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1 Supplementary Table

1.1 Supplementary table 1: PEIVI architecture and training hyperparameters

Name Layer name Dimension Dropout Normalization Activation
Inputs

data - Num of Genes -

conditions - Num of Batches -

conditions - Dim of peak embedding -

Encoder

Layer_1 FC 256 0.1 BN LeakyReLU
Layer_2 FC 256 0.1 BN LeakyReLU
mean FC 50 Linear

var FC 50 Linear
Decoder

Layer_1 FC 256 0.1 BN LeakyReLU
Layer_2 FC 256 0.1 BN LeakyReLU
mean FC Num of Genes ReLU

theta FC Num of Genes Softplus
Hyperparameters

Loss NB

Optimizer Adam

Learning Rate  0.0001

Weight Decay  Se-4

Batch Size 512

clamp 0.01

training stage 1 50 epoch

training stage 2 100 epoch

Table 1. PEIVI architecture and training hyperparameters.
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1.2 Supplementary table 2: Peak encoder architecture and training hyperparameters.

Name Layer name Dimension  Dropout Normalization Activation
Inputs

data - Num of Peaks -

Encoder

Layer 1 FC 256 0.1 LN LeakyReLU
Layer_2 FC 256 0.1 LN LeakyReLU
latent FC 50 Linear
Decoder

Layer_1 FC 256 0.1 LN LeakyReLU
Layer_2 FC 256 0.1 LN LeakyReLU
rate FC Num of Peaks Sigmoid
Hyperparameters

Loss BCE (with lib size)

Optimizer Adam

Learning Rate  0.0001

Weight Decay 5Se-4

Batch Size 512

Table 2. Peak encoder architecture and training hyperparameters.

1.3 Supplementary table 3: Epipack classifier architecture and training hyperparameters.

Name Layer name Dimension Dropout Normalization Activation
Inputs

data - Dim of joint embedding -
Encoder

Layer_1 FC 64 0.1 BN ReLU
latent FC 30 Linear
Hyperparameters

Loss Combined loss

Optimizer Adam

Learning Rate  0.0001

Weight Decay 5e-4

Batch Size 128

Table 3. Classifier architecture and training hyperparameters.
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2 Supplementary Note

2.1 Supplementary Note 1: Heterogeneous transfer constraint term approximation

As mentioned in the Methods section, the loss function of PEIVI can be derived from the Evidence Lower
Bound (ELBO) as follows:

logPe(G) = log/IP’@(Gj | zj)p(zj | uj,bj)dz

PG(GJ- | Zj)]P(Zj | uj,bj)
> EZ~Q¢(ZJ\G1JU) [log Oa(z; | Gj)

=) Ez-04(:/G;0;) [108Pe(Gjl2),b))] — aDk1 (Qa(Z|G;. b)) [P(zj | uj,b)))
J

= Y Bz 04(21/G;.b,) [108Pe(Glz):bj)] — aDk1 (Q(Z]Gj,b))|P(z;)) — BD(Qa(ZIG), b)) |U)
J TV

~
KL term Generative constraint term

)

where u; represents a deterministic precomputed peak embedding vector. Among these terms, the prior vector
u; and its constraint on the latent embedding, referred to as the "Generative constraint term", play a crucial
role in enabling heterogeneous transfer in the latent space. Therefore, the key challenge lies in optimizing this
loss function, specifically in determining the appropriate metric D(Qa(Z|G,b;)||U) to measure this distance.

And because the anchor U € R is a deterministic latent code, treating it as a Dirac measure §y, provides a
principled notion of proximity between the posterior and the anchor via the 2-Wasserstein distance:

W3 (0o (Z|Gi,bi), u) = Ezg,[1Z—UJ3].

This identity shows that the squared Euclidean distance between a posterior sample and U; is a stochastic, un-
biased estimator of an optimal-transport distance to the point anchor? 3. Concretely, drawing a reparameterized
sample z; = u; + 0; © € with € ~ 47(0,1) yields

~

D; = ||Zj—uj||%a ]E[Di} :WZZ(Q‘D?ij)’

and averaging L samples 1 Y7 | Hzl@ —u;||3 reduces estimator variance if desired. In contrast, the KL diver-
gence to a Dirac target is ill-posed (infinite for any posterior with nonzero variance), so the Wasserstein route
both avoids degeneracy and endows the constraint with a true metric geometry.

