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Supplementary Note 1: Group theory of degenerate

According to group theory, the eigenstates of metasurface structures can be
characterized by irreducible representations of point groups. For a metasurface
exhibiting Cav symmetry, there are six irreducible representations: A, Az, Bi, B2, E®,
and E®, as detailed in Table 1. By integrating these irreducible representations with
those of the eigenfield, we gain a deeper understanding of the radiative and
degenerate characteristics of the eigenmodes!*l,

E® and E@ correspond to double degeneracy modes, indicating that within the
C4v structure of a square lattice, these modes rotate by 90 before overlapping. If this
characteristic is disrupted, they transition into non-degenerate modes. In the
configuration illustrated in Figure 2(a), adjusting device parameters can yield two
merging BICs at the I' point. Owing to the symmetry inherent in Cay, these states can
exhibit degenerate properties.

Table 1. Character table of the Cay point group.

Cav E 2C, C 20, 20,4
A: 1 1 1 1 1
Az 1 1 1 -1 -1
B: 1 -1 1 1 -1
B> 1 -1 1 -1 1
E 2 0 -2 0 0




Supplementary Note 2: Degeneracy characteristics of modes in several Cav
scenarios
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Figure S1. (a) Four circular holes are symmetrically arranged along the axis within
the unit cell, featuring the period P=820 nm and a variable parameter L. (c)
Maintaining L constant while varying the period P. () Modifying the original circular
hole into a square hole, keeping P unchanged while altering L. (b), (d), and (f) The Q-
factors and corresponding wavelengths exhibit variations with respect to L and P. As
the structural parameters transition from the critical position of merging BICs, the
topological charge gradually deviates from the I' point. The Q-factors at the I' point
exhibit an attenuation trend; however, due to symmetry constraints inherent in the
structure, they consistently remain in a degenerate state.



Supplementary Note 3: Scale rule of the Q-factors with respect to k

Generally, when the topological charge carried by a BIC is 1, the Q varies with
the wavevector (k) according to the following relationship: Qoc1/k%. In our proposed
structure, the accidental BIC located at the off-I" point carries a topological charge of
+1. When L=205 nm, the corresponding TE modes exhibit the following
dependencies: for TE1 mode, Quck?4; and for TE2 mode, Qock?L. Similarly, when L=
206 nm, the TE1 mode follows Quxk?4, while the TE2 mode adheres to Quxk??, as
illustrated in Figures S2(a) and (b). These results indicate that the Q-factor generally
follows the expected attenuation law with respect to k.

The merging BICs involves the integration of multiple topological charges, and
its Q-factor attenuation behavior cannot be adequately described by the attenuation
formula applicable to a single topological charge. This phenomenon manifests as a
superposition of contributions from each individual topological charge. Unlike
traditional merging BICs, our study focuses on merging BICs that lack symmetry-
protected BICs; instead, they are entirely formed through the accidental BICs. At the
state of merging, L is measured at 206.55 nm. The attenuation laws for two modes,
TE1 and TE2, are represented as Qock™*! and Quck™*?, respectively, as illustrated in
Figure S2(c). It is evident that these merging BICs significantly enhance the
robustness of Q within k space. Upon completion of the merging process, the
topological charge gradually shifts away from the I' point. These distinctive
attenuation characteristics reflect dynamic changes occurring during both the merger
and separation processes involving topological charges associated with merging BICs.
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Figure S2. Attenuation relationship between Q and k. (a)-(d) show the attenuation
relationships between Q and k for the TE1 and TE2 modes for L=205 nm, 206 nm,
and 206.55 nm, respectively.



Supplementary Note 4: Far-field polarization states

The projected polarization vector k (kx,ky) is defined in the x-y plane and can be

obtained through the following integral®™:

e(K) = (¢,.C,C,) = m—

T oy e 20

The integral surface lies on the x-y plane, either above or below the structure,
corresponding to upward or downward radiation. In this context, the polarization
vector in the x-y plane is directly represented as follows:

c(k)=c,(k)x+c,(k)y
For the in-plane two-dimensional electric field components c (k)=E, , and
c,(k)=E,, the Stokes parameters are given by:

So=E I +IE, [
S,9E [ -|EF
S, =2Re(E(E,)=2|E,E, |cos¢
S, =2Im(EE,) = 2| E,E, |sin ¢

Here, ¢ = arg(E, ) —arg(E, ) represents the phase difference between the x-polarization

and y-polarization components. The incident Stokes parameters are normalized to 1,

ensuring that all parameters satisfy specified conditions S,=S,+S,+S, . The

ellipticity of far-field radiation is defined as p=S,/S,.



