain the merged peak dataset. Finally, we obtain a union peak matrix with
two batches (12445 cells, 194403 peaks), a union gene score matrix with two batches (12445 cells, 3000
highly variable genes are selected), and two filtered peak count matrices.

We annotated the cells in five major cell types using typical marker genes in Signac (Astrocytes: Aldh1l1,
Gfap, Gja1, S100b; Excitatory neurons: Satb2, Slc17a7, Slc17a8; Inhibitory neurons: Gad1, Gad2, Grik1;
Microglia: Cd68, Cd14, Fcgr1, S100A8, S100A9; Oligodendrocytes: Mag, Mog, Olig1)

(2). Large human PBMC scATAC-seq datasets (5 batches)
The human PBMC scATAC-seq batch integration dataset includes five scATAC-seq datasets. For these five
datasets, we retrieved the peak count matrix and fragment files from the 10X Genomics data portal. The batch
1 dataset is collected from "5k PBMCs from a Healthy Donor (Next GEM v1.1)" (https://www.10xgen
omics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-p
bm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-1-2-0).

The batch 2 dataset is collected from "10k PBMCs from a Healthy Donor (Next GEM v1.1)" (https:
//www.10xgenomics.com/resources/datasets/10-k-periphe-ral-blood-monon
uclear-cells-pbm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standar
d-2-0-0).

The batch 3 dataset is collected from "10k Human PBMCs, ATAC v2, Chromium Controller" (https:
//www.10x-genomics.com/resources/datasets/10khuman-pbmcs-atac-v2-chr
omium-controller-2-standard).

The batch 4 dataset is collected from "10k Human PBMCs, ATAC v1.1, Chromium X" (https://www.
10xgenomics.com-/resources/datasets/10k-human-pbmcs-atac-v1-1-chromiu
m-x-1-1-standard).

The batch 5 dataset is collected from "10k Human PBMCs, Multiome v1.0, Chromium X" (https://www.
10xgenomics.com/resourc-es/datasets/10-k-human-pbm-cs-multiome-v-1-0
-chromium-x-1-standard-2-0-0).
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All these five datasets are aligned on the GRCh38 (Hg38) reference genome. We first preprocessed all
datasets by filtering low quality cells and peak regions according to the standard tutorial of Signac4. Then the
gene score matrix is calculated for each dataset by the Signac GeneActivity function with default parameters
(2kb upstream of the TSS), and the datasets were concatenated. For de novo integration experiments, we
used the union of the peak files to obtain the merged peak dataset. For peak-dependent reference mapping
tools, the query data were filtered using the peak set of the reference model to ensure a consistent feature
space. Finally, we obtain a union peak matrix with five batches, a union gene score matrix with five batches
(3000 highly variable genes are selected), and five filtered peak count matrices.

Since the raw 10X PBMC datasets are not labeled, we manually annotated the cells in ten major cell types
using typical marker genes in Signac (CD14 Monocyte: CD14, LYZ; CD16 Monocyte: FCGR3A, MS4A7; B
cell: MS4A1, CD74; CD4 T cell: CD3, CD4, IL7R, S100A4; CD8 T cell: CD8A, NKG7; Dendritic cell: FCER1A,
CST3; NK cell: NKG7, GNLY; Naive CD4 T cell: CD4, LEF1, CCR7; Naive CD8 T cell: CD8A, LEF1, CCR7;
pDC: CD45R, BST2)

(3). Cross reference genome human PBMC scATAC-seq datasets
The cross reference genome scATAC-seq batch integration dataset includes 2 scATAC-seq datasets. One
is based on the Hg38 reference genome and the other is based on the Hg19 reference genome. The
Hg38 dataset is the multiomic 10X PBMC dataset we used in the Large human PBMC scATAC-seq dataset
integration task ("10k Human PBMCs, Multiome v1.0, Chromium X"). The Hg19 dataset is collected from the
“10k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor” (https://www.10xgenom
ics.com/resources/datasets/10-k-peripheral-blood-mononuclear-cells-p
bm-cs-from-a-healthy-donor-1-standard-1-0-1).

