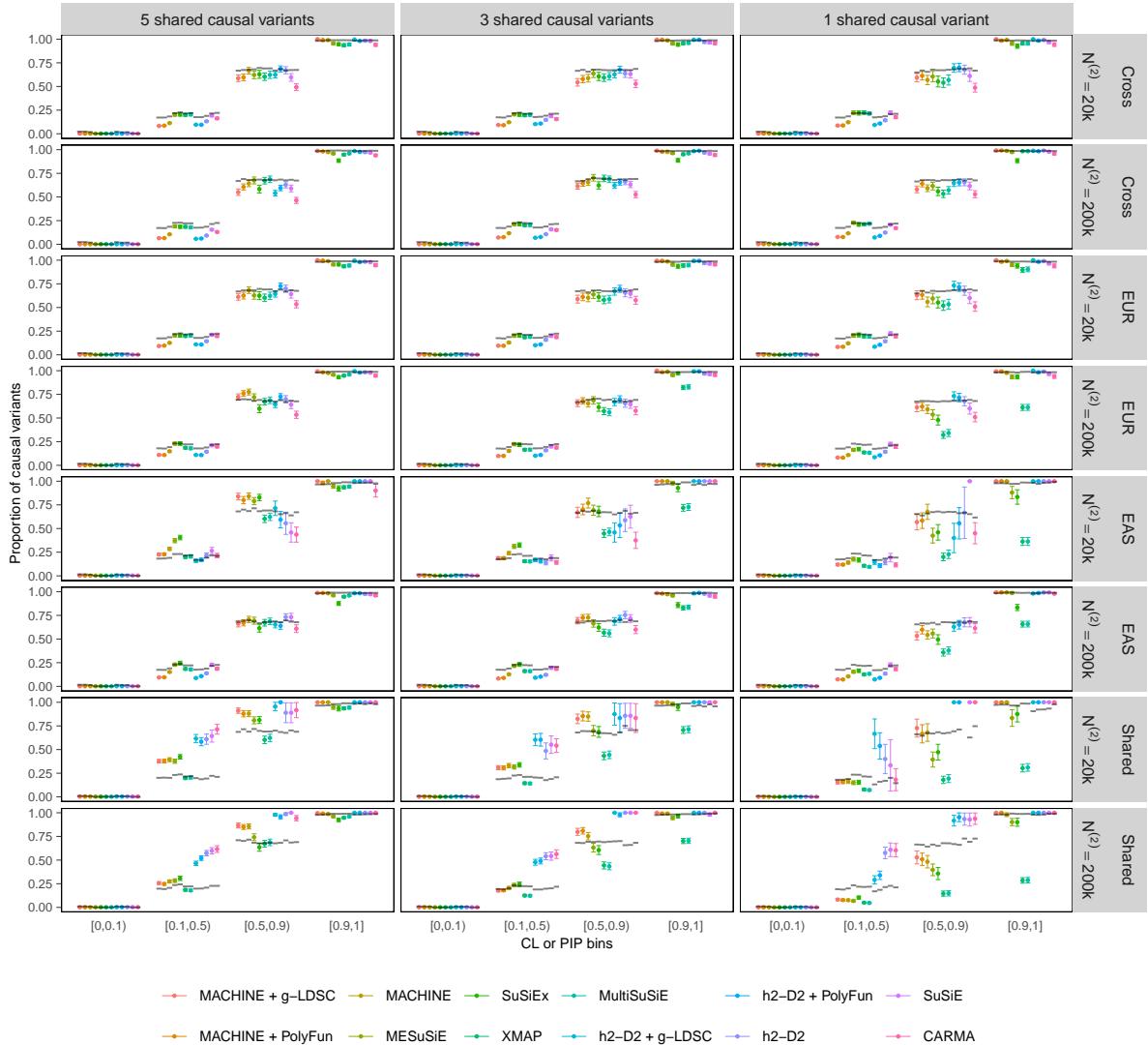
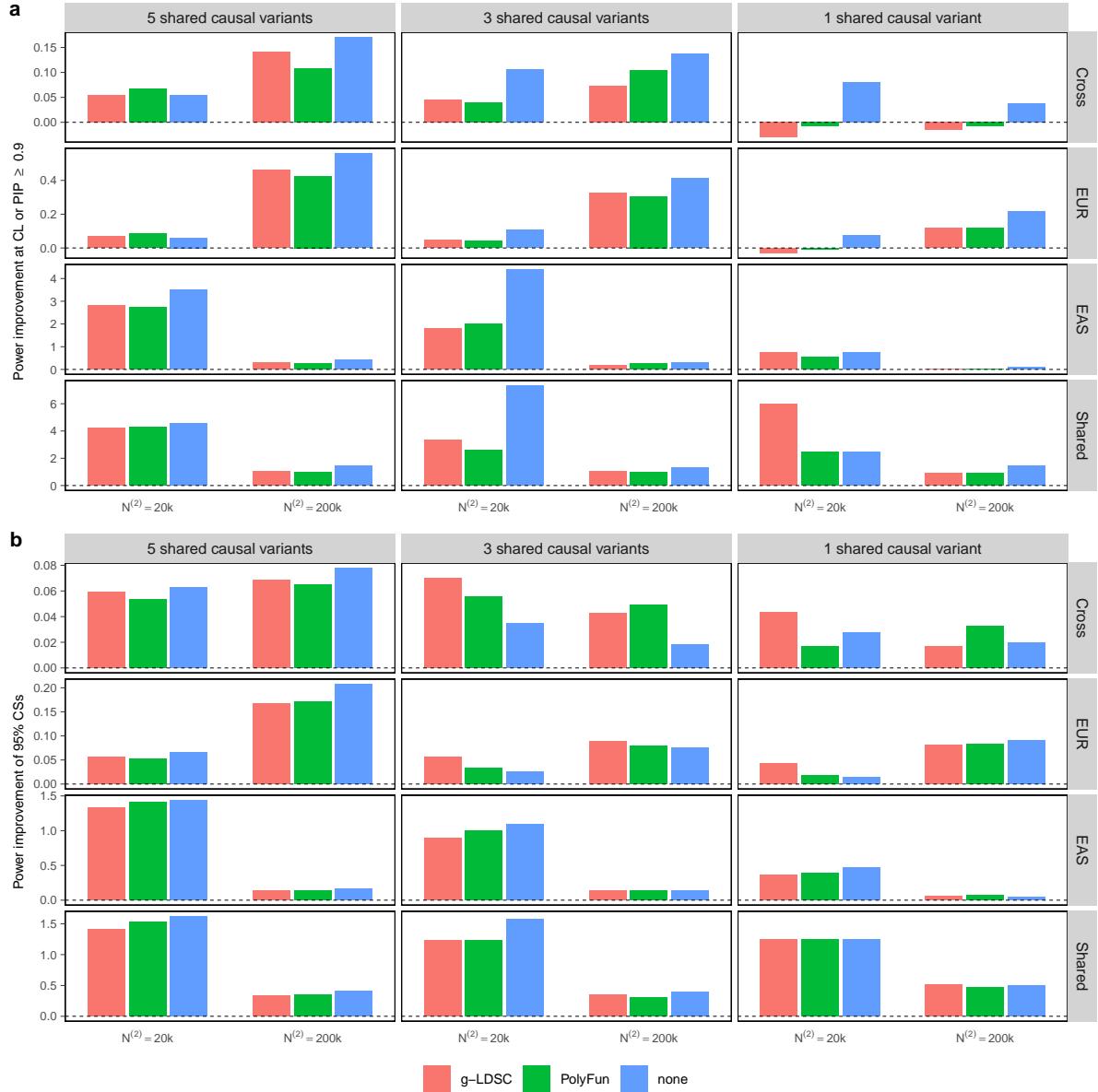


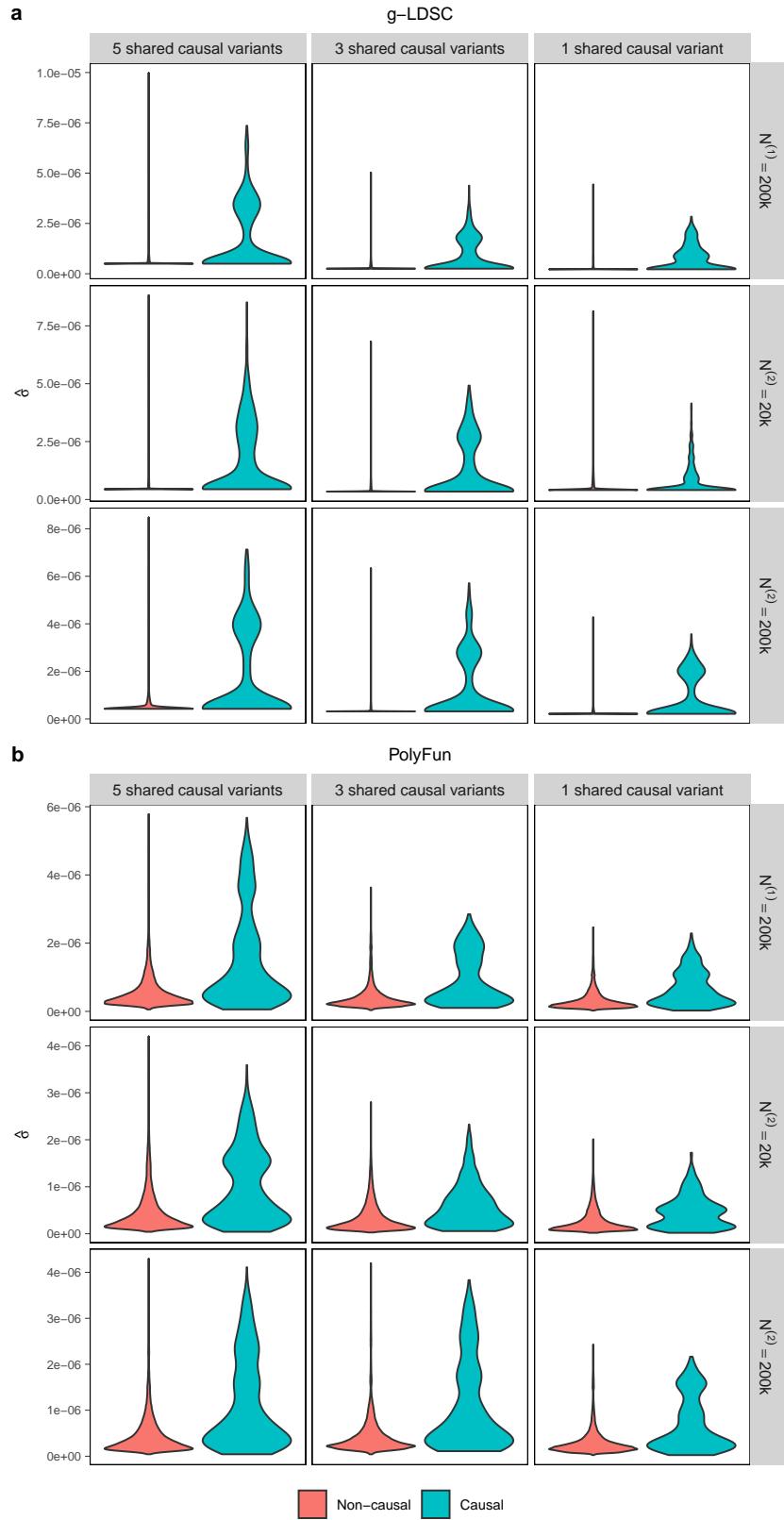
1 Supplementary Figures



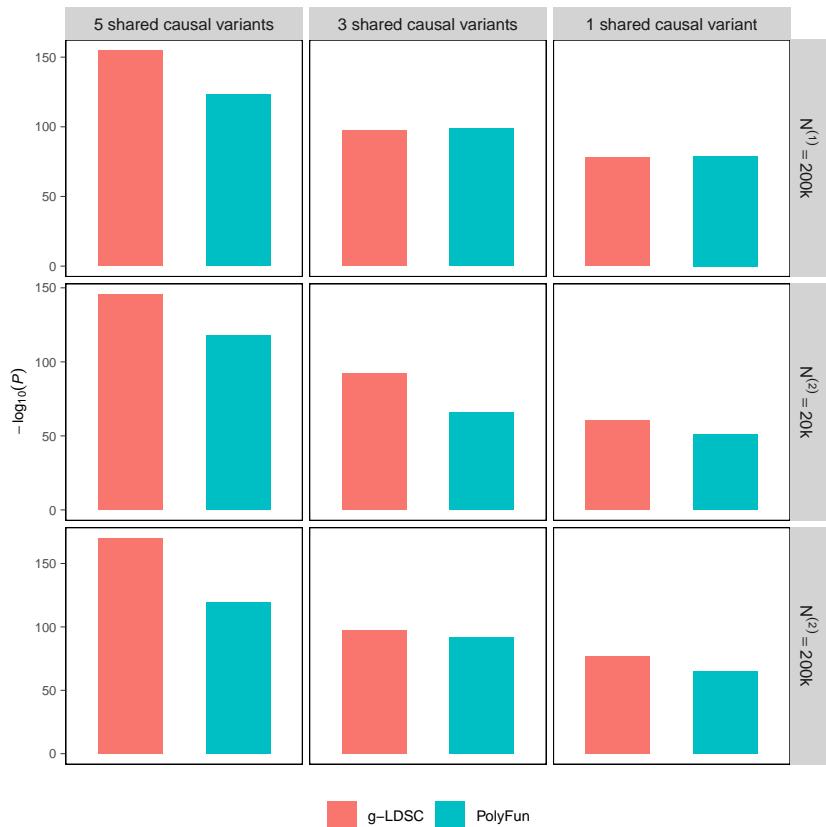
Supplementary Fig. 1: Calibration plot of fine-mapping methods when in-sample LD matrices are used. All values are computed by aggregating 200 simulated datasets. Colored dots represent the true proportion of causal variants among variants within each CL or PIP bin, with error bars indicating standard errors. Horizontal segments indicate the expected proportion of causal variants (i.e. the average CL or PIP within each bin). Numerical results are available in Supplementary Table 3.