Operationally, adding the penalty S|z, — u;||3 to the objective injects scATAC-derived information into the latent
code by exerting a sample-level pull toward U. The gradient d||z; —u;||5/dz; = 2(z; — u,) propagates through
the reparameterization to the encoder parameters ®, encouraging draws z; ~ Qs (Z | G;,b;) to concentrate
near U while the standard ELBO terms preserve data reconstruction and prior regularization. Thus,

D(Qa(Z|G}.bj) | U) = |lzj—ujll3

is not a heuristic, but the Monte-Carlo instantiation of W22(Qq>,6U), providing a simple, differentiable, and
theoretically grounded mechanism to fuse the anchor U into the latent space.
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2.2 Supplementary Note 2: Pseudo-code of PEIVI

Algorithm 1 PEIVI mappable latent space construction (two-stage training)

Input: scATAC-seq batches {b j}le; stage lengths E| = 50, E, = 100

1

D A

I S T T
AW N = O

: for j=1toJ do

Compute gene activity score matrix G; for b;
end for
Obtain shared gene matrix G = ﬂle{G it
for j=1toJ do
Initialize batch-specific autoencoder u; with parameters @,;; train independently
while not converged (or until max epoch) do
y; < argmin L = BCELoss(b;,b;)
end while
Return batch-specific latent embedding u;

: end for

: Initialize bridge autoencoder with parameters @, ®

: Stage 1 (warm-up, E| = 50 epochs): optimize L., + D
: fore—=1to E; do

,_.
o

,_.
<

N DD = = =

NN NN
AN

26:

Compute standard ELBO loss Lejy, on {z;}
Compute alignment regularizer D = Z§:1 Y sz) — ug.l) H;
(®,0) < argmin (Lelbo -l-D)

: end for
: Stage 2 (regularized integration, £, = 100 epochs): optimize L.j,, + D + Lyvp
:fore=E; +1toE;+E>,do

Compute Lejp, 0on {z;}

Compute D = Z§:1 Y, sz) — uS.l) Hz

Compute batch-wise MMD loss Lyivp between {z;}
(®,0) « argmin (Lejho + D+ Lvmp)

- end for

Return integrated latent embedding z{z;}7_,

Output: Integrated embedding z, pre-trained model with parameter set 8¢/ = (P, ®)
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2.3 Supplementary Note 3: Datasets preprocessing

(1). Small mouse scATAC-seq datasets (2 batches)

The mouse scATAC-seq batch integration dataset includes two scATAC-seq datasets. For these two datasets,
we retrieved peak count matrix and fragment files from the 10X Genomics data portal. The batch 1 dataset is
collected from "8k Adult Mouse Cortex Cells, ATAC v2, Chromium Controller" (https://www.10xgen
omics.com/datasets/8k—adult-mouse-cortex—cells—atac-v2-chromium-contr
oller—-2-standard).

The batch 2 dataset is collected from "8k Adult Mouse Cortex Cells, ATAC v2, Chromium X" (https:
//www.l0xgenomics.com/resources/datasets/8k-adult-mouse-cortex—-cells
—atac-v2-chromium-x—-2-standard).

Both datasets are aligned on the GRCm38 (mm10) reference genome. We first preprocessed both datasets
by filtering low quality cells and peak regions according to the standard tutorial of Signac. Then the gene
score matrix is calculated for each dataset by the Signac GeneActivity function with default parameters (2kb
upstream of the TSS), and the datasets were concatenated. As the peaks called per dataset differ, we used
the union of the two peak files to obtain the merged peak dataset. Finally, we obtain a union peak matrix with
two batches (12445 cells, 194403 peaks), a union gene score matrix with two batches (12445 cells, 3000
highly variable genes are selected), and two filtered peak count matrices.