The cross reference genome scATAC-seq reference mapping dataset includes 6 scATAC-seq datasets. The
reference set is based on the Hg38 reference genome (5 datasets, same as the Human Hg38 PBMC). And
the query set is based on the Hg19 reference genome.

We first preprocessed all datasets by filtering low quality cells and peak regions according to the standard
tutorial of Signac. Then the gene score matrix is calculated for each dataset by the Signac GeneActivity function
with default parameters (2kb upstream of the TSS), and the datasets were concatenated. Due to the substantial
variability of peak features between the hg38 and hg19 genome builds, we first performed peak region
correction using liftOver5. The chain file for converting hg38 to hg19 (hg38ToHg19.over.chain.gz) is available
from the UCSC Genome Browser file server (https://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/).
After correction, we constructed a merged peak dataset by taking the union of the peak files across datasets
for integration. For peak-dependent reference mapping tools, the query data were filtered using the peak set
of the reference model to ensure a consistent feature space.

8/19

https://www.10xgenomics.com/resources/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-1-standard-1-0-1).
https://www.10xgenomics.com/resources/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-1-standard-1-0-1).
https://www.10xgenomics.com/resources/datasets/10-k-peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-1-standard-1-0-1).


3 Supplementary Figure
3.0.1 Supplementary Fig 1 - Overall scores for the benchmarked models’ biological conservation

and batch correction performance

Supplementary Fig. 1. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.2 Supplementary Fig 2 - UMAP visualization of reference mapping results.

Supplementary Fig. 2. a. UMAP visualization result for the experiment group "reference: 10x v2 and multiomics,
query: 10x v1" (n=5 for 5 repeating experiments) b. UMAP visualization result for the experiment group "reference:
10x v1 and v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.3 Supplementary Fig 3 - - Cell label transfer performance on the joint embedding space
across methods to reflect nearest neighbor structure preservation in unsupervised reference
mapping.

Supplementary Fig. 3. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)

3.0.4 Supplementary Fig 4 - Weighted F1 and Macro F1 scores of the benchmarked models in the
supervised cell label transfer setting

Supplementary Fig. 4. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.5 Supplementary Fig 5 - Data integration benchmarking results.

Supplementary Fig. 5. a. Benchmarking of PEIVI against six widely used data integration methods with different
types of aligned input features on the mouse brain dataset. b. Benchmarking of PEIVI against six widely used data
integration methods with different types of aligned input features on the cross reference genome setting.
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3.0.6 Supplementary Fig 6. UMAP visualization of de novo integration results on mouse cortex
scATAC-seq data.

Supplementary Fig. 6. UMAP visualization of de novo integration results on mouse cortex scATAC-seq data.

3.0.7 Supplementary Fig 7. UMAP visualization of de novo integration results on human PBMC
scATAC-seq data.

Supplementary Fig. 7. UMAP visualization of de novo integration results on human PBMC scATAC-seq data.
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3.0.8 Supplementary Fig 8. UMAP visualizations of PEIVI mapping at different ref:query ratios
(human PBMC).

Supplementary Fig. 8. UMAP visualizations of PEIVI mapping at different ref:query ratios (human PBMC).
Distinct Naive CD8 T cell clusters (highlighted by black circles) emerge when the ref:query ratio exceeds 0.6.
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3.0.9 Supplementary Fig 9 - UMAP visualization of EpiPack’s cluster separability on rare cell
populations at different proportions

Supplementary Fig. 9. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.10 Supplementary Fig 10. UMAP visualization of the predicted labels against the ground-truth
label on the query 2 experiment set.

Supplementary Fig. 10. UMAP visualization of the predicted labels against the ground-truth label on the query 2
experiment set.