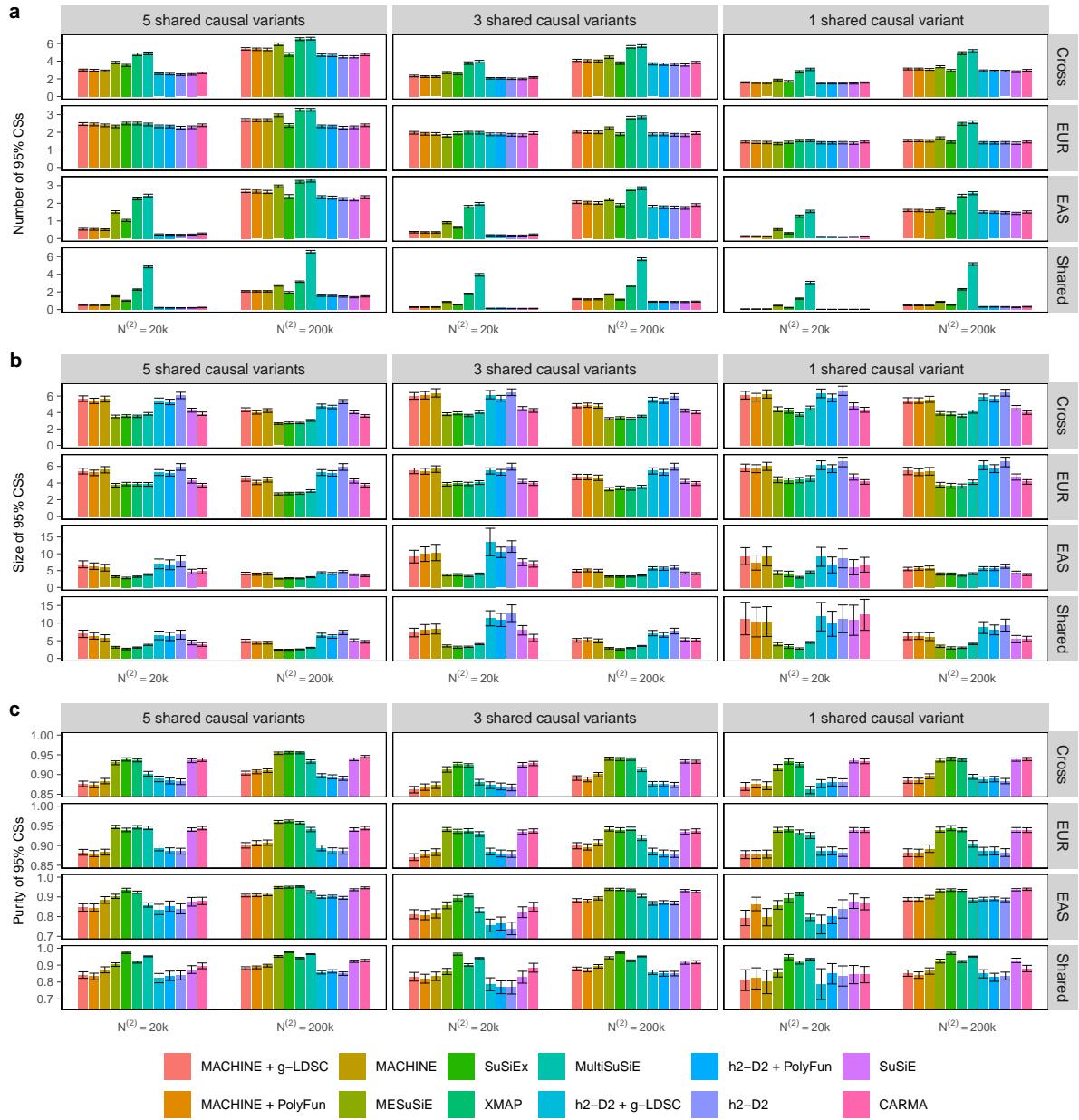
Supplementary Fig. 2: Improvement in power of MACHINE compared to h2-D2 when in-sample LD matrices are used. Power improvement is defined as $(\text{Power}^{(\text{MACHINE})} - \text{Power}^{(\text{h2-D2})}) / \text{Power}^{(\text{h2-D2})}$. Numerical results are available in Supplementary Table 4.



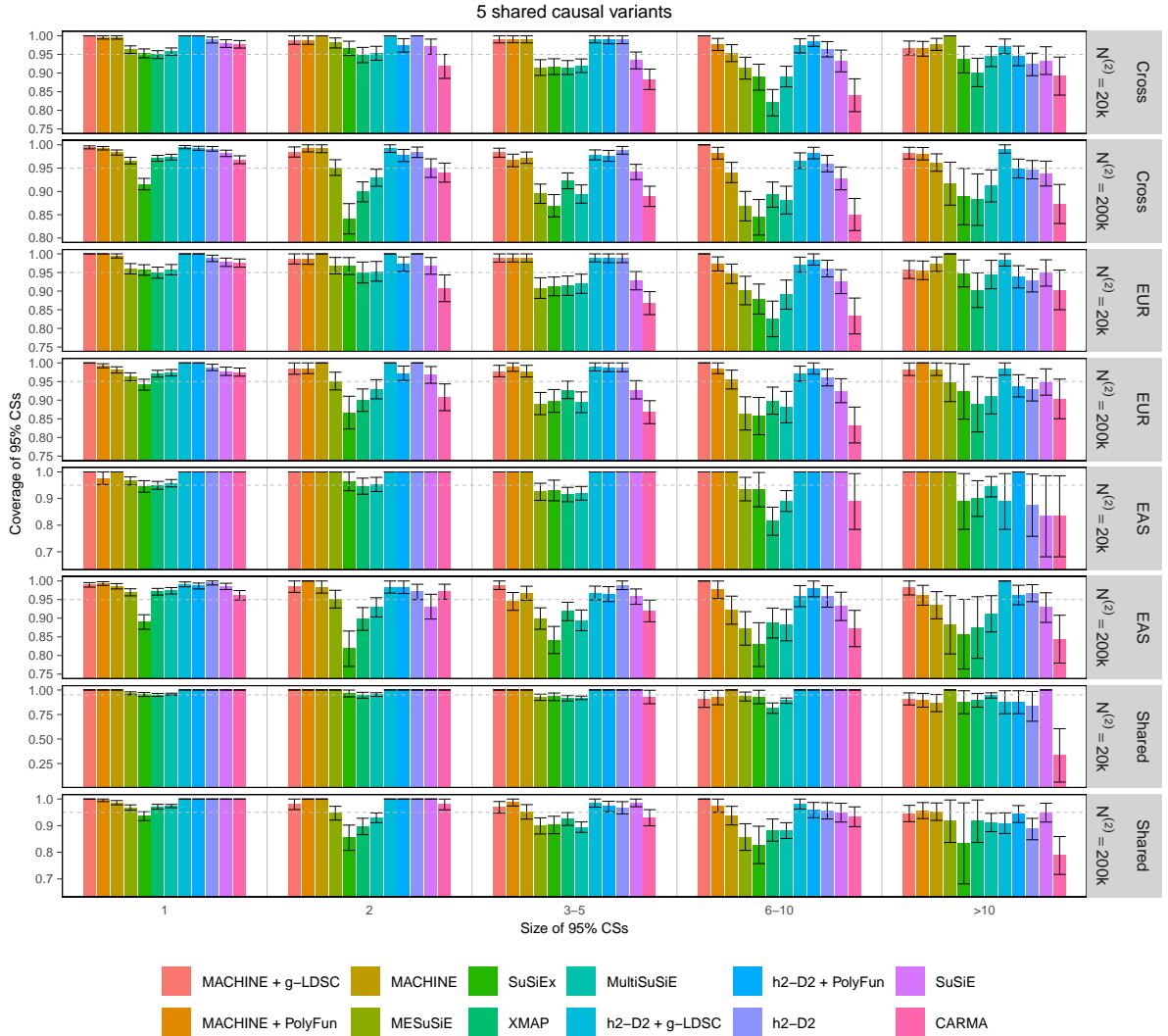
Supplementary Fig. 3: Violin plots displaying the distribution of per-variant heritabilities estimated by (a) g-LDSC and (b) PolyFun for underlying causal and non-causal variants when in-sample LD matrices are used. For each simulation setting, results are aggregated across 200 simulated datasets.



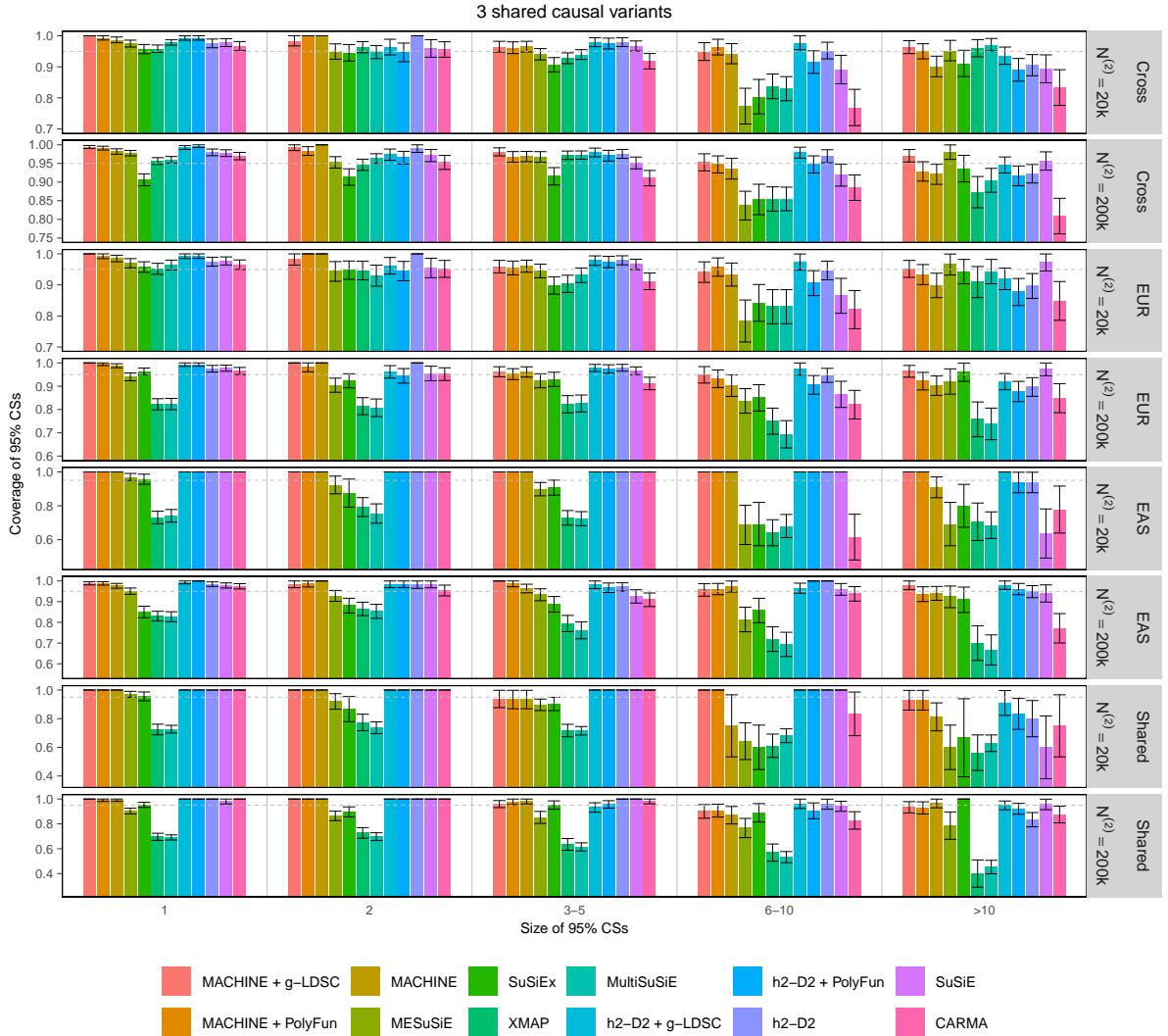
Supplementary Fig. 4: Negative $\log_{10}(P$ value) of Wilcoxon-Mann-Whitney tests comparing estimated per-variant heritabilities between causal and non-causal variants when in-sample LD matrices are used. For each simulation setting, results are aggregated across 200 simulated datasets. Numerical results are available in Supplementary Table 5.