We annotated the cells in five major cell types using typical marker genes in Signac (Astrocytes: Aldh1l1,
Gfap, Gja1, S100b; Excitatory neurons: Satb2, Slc17a7, Slc17a8; Inhibitory neurons: Gad1, Gad2, Grik1;
Microglia: Cd68, Cd14, Fcgr1, S100A8, S100A9; Oligodendrocytes: Mag, Mog, Olig1)

(2). Large human PBMC scATAC-seq datasets (5 batches)

The human PBMC scATAC-seq batch integration dataset includes five scATAC-seq datasets. For these five
datasets, we retrieved the peak count matrix and fragment files from the 10X Genomics data portal. The batch
1 dataset is collected from "5k PBMCs from a Healthy Donor (Next GEM v1.1)" (https://www.10xgen
omics.com/resources/datasets/5-k-peripheral-blood-mononuclear-cells-p
bm-cs-from-a-healthy-donor-next-gem-v-1-1-1-1-standard-1-2-0).

The batch 2 dataset is collected from "10k PBMCs from a Healthy Donor (Next GEM v1.1)" (https:
//www.l0xgenomics.com/resources/datasets/10-k-periphe-ral-blood-monon
uclear—-cells—-pbm-cs—from—-a-healthy-donor—-next-gem-v-1-1-1-1-standar
d-2-0-0).

The batch 3 dataset is collected from "10k Human PBMCs, ATAC v2, Chromium Controller" (https:
//www.l0x-genomics.com/resources/datasets/10khuman-pbmcs—-atac-v2-chr
omium—-controller-2-standard).

The batch 4 dataset is collected from "10k Human PBMCs, ATAC v1.1, Chromium X" (https://www.
10xgenomics.com-/resources/datasets/10k-human-pbmcs—-atac-vl-1-chromiu
m-x—1-1-standard).

The batch 5 dataset is collected from "10k Human PBMCs, Multiome v1.0, Chromium X" (https://www.
l10xgenomics.com/resourc-es/datasets/10-k-human-pbm-cs-multiome-v-1-0
—chromium-x-1-standard-2-0-0) .
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All these five datasets are aligned on the GRCh38 (Hg38) reference genome. We first preprocessed all
datasets by filtering low quality cells and peak regions according to the standard tutorial of Signac*. Then the
gene score matrix is calculated for each dataset by the Signac GeneActivity function with default parameters
(2kb upstream of the TSS), and the datasets were concatenated. For de novo integration experiments, we
used the union of the peak files to obtain the merged peak dataset. For peak-dependent reference mapping
tools, the query data were filtered using the peak set of the reference model to ensure a consistent feature
space. Finally, we obtain a union peak matrix with five batches, a union gene score matrix with five batches
(3000 highly variable genes are selected), and five filtered peak count matrices.

Since the raw 10X PBMC datasets are not labeled, we manually annotated the cells in ten major cell types
using typical marker genes in Signac (CD14 Monocyte: CD14, LYZ; CD16 Monocyte: FCGR3A, MS4A7; B
cell: MS4A1, CD74; CD4 T cell: CD3, CD4, IL7R, S100A4; CD8 T cell: CD8A, NKG7; Dendritic cell: FCER1A,
CST3; NK cell: NKG7, GNLY; Naive CD4 T cell: CD4, LEF1, CCR7; Naive CD8 T cell: CD8A, LEF1, CCR7;
pDC: CD45R, BST2)

(3). Cross reference genome human PBMC scATAC-seq datasets

The cross reference genome scATAC-seq batch integration dataset includes 2 scATAC-seq datasets. One
is based on the Hg38 reference genome and the other is based on the Hg19 reference genome. The
Hg38 dataset is the multiomic 10X PBMC dataset we used in the Large human PBMC scATAC-seq dataset
integration task ("10k Human PBMCs, Multiome v1.0, Chromium X"). The Hg19 dataset is collected from the
“10k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor” (https://www.1l0xgenom
ics.com/resources/datasets/10-k-peripheral-blood-mononuclear—-cells-p
bm-cs—-from—-a-healthy-donor-1l-standard-1-0-1) .

The cross reference genome scATAC-seq reference mapping dataset includes 6 scATAC-seq datasets. The
reference set is based on the Hg38 reference genome (5 datasets, same as the Human Hg38 PBMC). And
the query set is based on the Hg19 reference genome.