3.0.11 Supplementary Fig 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as
the out-of-reference (OOR) population.

Supplementary Fig. 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as the out-of-reference
(OOR) population. Orange - EpiPack, Green - kNN, Blue - SVM.
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3.0.12 Supplementary Fig 12. UMAP visualization of the gene score highlights in reference atlas
embedding.

Supplementary Fig. 12. UMAP visualization of the gene score highlights in reference atlas embedding to confirm
cell type annotation result.

3.0.13 Supplementary Fig 13. UMAP visualization of the gene score highlights in the health-COVID
joint embedding.

Supplementary Fig. 13. UMAP visualization of the gene score highlights in the health-COVID joint embedding to
confirm cell label transfer result.
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3.0.14 Supplementary Fig 14. Differential peak analysis in the B cell between the OOR group and
the health control cluster.

Supplementary Fig. 14. a. Volcano plot of differential peak analysis between healthy and COVID-associated B
cells. b. Bar plots displaying the most significantly enriched GO biological processes associated with differential
peaks in each cluster.

18/19



References
1. Oh, J. H. et al. A novel kernel wasserstein distance on gaussian measures: An application of identifying

dental artifacts in head and neck computed tomography. Comput. biology medicine 120, 103731 (2020).

2. Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D. & Rohde, G. K. Optimal mass transport: Signal
processing and machine-learning applications. IEEE signal processing magazine 34, 43–59 (2017).

3. Fatras, K., Zine, Y., Flamary, R., Gribonval, R. & Courty, N. Learning with minibatch wasserstein:
asymptotic and gradient properties. arXiv preprint arXiv:1910.04091 (2019).

4. Stuart, T., Srivastava, A., Madad, S., Lareau, C. & Satija, R. Single-cell chromatin state analysis with
signac. Nat. Methods DOI: 10.1038/s41592-021-01282-5 (2021). Https://doi.org/10.1038/s41592-021-
01282-5.

5. Genovese, G. et al. Bcftools/liftover: an accurate and comprehensive tool to convert genetic variants
across genome assemblies. Bioinformatics 40, btae038 (2024).

19/19

10.1038/s41592-021-01282-5

	Supplementary Table
	Supplementary table 1: PEIVI architecture and training hyperparameters
	Supplementary table 2: Peak encoder architecture and training hyperparameters.
	Supplementary table 3: Epipack classifier architecture and training hyperparameters.

	Supplementary Note
	Supplementary Note 1: Heterogeneous transfer constraint term approximation
	Supplementary Note 2: Pseudo-code of PEIVI
	Supplementary Note 3: Datasets preprocessing

	Supplementary Figure
	Supplementary Fig 1 - Overall scores for the benchmarked models' biological conservation and batch correction performance
	Supplementary Fig 2 - UMAP visualization of reference mapping results. 
	Supplementary Fig 3 - - Cell label transfer performance on the joint embedding space across methods to reflect nearest neighbor structure preservation in unsupervised reference mapping.
	Supplementary Fig 4 - Weighted F1 and Macro F1 scores of the benchmarked models in the supervised cell label transfer setting
	Supplementary Fig 5 - Data integration benchmarking results.
	Supplementary Fig 6. UMAP visualization of de novo integration results on mouse cortex scATAC-seq data.
	Supplementary Fig 7. UMAP visualization of de novo integration results on human PBMC scATAC-seq data.
	Supplementary Fig 8. UMAP visualizations of PEIVI mapping at different ref:query ratios (human PBMC). 
	Supplementary Fig 9 - UMAP visualization of EpiPack's cluster separability on rare cell populations at different proportions
	Supplementary Fig 10. UMAP visualization of the predicted labels against the ground-truth label on the query 2 experiment set.
	Supplementary Fig 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as the out-of-reference (OOR) population.
	Supplementary Fig 12. UMAP visualization of the gene score highlights in reference atlas embedding.
	Supplementary Fig 13. UMAP visualization of the gene score highlights in the health-COVID joint embedding.
	Supplementary Fig 14. Differential peak analysis in the B cell between the OOR group and the health control cluster.


	References