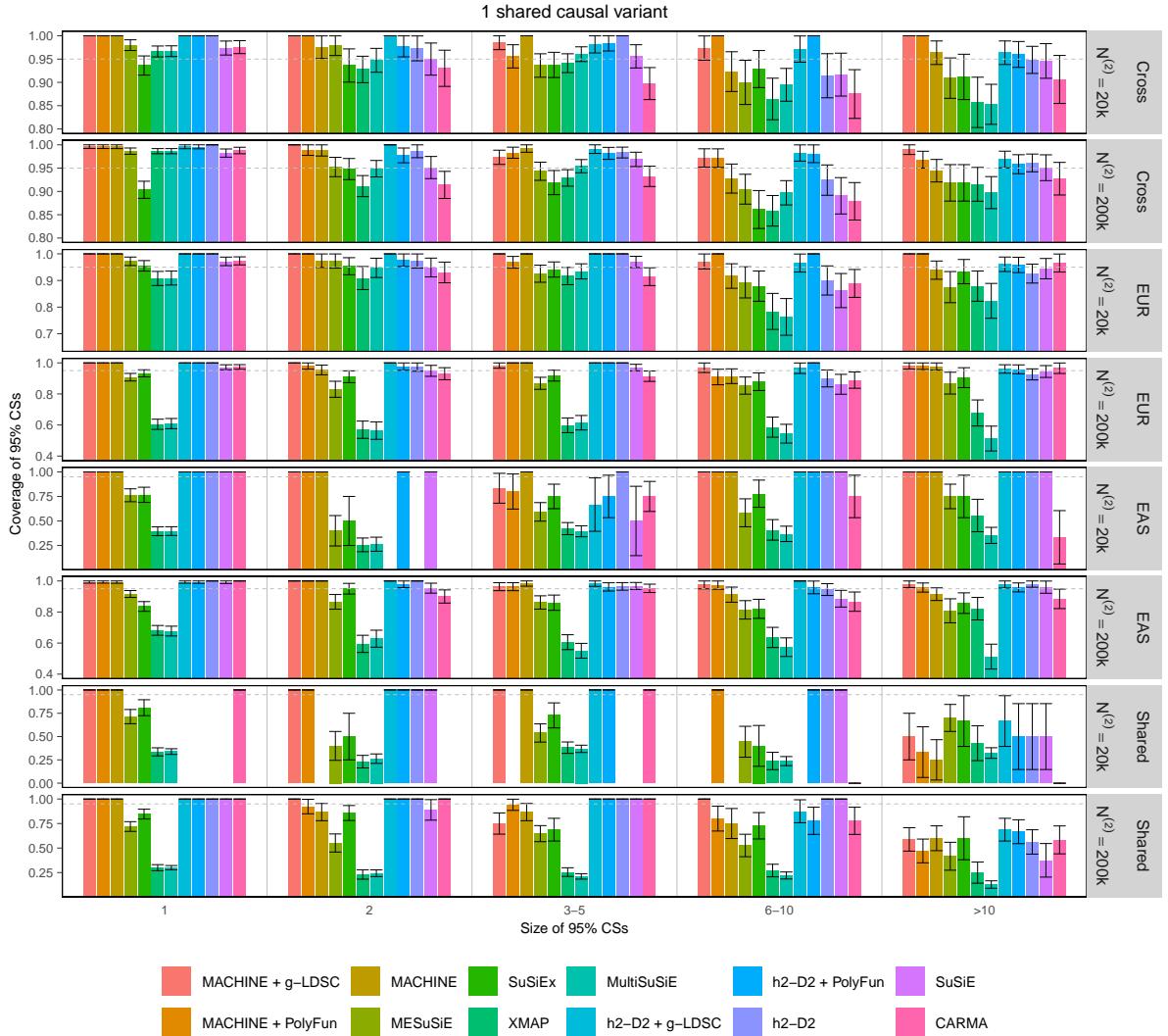
Supplementary Fig. 5: Comparison of 95% CSs obtained by different fine-mapping methods when in-sample LD matrices are used. All values are aggregated across 200 simulated datasets, with error bars indicating standard errors. **a**, Number of identified 95% CSs. **b**, Size of 95% CS, defined as the number of variants in each CS. **c**, Purity of 95% CS, defined as the minimum absolute correlation between any pair of variants within the CS. Numerical results are available in Supplementary Table 2.



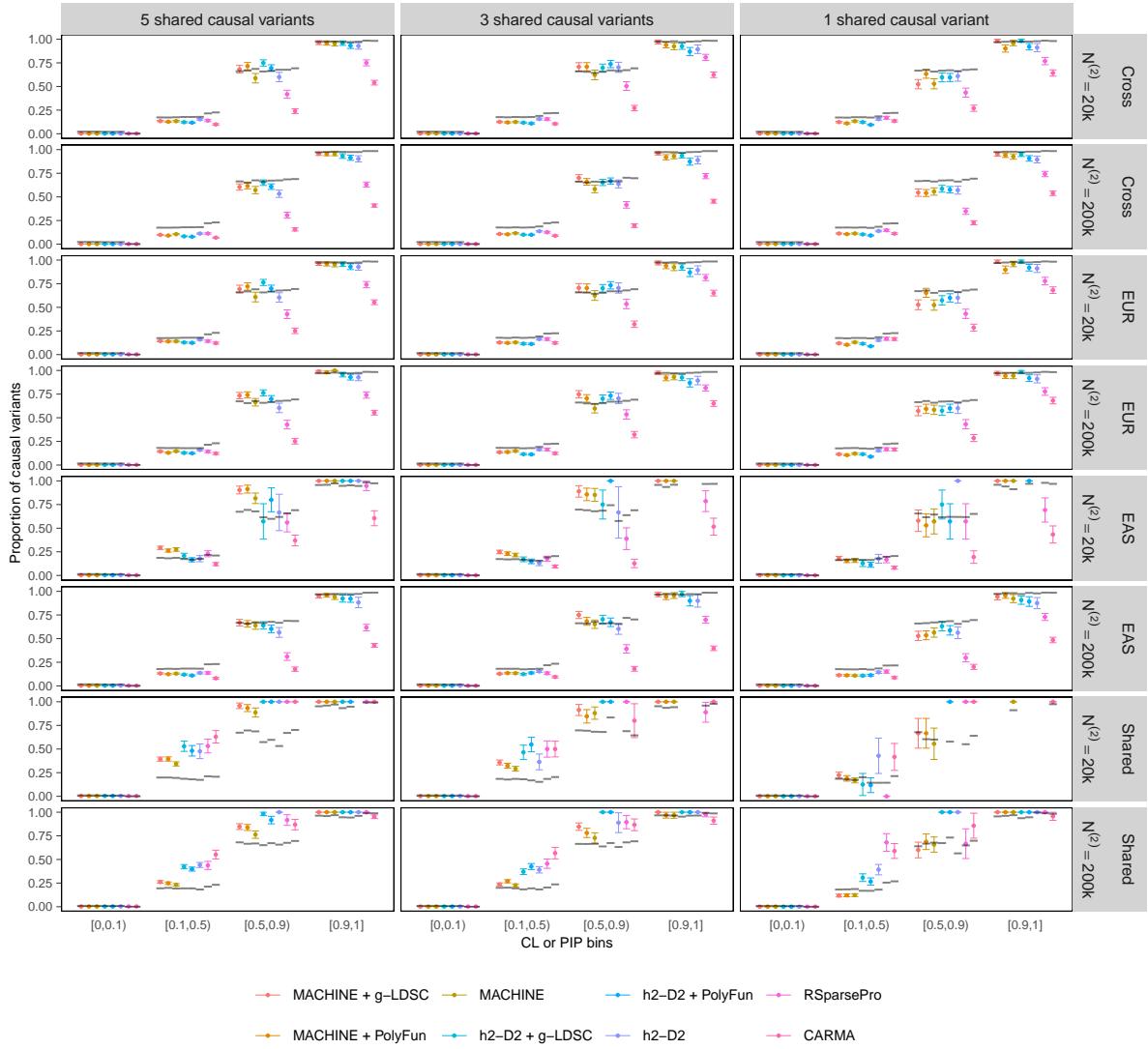
Supplementary Fig. 6: Coverage of 95% CSs grouped by the CS size for scenarios with 5 shared causal variants per region when in-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.



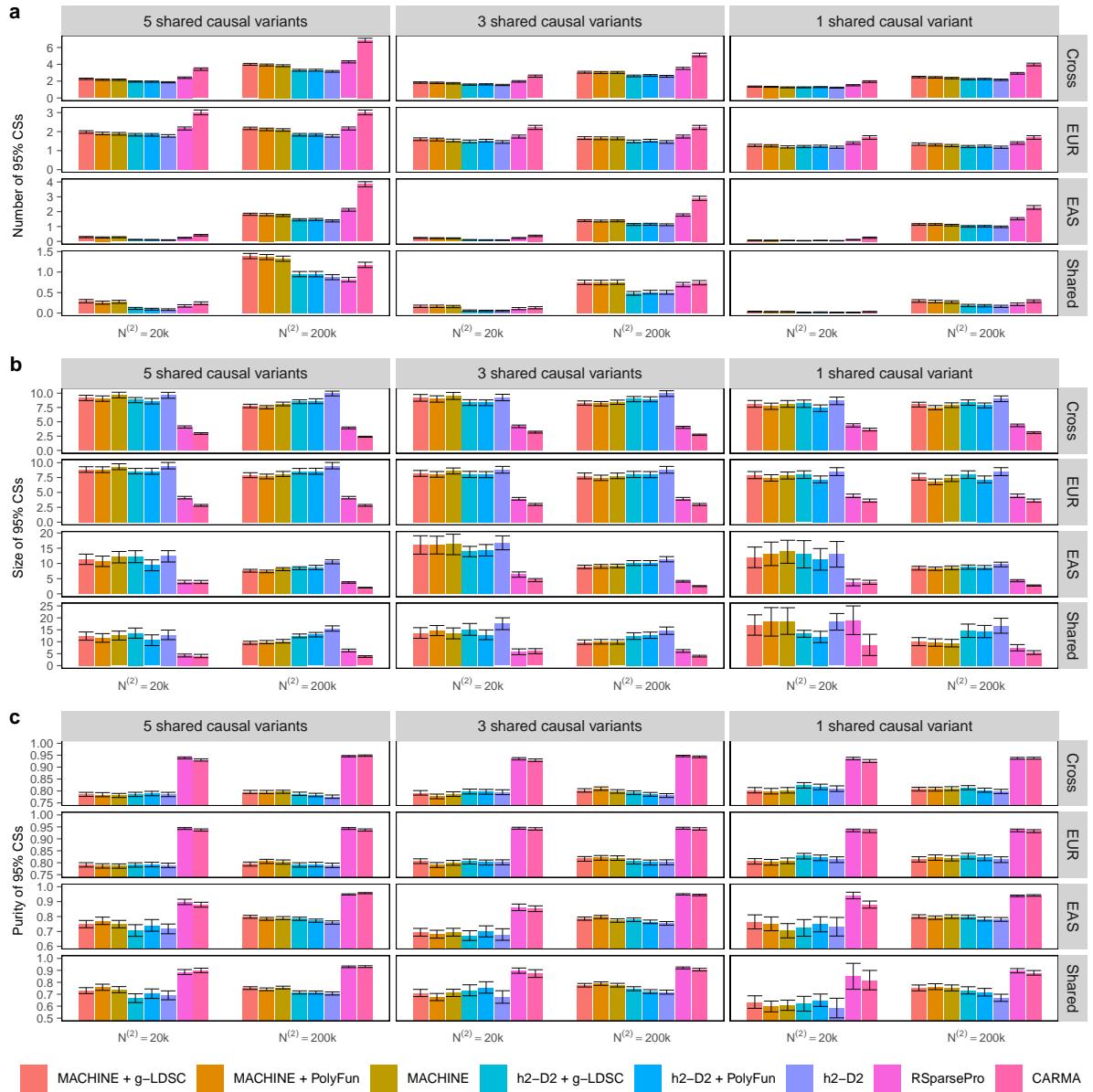
Supplementary Fig. 7: Coverage of 95% CSs grouped by the CS size for scenarios with 3 shared causal variants per region when in-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.