We first preprocessed all datasets by filtering low quality cells and peak regions according to the standard
tutorial of Signac. Then the gene score matrix is calculated for each dataset by the Signac GeneActivity function
with default parameters (2kb upstream of the TSS), and the datasets were concatenated. Due to the substantial
variability of peak features between the hg38 and hg19 genome builds, we first performed peak region
correction using liftOver®. The chain file for converting hg38 to hg19 (hg38ToHg19.over.chain.gz) is available
from the UCSC Genome Browser file server (https://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/).
After correction, we constructed a merged peak dataset by taking the union of the peak files across datasets
for integration. For peak-dependent reference mapping tools, the query data were filtered using the peak set
of the reference model to ensure a consistent feature space.
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3 Supplementary Figure

3.0.1 Supplementary Fig 1 - Overall scores for the benchmarked models’ biological conservation
and batch correction performance
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Supplementary Fig. 1. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.2 Supplementary Fig 2 - UMAP visualization of reference mapping resulits.
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Supplementary Fig. 2. a. UMAP visualization result for the experiment group "reference: 10x v2 and multiomics,
query: 10x v1" (n=5 for 5 repeating experiments) b. UMAP visualization result for the experiment group "reference:

10x v1 and v2, query: 10x multiomics" (n=>5 for 5 repeating experiments)
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3.0.3 Supplementary Fig 3 - - Cell label transfer performance on the joint embedding space
across methods to reflect nearest neighbor structure preservation in unsupervised reference

mapping.
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Supplementary Fig. 3. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and

v2, query: 10x multiomics" (n=5 for 5 repeating experiments)

3.0.4 Supplementary Fig 4 - Weighted F1 and Macro F1 scores of the benchmarked models in the

supervised cell label transfer setting
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Supplementary Fig. 4. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and

v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.5 Supplementary Fig 5 - Data integration benchmarking results.
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Supplementary Fig. 5. a. Benchmarking of PEIVI against six widely used data integration methods with different
types of aligned input features on the mouse brain dataset. b. Benchmarking of PEIVI against six widely used data
integration methods with different types of aligned input features on the cross reference genome setting.
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3.0.6 Supplementary Fig 6. UMAP visualization of de novo integration results on mouse cortex
SCATAC-seq data.
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Supplementary Fig. 6. UMAP visualization of de novo integration results on mouse cortex scATAC-seq data.

3.0.7 Supplementary Fig 7. UMAP visualization of de novo integration results on human PBMC
sCATAC-seq data.
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Supplementary Fig. 7. UMAP visualization of de novo integration results on human PBMC scATAC-seq data.
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3.0.8 Supplementary Fig 8. UMAP visualizations of PEIVI mapping at different ref:query ratios
(human PBMC).
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Supplementary Fig. 8. UMAP visualizations of PEIVI mapping at different ref:query ratios (human PBMC).
Distinct Naive CD8 T cell clusters (highlighted by black circles) emerge when the ref:query ratio exceeds 0.6.
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3.0.9 Supplementary Fig 9 - UMAP visualization of EpiPack’s cluster separability on rare cell
populations at different proportions
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Supplementary Fig. 9. a. Benchmarking result for the experiment group "reference: 10x v2 and multiomics, query:
10x v1" (n=5 for 5 repeating experiments) b. Benchmarking result for the experiment group "reference: 10x v1 and
v2, query: 10x multiomics" (n=5 for 5 repeating experiments)
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3.0.10 Supplementary Fig 10. UMAP visualization of the predicted labels against the ground-truth
label on the query 2 experiment set.

Ground truth

50

5.0

Predicted label

c\l| N\
g g
§ 0.0 . -cg § oo 8
N . ’:1;‘.‘3,
25 25 4 s >
W7
-5.0 -5.0 :
-5 0 5 -5 0 5
umap_1 umap_1
Cell type Effector CD8+ T (Tumor/Normal Adjacent) Early dysfunctional CD8+ T cell
- Effector CD8+ T (Tumor/Blood) ® Dysfunctional CD8+ T cell - |
Memory/Effector CD4+ T cell Effector CD8+ T (Blood/Tumor) Dysfunctional CD8+ T cell - I
Tregs Effector CD8+ T (Tumor) Dysfunctional CD8+ T cell - IlI

Supplementary Fig. 10. UMAP visualization of the predicted labels against the ground-truth label on the query 2
experiment set.