Supplementary Note 5: The distribution of electric and magnetic fields for
degenerate and non-degenerate states.
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Figure S3. (a), (b) The electric field intensity and vector distribution of TE1 and TE2
in the degenerate state. The electric fields of TEL and TE2 completely overlap after
rotating 90< confirming the double degenerate characteristics. (c)-(h) The electric
field distributions of TEL1 and TE2 in the three non-degenerate states cannot
completely overlap when rotated 90< confirming the characteristics of non-
degenerate.
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Figure S4. Magnetic field distribution of TE1 and TE2 for degenerate states in (a)-(b),

for non-degenerate states in (c)-(h).



Supplementary Note 6: Multipole decomposition of degenerate and non-
degenerate quasi-BICs
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Figure S5. (a), (b) The multipole scattering power of the unit cell under x and y
polarized light irradiation at L=220 nm, R=60 nm, and P=820 nm. It can be seen that
their multipole contributions are consistent, and the toroidal dipole (TD) dominate the
resonance in both cases, further confirming their degenerate characteristics. (c)-(e)
Multipole decomposition of Type 1, Type 2 and Type 3 at L=220 nm, R=60 nm,
P=820 nm and w=104 nm. Due to the breaking of structural symmetry, the previous
degenerate mode splits into two resonant modes, and their multipole contributions are
consistent with those of the previous degenerate mode, revealing the intrinsic
connection between the degenerate and non-degenerate modes.



Supplementary Note 7: Schematic of the experimental setup for optical
characterization.
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Figure S6. Schematic of the experimental setup for optical characterization. The red
and blue lines represent the incident light and direct reflection from the sample,
respectively.



Supplementary Note 8: Normalized experimental reflection spectra and Fano
fitting under different L
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Figure S7. (a), (b) SEM images of symmetry structure and the corresponding locally
enlarged images, (c)-(f) Normalized reflection spectra and Fano fitting [19] results for
different L values. The black dots represent the experimental data, while the solid red

line indicates the fitted spectral line. The Q is calculated by dividing the resonance
wavelength by the line width.
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Figure S8. SEM images of unit cell for three asymmetry structures (Type 1, Type 2

and Type 3), and the normalized experiment reflection spectra and Fano fitting results
at different L values.



Supplementary Note 9: Summary of measured Q-factors in the quasi-BICs

Tabla 2. Summary of measured Q-factors in the quasi-BICs.

Mechanism Q A (nm) Structure Substrate References
SP-BIC 4,700 1551.4 InGaAsP nanopillar Y 2017, Naturel®
. 2018, Nat.
SP-BIC 2750 825 GaAs nanopillar Y Nanotechnol 9!
SP-BIC | 18511 158g o double-notched Y 2019, Phys. Rev. Lett. 110
nanodisks
SP-BIC | 1,000 15118  CRAsnotch Y 2022, Sciencel1l
nanodisks
SP-BIC | 36,694 1516  Sidouble holes Y 2023, Adv. Funct.
Mater.[12
SP-BIC | 2663 618  lo:slantsquare % 2023, Naturel!
nanohole
SP-BIC 3,425 1527  Polymer nanocubes Y 2024, Laser Photonics
Rev.[14]
SP-BIC 22,633 1520  Sinanohole dimer Y 2024, Appl. Phys. Rev.[*]
SP-BIC 101,486 1560  Si shallow pair-rod Y 2025, Nano. Lett.[26]
Mgﬁc'”g 490,000 1568.3 Si PCS N 2019, Naturel”
MeBr?C'”g 7250 1595  InGaAsP PCS N 2021, Nat. Commun. 18]
Merging | 356413 1509 Si nanohole Y This work
BIC tetramer
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