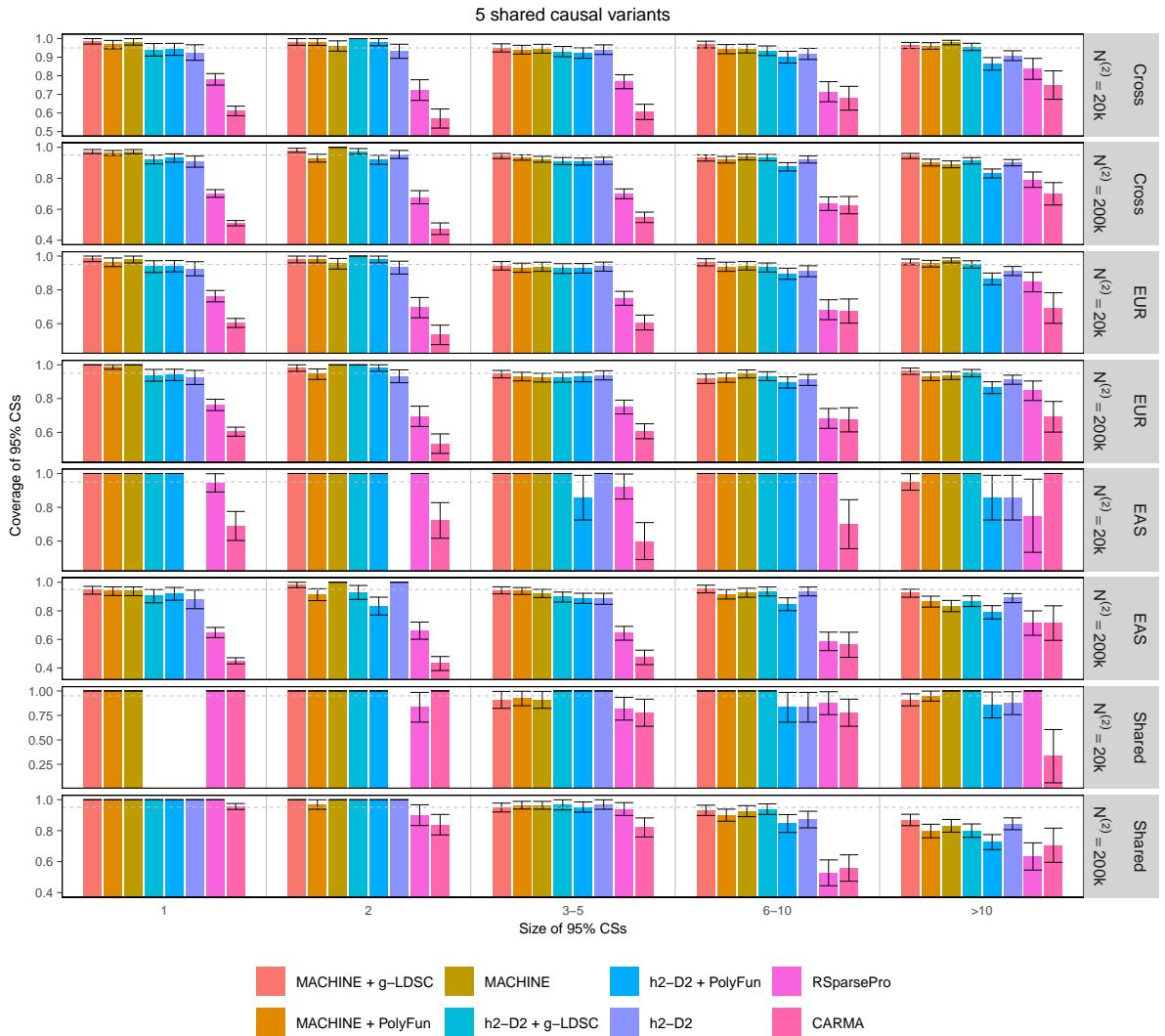
Supplementary Fig. 8: Coverage of 95% CSs grouped by the CS size for scenarios with 1 shared causal variant per region when in-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.



Supplementary Fig. 9: Calibration plot of fine-mapping methods when out-of-sample LD matrices are used. All values are computed by aggregating 200 simulated datasets. Colored dots represent the true proportion of causal variants among variants within each CL or PIP bin, with error bars indicating standard errors. Horizontal segments indicate the expected proportion of causal variants (i.e. the average CL or PIP within each bin). Numerical results are available in Supplementary Table 3.



Supplementary Fig. 10: Comparison of 95% CSs obtained by different fine-mapping methods when out-of-sample LD matrices are used. All values are aggregated across 200 simulated datasets, with error bars indicating standard errors. **a**, Number of identified 95% CSs. **b**, Size of 95% CS, defined as the number of variants in each CS. **c**, Purity of 95% CS, defined as the minimum absolute correlation between any pair of variants within the CS. Numerical results are available in Supplementary Table 2.

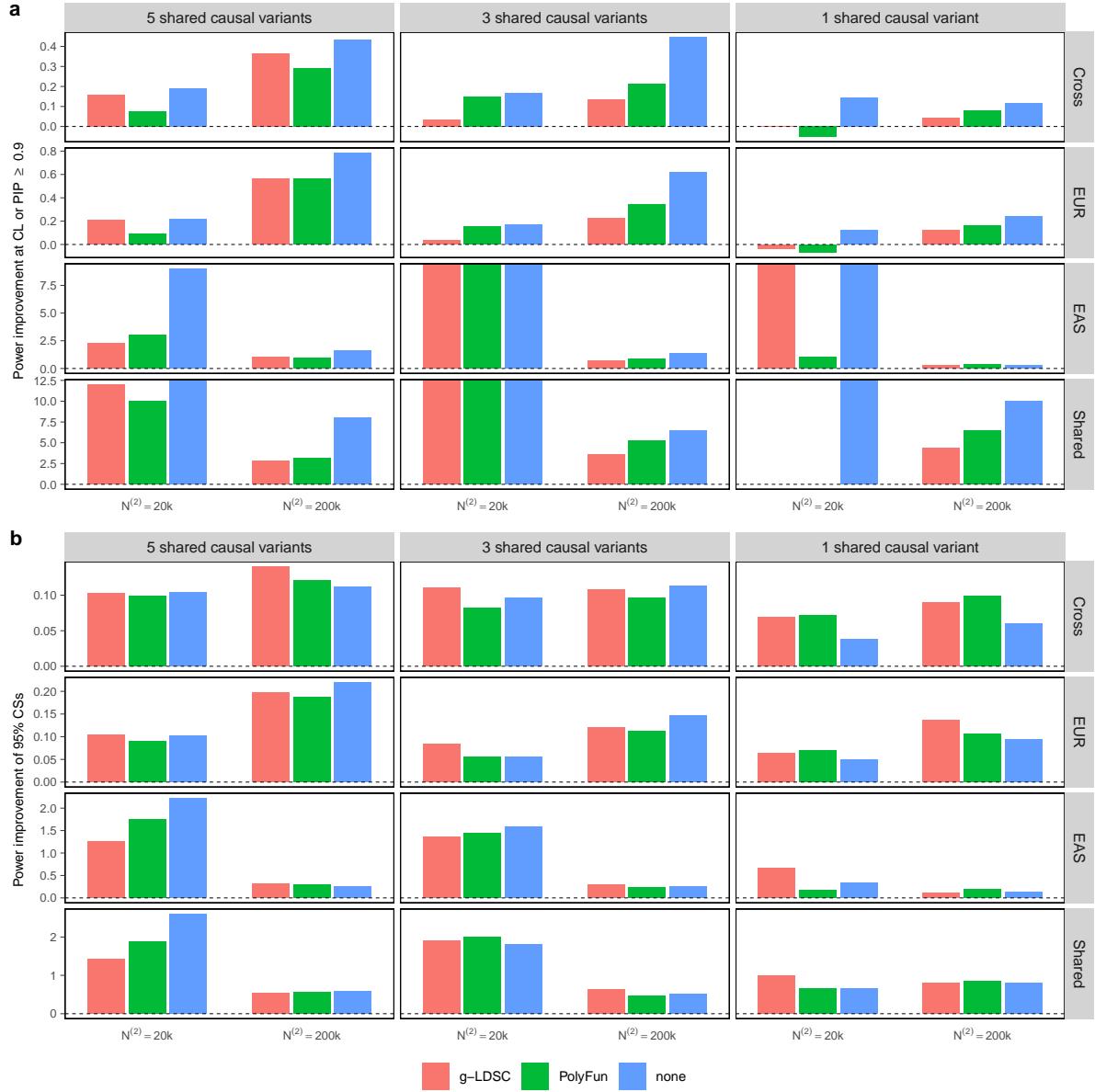


Supplementary Fig. 11: Coverage of 95% CSs grouped by the CS size for scenarios with 5 shared causal variants per region when out-of-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.

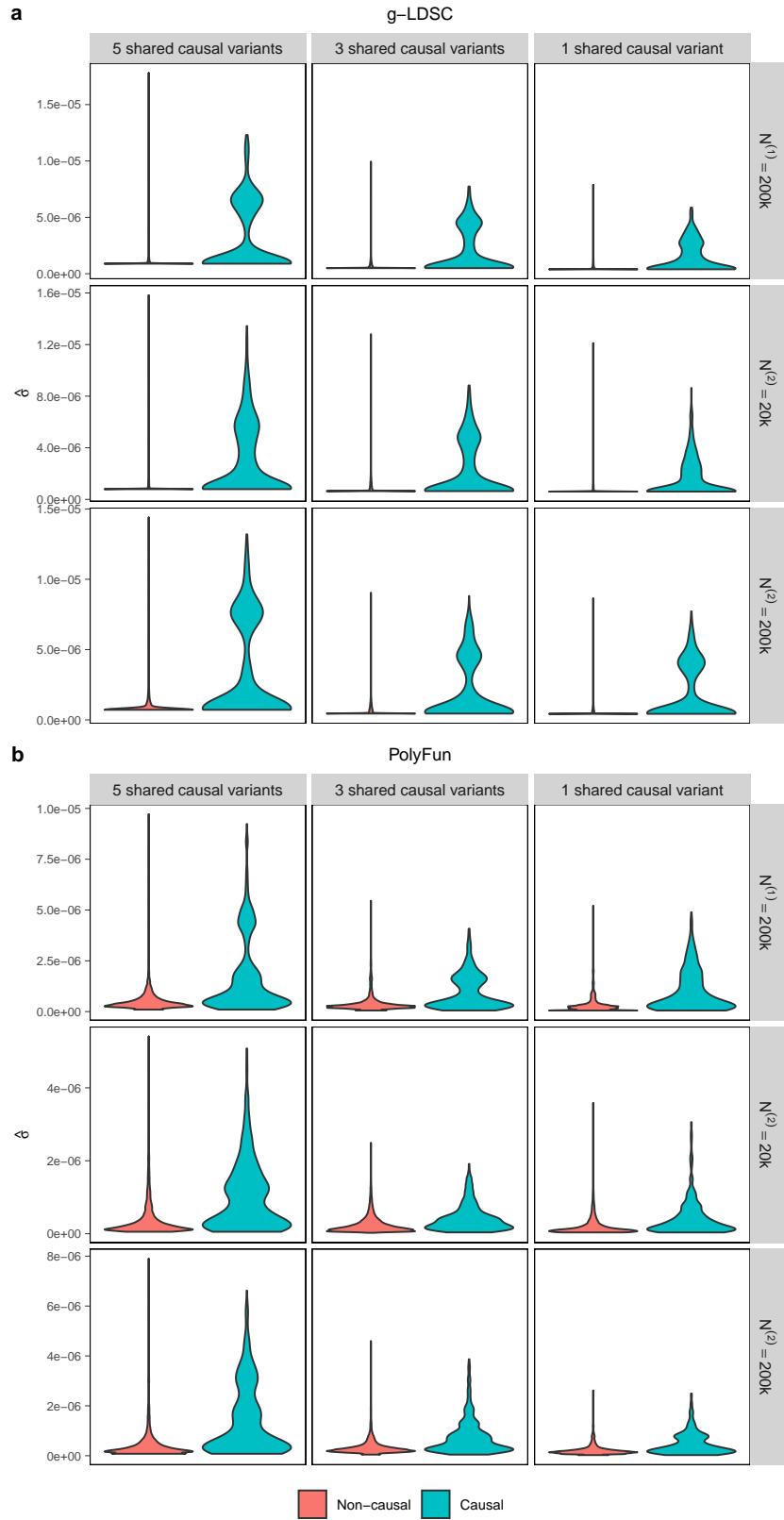
Supplementary Fig. 12: Coverage of 95% CSs grouped by the CS size for scenarios with 3 shared causal variants per region when out-of-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.



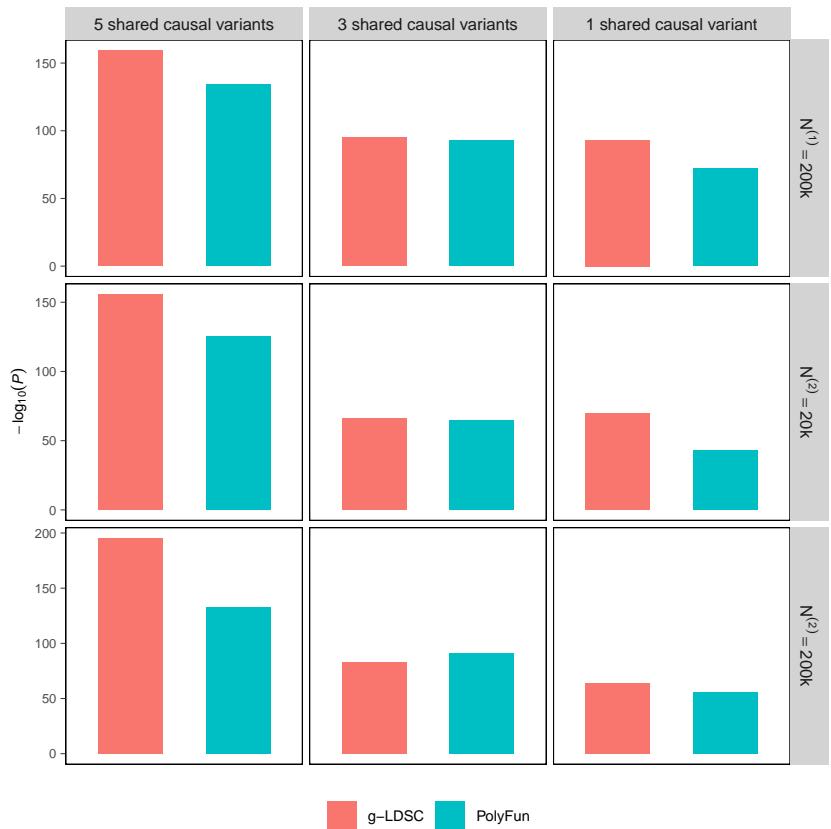
Supplementary Fig. 13: Coverage of 95% CSs grouped by the CS size for scenarios with 1 shared causal variant per region when out-of-sample LD matrices are used. For each method, 95% CSs from 200 simulated datasets are aggregated and grouped by their sizes. The proportion of 95% CSs containing at least one causal variant within each group is shown, with error bars indicating standard errors. Numerical results are available in Supplementary Table 6.