3.0.11 Supplementary Fig 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as
the out-of-reference (OOR) population.
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Supplementary Fig. 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as the out-of-reference
(OOR) population. Orange - EpiPack, Green - kNN, Blue - SVM.
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3.0.12 Supplementary Fig 12. UMAP visualization of the gene score highlights in reference atlas

embedding.
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Supplementary Fig. 12. UMAP visualization of the gene score highlights in reference atlas embedding to confirm

cell type annotation result.

3.0.13 Supplementary Fig 13. UMAP visualization of the gene score highlights in the health-COVID

joint embedding.
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Supplementary Fig. 13. UMAP visualization of the gene score highlights in the health-COVID joint embedding to

confirm cell label transfer result.
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3.0.14 Supplementary Fig 14. Differential peak analysis in the B cell between the OOR group and
the health control cluster.
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Supplementary Fig. 14. a. Volcano plot of differential peak analysis between healthy and COVID-associated B
cells. b. Bar plots displaying the most significantly enriched GO biological processes associated with differential

peaks in each cluster.

18/19



References

1.

Oh, J. H. et al. A novel kernel wasserstein distance on gaussian measures: An application of identifying
dental artifacts in head and neck computed tomography. Comput. biology medicine 120, 103731 (2020).

Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D. & Rohde, G. K. Optimal mass transport: Signal
processing and machine-learning applications. IEEE signal processing magazine 34, 43-59 (2017).

Fatras, K., Zine, Y., Flamary, R., Gribonval, R. & Courty, N. Learning with minibatch wasserstein:
asymptotic and gradient properties. arXiv preprint arXiv:1910.04091 (2019).

Stuart, T., Srivastava, A., Madad, S., Lareau, C. & Satija, R. Single-cell chromatin state analysis with
signac. Nat. Methods DOI: 10.1038/s41592-021-01282-5 (2021). Https://doi.org/10.1038/s41592-021-
01282-5.

. Genovese, G. et al. Bcftools/liftover: an accurate and comprehensive tool to convert genetic variants

across genome assemblies. Bioinformatics 40, btaec038 (2024).

19/19


10.1038/s41592-021-01282-5

	Supplementary Table
	Supplementary table 1: PEIVI architecture and training hyperparameters
	Supplementary table 2: Peak encoder architecture and training hyperparameters.
	Supplementary table 3: Epipack classifier architecture and training hyperparameters.

	Supplementary Note
	Supplementary Note 1: Heterogeneous transfer constraint term approximation
	Supplementary Note 2: Pseudo-code of PEIVI
	Supplementary Note 3: Datasets preprocessing

	Supplementary Figure
	Supplementary Fig 1 - Overall scores for the benchmarked models' biological conservation and batch correction performance
	Supplementary Fig 2 - UMAP visualization of reference mapping results. 
	Supplementary Fig 3 - - Cell label transfer performance on the joint embedding space across methods to reflect nearest neighbor structure preservation in unsupervised reference mapping.
	Supplementary Fig 4 - Weighted F1 and Macro F1 scores of the benchmarked models in the supervised cell label transfer setting
	Supplementary Fig 5 - Data integration benchmarking results.
	Supplementary Fig 6. UMAP visualization of de novo integration results on mouse cortex scATAC-seq data.
	Supplementary Fig 7. UMAP visualization of de novo integration results on human PBMC scATAC-seq data.
	Supplementary Fig 8. UMAP visualizations of PEIVI mapping at different ref:query ratios (human PBMC). 
	Supplementary Fig 9 - UMAP visualization of EpiPack's cluster separability on rare cell populations at different proportions
	Supplementary Fig 10. UMAP visualization of the predicted labels against the ground-truth label on the query 2 experiment set.
	Supplementary Fig 11. Boxplots of TPR and FDR benchmarking results with CD8 T cells as the out-of-reference (OOR) population.
	Supplementary Fig 12. UMAP visualization of the gene score highlights in reference atlas embedding.
	Supplementary Fig 13. UMAP visualization of the gene score highlights in the health-COVID joint embedding.
	Supplementary Fig 14. Differential peak analysis in the B cell between the OOR group and the health control cluster.


	References