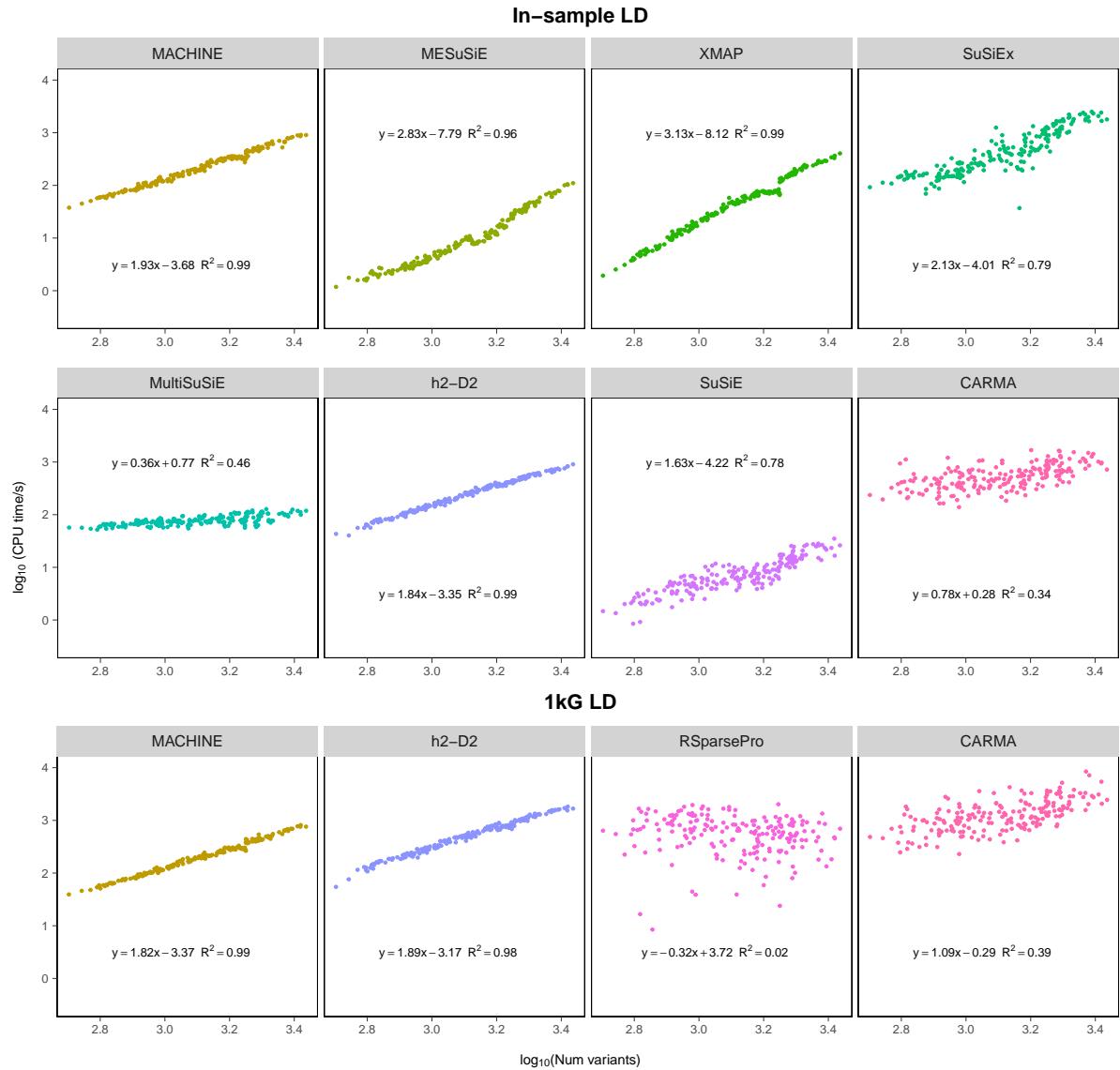
Supplementary Fig. 14: Improvement in power of MACHINE compared to h2-D2 when out-of-sample LD matrices are used. Power improvement is defined as $(\text{Power}^{(\text{MACHINE})} - \text{Power}^{(\text{h2-D2})})/\text{Power}^{(\text{h2-D2})}$. Numerical results are available in Supplementary Table 4.



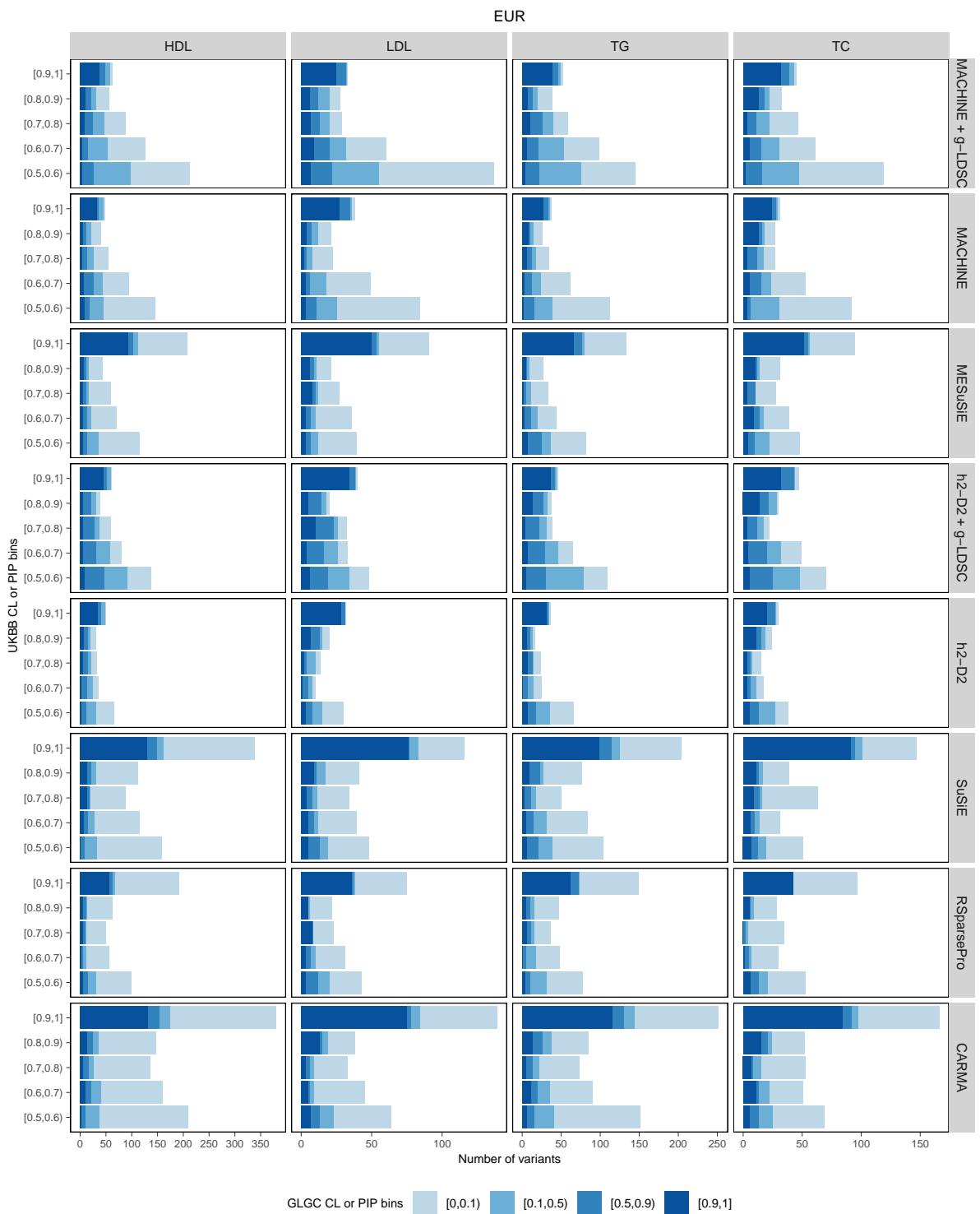
Supplementary Fig. 15: Violin plots display the distribution of per-variant heritabilities estimated by (a) g-LDSC and (b) PolyFun for underlying causal and non-causal variants when out-of-sample LD matrices are used. For each simulation setting, results are aggregated across 200 simulated datasets.



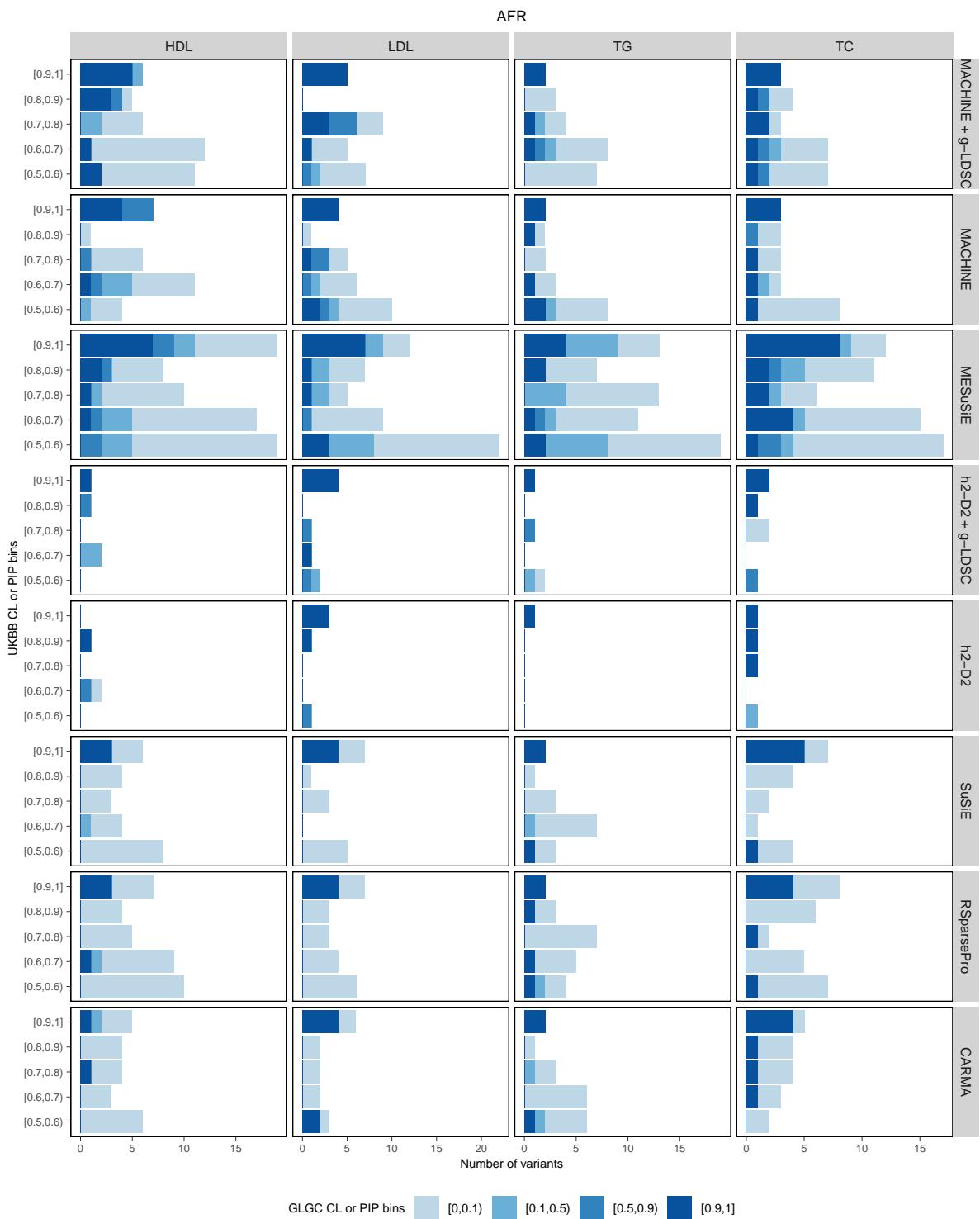
Supplementary Fig. 16: Negative $\log_{10}(P$ value) of Wilcoxon-Mann-Whitney tests comparing estimated per-variant heritabilities between causal and non-causal variants when out-of-sample LD matrices are used. For each simulation setting, results are aggregated across 200 simulated datasets. Numerical results are available in Supplementary Table 5.



Supplementary Fig. 17: Comparison of computational time in simulation studies. The scatterplot depicts the CPU time (in seconds) versus the number of variants per locus, both on a logarithmic scale. For each method, a linear regression model was fitted with $\log_{10}(\text{CPU time/s})$ as the response variable and $\log_{10}(\text{number of variants})$ as the predictor. The fitted regression models and corresponding R^2 values are displayed. Numerical results are available in Supplementary Table 7.

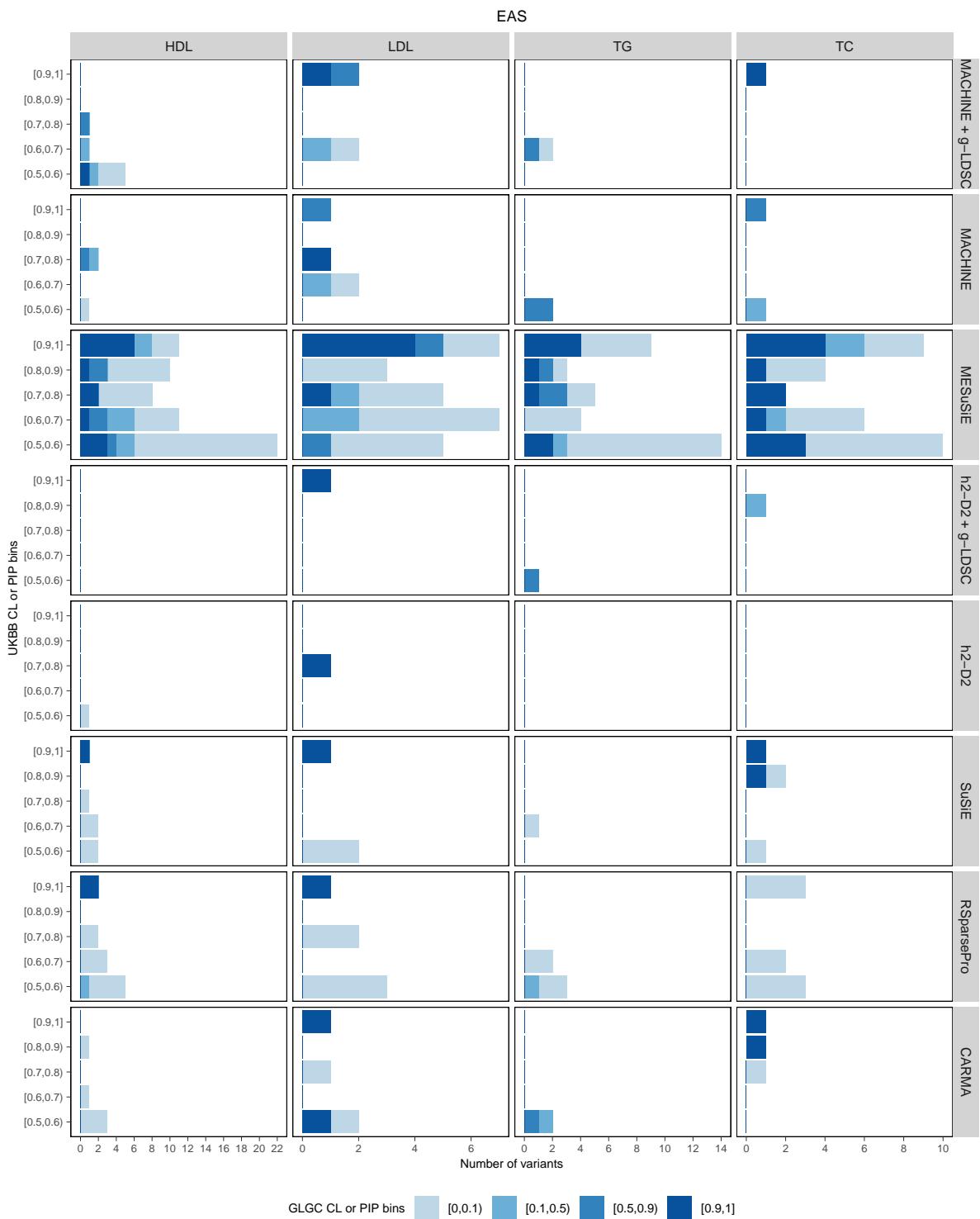


Supplementary Fig. 18: Comparison of CL and PIP distributions between GLGC fine mapping and UKBB fine mapping for four lipid traits in EUR.
 For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions of CL or PIP from UKBB fine mapping are presented. Numerical results are available in Supplementary Table 10.



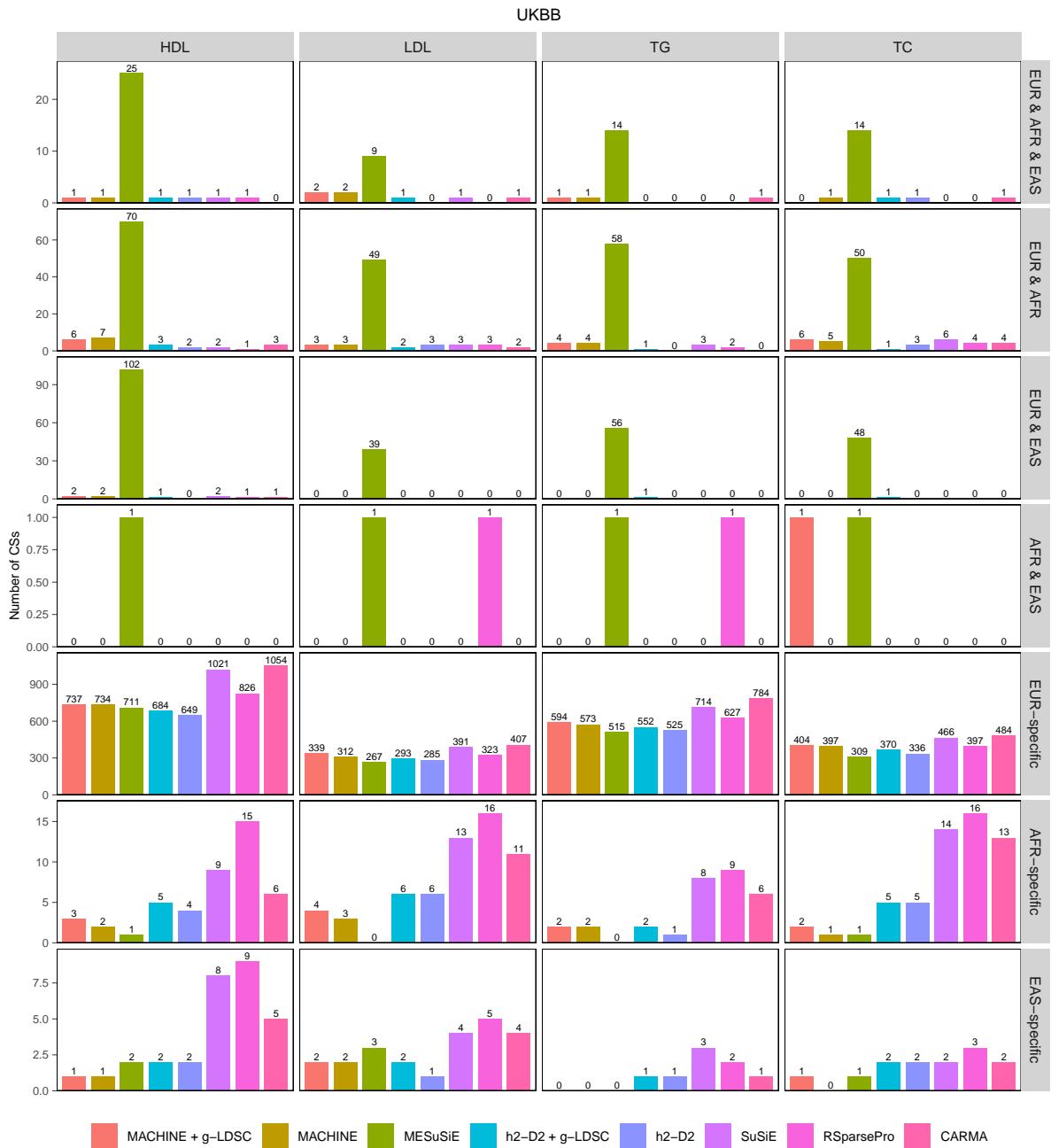
Supplementary Fig. 19: Comparison of CL and PIP distributions between GLGC fine mapping and UKBB fine mapping for four lipid traits in AFR.

For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions of CL or PIP from UKBB fine mapping are presented. Numerical results are available in Supplementary Table 10.

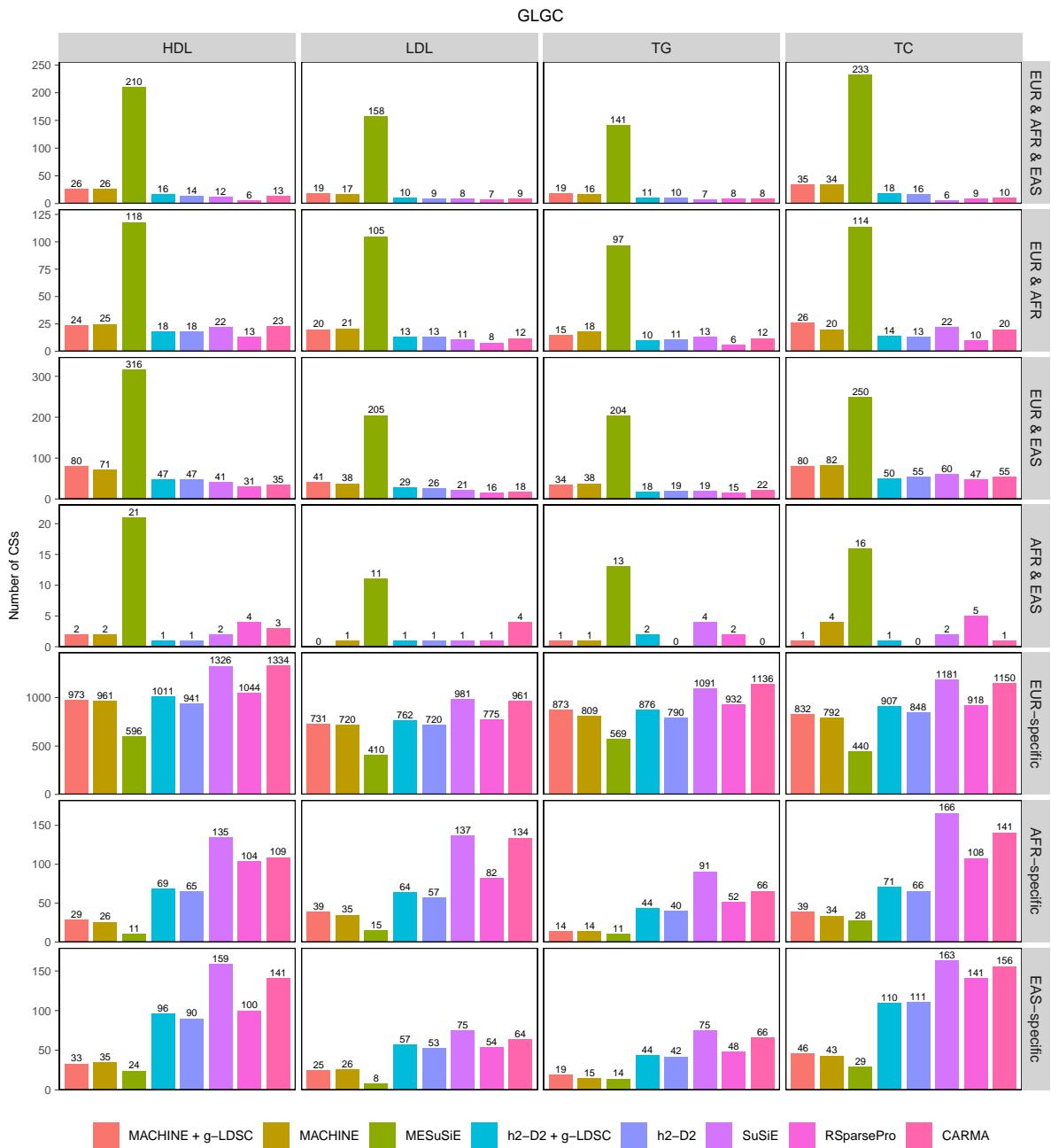


Supplementary Fig. 20: Comparison of CL and PIP distributions between GLGC fine mapping and UKBB fine mapping for four lipid traits in EAS.

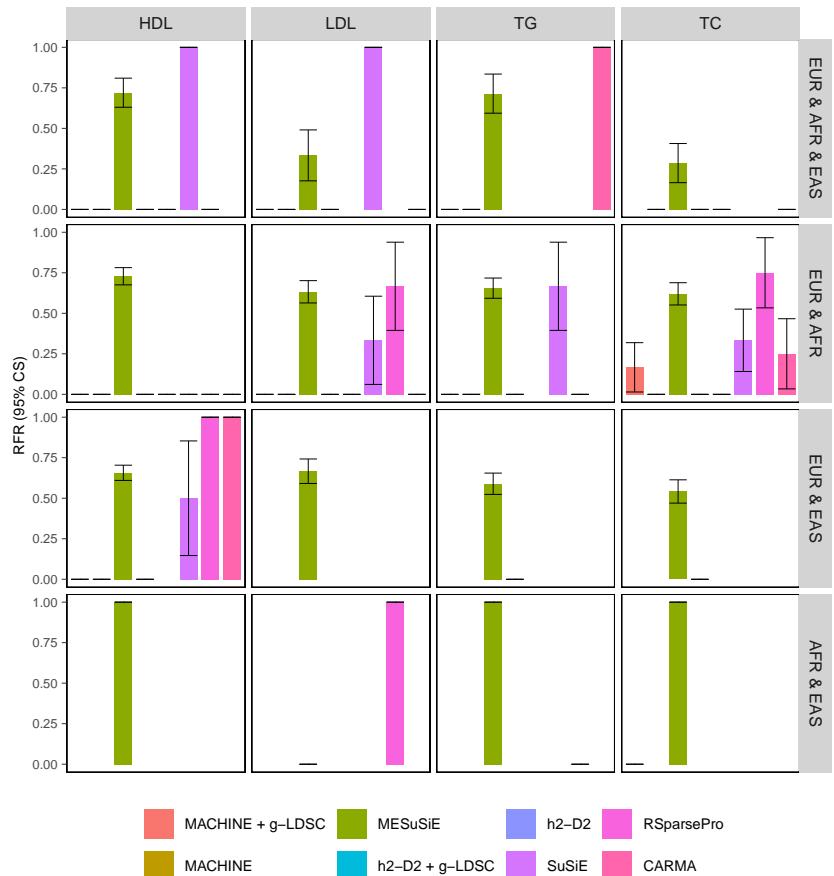
For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions of CL or PIP from UKBB fine mapping are presented. Numerical results are available in Supplementary Table 10.



Supplementary Fig. 21: Number of shared and ancestry-specific 95% CSs identified by each method using UKBB summary statistics for four lipoprotein traits. Numerical results are available in Supplementary Table 11.



Supplementary Fig. 22: Number of shared and ancestry-specific 95% CSs identified by each method using GLGC meta-analysis summary statistics for four lipoprotein traits. Numerical results are available in Supplementary Table 11.



Supplementary Fig. 23: RFRs for 95% CSs shared by two or three ancestries.

RFR is defined as the proportion of 95% CSs shared by two or three ancestries identified in UKBB fine mapping that do not overlap with any 95% CS shared by these ancestries identified in GLGC fine mapping. Numerical results are available in Supplementary Table 12.

2 Supplementary Tables

3 **Supplementary Table 1: List of 200 blocks on chr1 selected for simulation**
4 **studies.** For each block, the 1-based start coordinate and end coordinate in GRCh37
5 are shown (both positions are inclusive).

6 **Supplementary Table 2: Numerical results of simulations.** The columns are (1)
7 LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample
8 size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal
9 variants, EAS for EAS causal variants, Shared for shared causal variants; (5) method:
10 method name; (6) nVar_0.9: number of variants with CL or PIP ≥ 0.9 ; (7) FDR_0.9:
11 proportion of non-causal variants among variants with CL or PIP ≥ 0.9 ; (8) FDR_0.9_sd:
12 s.d. of FDR_0.9; (9) power_0.9: proportion of causal variants with CL or PIP ≥ 0.9 ; (10)
13 power_0.9_sd: s.d. of power_0.9; (11) n_CS95: total number of identified 95% CSs across
14 200 simulated datasets; (12) n_CS95_sd: s.d. of the number of identified 95% CSs across
15 200 simulated datasets; (13) coverage_CS95: the proportion of CSs that contain at least
16 one causal variant; (14) coverage_CS95_sd: s.d. of coverage_CS95; (15) power_CS95: the
17 proportion of causal variants included in the 95% CSs; (16) power_CS95_sd: s.d. of
18 power_CS95; (17) size_CS95: average size of 95% CSs; (18) size_sd: s.d. of size across
19 95% CSs; (19) purity_CS95: average purity of 95% CSs; (20) purity_sd: s.d. of purity
20 across 95% CSs.

21 **Supplementary Table 3: Numerical results of calibration in simulations.** The
22 columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3);
23 (3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for
24 EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants;
25 (5) method: method name; (6) group: CL or PIP bin; (7) nSNPs: number of variants
26 within bin; (8) Expected: the average CL or PIP within bin; (9) Prop: proportion of
27 causal variants within bin; (10) Prop_sd: s.d. of Prop.

28 **Supplementary Table 4: Numerical results of improvement in power of MA-**
29 **CHINE compared to h2-D2 calibration in simulations.** The columns are (1) LD:
30 LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample size
31 of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal vari-
32 ants, EAS for EAS causal variants, Shared for shared causal variants; (5) anno_method:
33 method for incorporating functional annotations; (6) h2-D2_0.9: power of CL ≥ 0.9 for
34 h2-D2; (7) MACHINE_0.9: power of CL ≥ 0.9 for MACHINE; (8) improve_0.9: im-

35 provement in power of CL ≥ 0.9 ; (9) h2-D2_CS95: power of 95% CSs for h2-D2; (10)
36 MACHINE_CS95: power of 95% CSs for MACHINE; (11) improve_CS95: improvement
37 in power of 95% CSs.

38 **Supplementary Table 5: P values of Wilcoxon-Mann-Whitney tests comparing estimated per-variant heritabilities between causal and non-causal variants.** The columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 41 2, or 3); (3) setting: the combination of ancestry and sample size; (4) anno_method: 42 method for incorporating functional annotations; (5) p: P values of Wilcoxon-Mann- 43 Whitney tests.

44 **Supplementary Table 6: Coverage of 95% CSs grouped by the CS size.** The 45 columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); 46 (3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for 47 EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants; 48 (5) method: method name; (6) size: size group; (7) n_CS95: total number of identified 49 95% CSs across 200 simulated datasets within the group; (8) coverage: the proportion 50 of 95% CSs within the group that contain at least one causal variant; (9) coverage_sd: 51 s.d. of coverage.

52 **Supplementary Table 7: Information of fitted linear regression models with**

53 $\log_{10}(\text{CPU time/s})$ as the response variable and $\log_{10}(\text{number of variants})$ as

54 the predictor. The columns are (1) LD: LD matrices used; (2) method: method name;

55 (3) intercept: intercept of the fitted linear model; (4) intercept_sd: s.d. of intercept;

56 (5) slope: slope of the fitted linear model; (6) slope_sd: s.d. of slope; (7) adj.r.squared:

57 adjusted R^2 value of the fitted linear model.

58 **Supplementary Table 8: Sample size of each lipid trait in each ancestry.** The 59 columns are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) UKBB.n: sample 60 size of UKBB summary data; (4) GLGC.n: sample size of GLGC summary data.

61 **Supplementary Table 9: RFRs of fine-mapping methods in real data analysis**

62 of four lipid traits. The columns are (1) pheno: name of lipid trait; (2) pid: ancestry

63 ID; (3) method: method name; (4) num_variants_0.9.UKBB: number of variants with CL

64 or PIP ≥ 0.9 in UKBB fine mapping; (5) num_variants_0.9.UKBB_0.1.GLGC: number of

65 variants with CL or PIP ≥ 0.9 in UKBB fine mapping and < 0.1 in GLGC fine mapping;

66 (6) RFR_0.9: RFR for variants with CL or PIP ≥ 0.9 in UKBB fine mapping; (7)

67 RFR_0.9_sd: s.d. of RFR_0.9; (8) UKBB_nCS: number of 95% CSs identified in UKBB

68 fine mapping; (9) UKBB_in_GLGC: number of 95% CSs identified in UKBB fine mapping
69 that overlap with any 95% CSs identified in GLGC fine mapping; (10) RFR_CS95: RFR
70 for 95% CSs; (11) RFR_CS95_sd: s.d. of RFR_CS95.

71 **Supplementary Table 10: Comparison of CL and PIP distributions between**
72 **GLGC fine mapping and UKBB fine mapping for four lipid traits.** The columns
73 are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) method: method name; (4)
74 group_UKBB: CL or PIP bin of UKBB fine mapping; (5) group_GLGC: CL or PIP bin
75 of GLGC fine mapping; (6) nVar: number of variants within bins.

76 **Supplementary Table 11: Number of shared and ancestry-specific 95% CSs**
77 **identified by each method for four lipid traits.** The columns are (1) db: database
78 of GWAS summary data; (2) pheno: name of lipid trait; (3) method: method name;
79 (4)-(10): number of shared and ancestry-specific 95% CSs.

80 **Supplementary Table 12: RFRs for 95% CSs shared by two or three an-**
81 **cestries for four lipid traits.** The columns are (1) pheno: name of lipid trait; (2)
82 method: method name; (3) pops: combination of ancestries; (4) nCS_common: number
83 of shared 95% CSs identified in UKBB fine mapping that overlap with any shared 95%
84 CSs identified in GLGC fine mapping; (5) RFR_CS95: RFR for shared 95% CSs; (6)
85 RFR_CS95_sd: s.d. of RFR_CS95.

86 **Supplementary Table 13: Enrichment of functionally important variants**
87 **in high-confidence variants and 95% CSs identified by each method for**
88 **four lipid traits.** The columns are (1) db: database of GWAS summary data;
89 (2) pheno: name of lipid trait; (3) method: method name; (4) num_variants: to-
90 tal number of variants included in fine-mapping analyses; (5) num_variants_0.9: num-
91 ber of high-confidence variants (CL or PIP ≥ 0.9); (6) num_CS95: number of identi-
92 fied 95% CSs; (7) num_variants_eQTL: number of eQTLs among all variants included
93 in fine-mapping analyses; (8) num_variants_0.9_eQTL: number of eQTLs among high-
94 confidence variants; (9) num_CS95_eQTL: number of 95% CSs containing at least
95 one eQTL; (10) num_variants_Coding: number of coding variants among all vari-
96 ants included in fine-mapping analyses; (11) num_variants_0.9_Coding: number of cod-
97 ing variants among high-confidence variants; (12) num_CS95_Coding: number of 95%
98 CSs containing at least one coding variant; (13) num_variants_Regulatory: number
99 of putative regulatory variants among all variants included in fine-mapping analyses;
100 (14) num_variants_0.9_Regulatory: number of putative regulatory variants among high-

101 confidence variants; (15) num_CS95_Regulatory: number of 95% CSs containing at least
102 one putative regulatory variant.

103 **Supplementary Table 14: Number of shared and ancestry-specific 95% CSs**
104 **identified by each method for SCZ.** The columns are (1) method: method name; (2)
105 EUR_EAS: number of identified 95% CSs shared by EUR and EAS; (3) EUR-specific:
106 number of identified EUR-specific 95% CSs; (4) EUR-specific: number of identified EAS-
107 specific 95% CSs.

108 **Supplementary Table 15: Enrichment of functionally important variants in**
109 **medium-high-confidence variants and 95% CSs identified by each method**
110 **for SCZ.** The columns are (1) method: method name; (2) num_variants: total num-
111 ber of variants included in fine-mapping analyses; (3) num_variants_0.5: number of
112 medium-high-confidence variants (CL or $PIP \geq 0.5$); (4) num_CS95: number of iden-
113 tified 95% CSs; (5) num_variants_eQTL: number of eQTLs among all variants included
114 in fine-mapping analyses; (6) num_variants_0.5_eQTL: number of eQTLs among medium-
115 high-confidence variants; (7) num_CS95_eQTL: number of 95% CSs containing at least
116 one eQTL; (8) num_variants_Coding: number of coding variants among all variants in-
117 cluded in fine-mapping analyses; (9) num_variants_0.5_Coding: number of coding vari-
118 ants among medium-high-confidence variants; (10) num_CS95_Coding: number of 95%
119 CSs containing at least one coding variant; (11) num_variants_Regulatory: number of
120 putative regulatory variants among all variants included in fine-mapping analyses; (12)
121 num_variants_0.5_Regulatory: number of putative regulatory variants among medium-
122 high-confidence variants; (13) num_CS95_Regulatory: number of 95% CSs containing at
123 least one putative regulatory variant.

124 Supplementary Note

125 MCMC sampling algorithm

126 For $k \in \{1, \dots, K\}$ and $j \in \{1, \dots, J\}$, we introduce a latent variable $\psi_j^{(k)} \sim \text{Exp}(1)$, such
 127 that the Laplace prior distribution $\beta_j^{(k)} \mid \sigma_j^{(k)} \sim \text{DE}\left(0, \sqrt{\sigma_j^{(k)}/2}\right)$ can be expressed as

$$\beta_j^{(k)} \mid \psi_j^{(k)}, \sigma_j^{(k)} \sim N\left(0, \psi_j^{(k)} \sigma_j^{(k)}\right),$$

$$\psi_j^{(k)} \sim \text{Exp}(1).$$

128 Let $\gamma_j^{(k)} = \log\left(\sigma_j^{(k)}/K_j\right)$. The prior distribution of $\boldsymbol{\Gamma} = \{\gamma_j^{(k)}\}$ can be expressed as

$$p(\boldsymbol{\Gamma}) \propto \prod_{\substack{j: K_j=1 \\ k: \gamma_j^{(k)}=1}} \exp\left\{a_j \gamma_j^{(k)}\right\} \times \prod_{j: K_j > 1} \left\{ \left(\sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}} \right)^{a_j - \sum_{k \in \mathcal{K}_j} c_j^{(k)}} \prod_{k \in \mathcal{K}_j} \exp\left\{c_j^{(k)} \gamma_j^{(k)}\right\} \right\}$$

$$\times \left(1 - \sum_{j=1}^J \sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}}\right)^{b-1} \times \mathbf{1}\left\{\sum_{j=1}^J \sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}} \leq 1\right\}.$$

129 Let

$$\boldsymbol{\mu}^{(k)} = \sqrt{N^{(k)}} \boldsymbol{R}^{(k)} \left(\boldsymbol{R}^{(k)} + \hat{\lambda}^{(k)} \boldsymbol{I}_{J^{(k)}} \right)^{-1} \boldsymbol{z}^{(k)}$$

$$= \sqrt{N^{(k)}} \boldsymbol{U}^{(k)} \boldsymbol{D}^{(k)} \left(\boldsymbol{D}^{(k)} + \hat{\lambda}^{(k)} \boldsymbol{I}_{J^{(k)}} \right)^{-1} (\boldsymbol{U}^{(k)})^\top \boldsymbol{z}^{(k)},$$

$$\boldsymbol{W}^{(k)} = N^{(k)} \boldsymbol{R}^{(k)} \left(\boldsymbol{R}^{(k)} + \hat{\lambda}^{(k)} \boldsymbol{I}_{J^{(k)}} \right)^{-1} \boldsymbol{R}^{(k)}$$

$$= N^{(k)} \boldsymbol{U}^{(k)} \boldsymbol{D}^{(k)} \left(\boldsymbol{D}^{(k)} + \hat{\lambda}^{(k)} \boldsymbol{I}_{J^{(k)}} \right)^{-1} \boldsymbol{D}^{(k)} (\boldsymbol{U}^{(k)})^\top.$$

130 The complete data likelihood is

$$p(\boldsymbol{Z}, \boldsymbol{B}, \boldsymbol{T}, \boldsymbol{\Psi})$$

$$\propto \prod_{k=1}^K \exp\left\{\boldsymbol{\mu}^{(k)\top} \boldsymbol{\beta}^{(k)} - \frac{1}{2} \boldsymbol{\beta}^{(k)\top} \boldsymbol{W}^{(k)} \boldsymbol{\beta}^{(k)}\right\}$$

$$\times \prod_{j=1}^J \prod_{k \in \mathcal{K}_j} \left(\psi_j^{(k)} e^{\gamma_j^{(k)}} \right)^{-\frac{1}{2}} \exp\left\{-\frac{\left(\beta_j^{(k)}\right)^2}{2K_j \psi_j^{(k)} e^{\gamma_j^{(k)}}}\right\} \times \prod_{j=1}^J \prod_{k \in \mathcal{K}_j} \exp\left\{-\psi_j^{(k)}\right\}$$

$$\times \prod_{\substack{j: K_j=1 \\ k: \gamma_j^{(k)}=1}} \exp\left\{a_j \gamma_j^{(k)}\right\} \times \prod_{j: K_j > 1} \left\{ \left(\sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}} \right)^{a_j - \sum_{k \in \mathcal{K}_j} c_j^{(k)}} \prod_{k \in \mathcal{K}_j} \exp\left\{c_j^{(k)} \gamma_j^{(k)}\right\} \right\}$$

$$\times \left(1 - \sum_{j=1}^J \sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}}\right)^{b-1} \times \mathbf{1}\left\{\sum_{j=1}^J \sum_{k \in \mathcal{K}_j} e^{\gamma_j^{(k)}} \leq 1\right\}.$$

131 We propose the following MCMC algorithm to sample parameters from the posterior
 132 distribution:

133 (i) Set initial values for \mathbf{B} , \mathbf{T} , and Ψ .

134 (ii) For each $j \in \{1, \dots, J\}$ and each $k \in \mathcal{K}_j$:

135 (i) Update $\gamma_j^{(k)}$ using Metropolis-Hastings algorithm according to the unnormal-
 136 ized density

$$\begin{aligned} & p\left(\gamma_j^{(k)} \mid \boldsymbol{\beta}_{-j}^{(k)}, \psi_j^{(k)}, \mathbf{T} \setminus \left\{\gamma_j^{(k)}\right\}, z_j^{(k)}\right) \\ & \propto \sqrt{\tilde{\sigma}_j^{(k)}} \times \exp \left\{ \frac{1}{2} \tilde{\sigma}_j^{(k)} \left(u_j^{(k)} \right)^2 \right\} \\ & \times \exp \left\{ \left(c_j^{(k)} - \frac{1}{2} \right) \gamma_j^{(k)} \right\} \times \left(e^{\gamma_j^{(k)}} + \sum_{k' \in \mathcal{K}_j \setminus \{k\}} e^{\gamma_j^{(k')}} \right)^{a_j - \sum_{k' \in \mathcal{K}_j} c_j^{(k')}} \\ & \times \left(1 - e^{\gamma_j^{(k)}} - \sum_{(k', j') \neq (k, j)} e^{\gamma_{j'}^{(k')}} \right)^{b-1} \\ & \times \mathbf{1} \left\{ \gamma_j^{(k)} \leq \ln \left(1 - \sum_{(k', j') \neq (k, j)} e^{\gamma_{j'}^{(k')}} \right) \right\}, \end{aligned}$$

137 if $K_j > 1$, otherwise

$$\begin{aligned} & p\left(\gamma_j^{(k)} \mid \boldsymbol{\beta}_{-j}^{(k)}, \psi_j^{(k)}, \mathbf{T} \setminus \left\{\gamma_j^{(k)}\right\}, z_j^{(k)}\right) \\ & \propto \sqrt{\tilde{\sigma}_j^{(k)}} \times \exp \left\{ \frac{1}{2} \tilde{\sigma}_j^{(k)} \left(u_j^{(k)} \right)^2 \right\} \\ & \times \exp \left\{ \left(a_j - \frac{1}{2} \right) \gamma_j^{(k)} \right\} \times \left(1 - e^{\gamma_j^{(k)}} - \sum_{(k', j') \neq (k, j)} e^{\gamma_{j'}^{(k')}} \right)^{b-1} \\ & \times \mathbf{1} \left\{ \gamma_j^{(k)} \leq \ln \left(1 - \sum_{(k', j') \neq (k, j)} e^{\gamma_{j'}^{(k')}} \right) \right\}, \end{aligned}$$

138 where

$$\tilde{\sigma}_j^{(k)} = \left[W_{jj}^{(k)} + \frac{1}{\psi_j^{(k)} e^{\gamma_j^{(k)}}} \right]^{-1}, u_j^{(k)} = \mu_j^{(k)} - \sum_{j' \neq j} W_{jj'}^{(k)} \beta_j^{(k)}.$$

139 (ii) Update $\beta_j^{(k)} \sim N\left(\tilde{\sigma}_j^{(k)} u_j^{(k)}, \tilde{\sigma}_j^{(k)}\right)$.

140 (iii) Update

$$\frac{1}{\psi_j^{(k)}} \mid \beta_j, \gamma_j \sim \text{InvGaussian} \left(\text{mean} = \frac{\sqrt{2} e^{\gamma_j^{(k)}/2}}{|\beta_j^{(k)}|}, \text{shape} = 2 \right).$$

141 (iii) To improve mixing of MCMC chain, after every 5 steps, we will choose several
 142 pairs of SNPs with high LD in at least one ancestry and propose a proposal by
 143 switching the values of each pair. For a given pair j_1 and j_2 with high LD in the
 144 k -th ancestry, the proposal is given by setting

$$\gamma_{j_1, \text{new}}^{(k)} = \gamma_{j_2}^{(k)}, \gamma_{j_2, \text{new}}^{(k)} = \gamma_{j_1}^{(k)}, \psi_{j_1, \text{new}}^{(k)} = \psi_{j_2}^{(k)} K_{j_2} / K_{j_1}, \psi_{j_2, \text{new}}^{(k)} = \psi_{j_1}^{(k)} K_{j_1} / K_{j_2},$$

145 and

$$\beta_{j_1, \text{new}}^{(k)} = \beta_{j_2}^{(k)}, \beta_{j_2, \text{new}}^{(k)} = \beta_{j_1}^{(k)},$$

146 if $R_{j_1, j_2}^{(k)} > 0$, or

$$\beta_{j_1, \text{new}}^{(k)} = -\beta_{j_2}^{(k)}, \beta_{j_2, \text{new}}^{(k)} = -\beta_{j_1}^{(k)},$$

147 if $R_{j_1, j_2}^{(k)} < 0$. Let $s = \text{sgn}(R_{j_1, j_2}^{(k)})$. The acceptance probability is

$$\begin{aligned} & \exp \left\{ \left[\sum_{l \in \mathcal{K}_j \setminus \{j_1, j_2\}} \left(W_{l, j_1}^{(k)} - s W_{l, j_2}^{(k)} \right) \beta_l^{(k)} - \mu_{j_1}^{(k)} + s \mu_{j_2}^{(k)} \right] \left(\beta_{j_1}^{(k)} - s \beta_{j_2}^{(k)} \right) \right\} \\ & \times \exp \left\{ \frac{1}{2} \left(W_{j_1, j_1}^{(k)} - W_{j_2, j_2}^{(k)} \right) \left[\left(\beta_{j_1}^{(k)} \right)^2 - \left(\beta_{j_2}^{(k)} \right)^2 \right] \right\} \\ & \times \exp \left\{ \left(c_{j_1}^{(k)} - c_{j_2}^{(k)} \right) \left(\gamma_{j_2}^{(k)} - \gamma_{j_1}^{(k)} \right) \right\} \\ & \times \left\{ \frac{\sum_{k' \in \mathcal{K}_{j_1} \setminus \{k\}} e^{\gamma_{j_1}^{(k')}} + e^{\gamma_{j_2}^{(k)}}}{\sum_{k' \in \mathcal{K}_{j_1} \setminus \{k\}} e^{\gamma_{j_1}^{(k')}} + e^{\gamma_{j_1}^{(k)}}} \right\}^{a_{j_1} - \sum_{k' \in \mathcal{K}_{j_1}} c_{j_1}^{(k')}} \\ & \times \left\{ \frac{\sum_{k' \in \mathcal{K}_{j_2} \setminus \{k\}} e^{\gamma_{j_2}^{(k')}} + e^{\gamma_{j_1}^{(k)}}}{\sum_{k' \in \mathcal{K}_{j_2} \setminus \{k\}} e^{\gamma_{j_2}^{(k')}} + e^{\gamma_{j_2}^{(k)}}} \right\}^{a_{j_2} - \sum_{k' \in \mathcal{K}_{j_2}} c_{j_2}^{(k')}} \\ & \times \exp \left\{ -\psi_{j_1}^{(k)} K_{j_1} / K_{j_2} - \psi_{j_2}^{(k)} K_{j_2} / K_{j_1} + \psi_{j_1}^{(k)} + \psi_{j_2}^{(k)} \right\} \wedge 1. \end{aligned}$$

148 (iv) Repeat Steps (ii)-(iii) until convergence.

149 Choice of hyper-parameter b

150 The choice of hyper-parameter b is based on the relationship between hyper-parameters
 151 and the prior expectation of local heritability. The averaged prior expectation of local
 152 heritability across ancestries is

$$\begin{aligned} \frac{1}{K} \sum_{k=1}^K \text{E}(h^{(k)}) &= \frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{J}^{(k)}} K_j \text{E}(\xi_j) \text{E}(\eta_j^{(k)}) \\ &= \frac{1}{K} \frac{1}{\sum_{j=1}^J a_j + b} \sum_{k=1}^K \sum_{j \in \mathcal{J}^{(k)}} K_j a_j \frac{c_j^{(k)}}{\sum_{k' \in \mathcal{K}_j} c_j^{(k')}} = \frac{A^*}{A + b}, \end{aligned}$$

153 where $A = \sum_{j=1}^J a_j$ and

$$A^* = \frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{J}^{(k)}} K_j a_j \frac{c_j^{(k)}}{\sum_{k' \in \mathcal{K}_j} c_j^{(k')}}.$$

154 The procedure of specifying b is:

155 (i) Set initial $h_{\text{est}} = 10^{-4}$ and set $b = A^*/h_{\text{est}} - A$.

156 (ii) Run MCMC algorithm for n_{mcmc} (default 400) steps. Discard the first n_{burnin}
157 (default 200) samples as burn in.

158 (iii) For $n \in \{n_{\text{burnin}} + 1, \dots, n_{\text{mcmc}}\}$, let $\mathbf{B}_n = [\boldsymbol{\beta}_n^{(1)}, \dots, \boldsymbol{\beta}_n^{(K)}]$ denote the n -th MCMC
159 sample of \mathbf{B} . The n -th MCMC sample of the local heritability of the k -th ancestry
160 is computed by $h_n^{(k)} = (\boldsymbol{\beta}_n^{(k)})^\top \mathbf{R}^{(k)} \boldsymbol{\beta}_n^{(K)}$. Let

$$\bar{h}_n = \frac{1}{K} \sum_{k=1}^K h_n^{(k)}.$$

161 (iv) Perform a t -test to compare the mean of $\{\bar{h}_n \mid n \in \{n_{\text{burnin}} + 1, \dots, n_{\text{mcmc}}\}\}$ with
162 h_{est} . If the P value is less than 0.05, set

$$h_{\text{est}} = \frac{1}{n_{\text{mcmc}} - n_{\text{burnin}}} \sum_{n=n_{\text{burnin}}+1}^{n_{\text{mcmc}}} \bar{h}_n,$$

163 $b = A^*/h_{\text{est}} - A$, and go back to step (ii). Otherwise, stop the algorithm.