
Supplementary Figures1

5 shared causal variants 3 shared causal variants 1 shared causal variant

N
(2)=

20k

C
ross

N
(2)=

200k

C
ross

N
(2)=

20k

E
U

R

N
(2)=

200k

E
U

R

N
(2)=

20k

E
A

S

N
(2)=

200k

E
A

S

N
(2)=

20k

S
hared

N
(2)=

200k

S
hared

[0,0.1) [0.1,0.5) [0.5,0.9) [0.9,1] [0,0.1) [0.1,0.5) [0.5,0.9) [0.9,1] [0,0.1) [0.1,0.5) [0.5,0.9) [0.9,1]

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

CL or PIP bins

P
ro

po
rt

io
n 

of
 c

au
sa

l v
ar

ia
nt

s

MACHINE + g−LDSC

MACHINE + PolyFun

MACHINE

MESuSiE

SuSiEx

XMAP

MultiSuSiE

h2−D2 + g−LDSC

h2−D2 + PolyFun

h2−D2

SuSiE

CARMA

Supplementary Fig. 1: Calibration plot of fine-mapping methods when in-

sample LD matrices are used. All values are computed by aggregating 200 simulated

datasets. Colored dots represent the true proportion of causal variants among variants

within each CL or PIP bin, with error bars indicating standard errors. Horizontal seg-

ments indicate the expected proportion of causal variants (i.e. the average CL or PIP

within each bin). Numerical results are available in Supplementary Table 3.
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Supplementary Fig. 2: Improvement in power of MACHINE compared to

h2-D2 when in-sample LD matrices are used. Power improvement is defined as

pPower(MACHINE)
´Power(h2-D2)

q{Power(h2-D2). Numerical results are available in Supple-

mentary Table 4.
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Supplementary Fig. 3: Violin plots displaying the distribution of per-variant

heritabilities estimated by (a) g-LDSC and (b) PolyFun for underlying causal

and non-causal variants when in-sample LD matrices are used. For each simu-

lation setting, results are aggregated across 200 simulated datasets.
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Supplementary Fig. 4: Negative log10pP valueq of Wilcoxon-Mann-Whitney

tests comparing estimated per-variant heritabilities between causal and non-

causal variants when in-sample LD matrices are used. For each simulation set-

ting, results are aggregated across 200 simulated datasets. Numerical results are available

in Supplementary Table 5.
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Supplementary Fig. 5: Comparison of 95% CSs obtained by different fine-

mapping methods when in-sample LD matrices are used. All values are ag-

gregated across 200 simulated datasets, with error bars indicating standard errors. a,

Number of identified 95% CSs. b, Size of 95% CS, defined as the number of variants in

each CS. c, Purity of 95% CS, defined as the minimum absolute correlation between any

pair of variants within the CS. Numerical results are available in Supplementary Table

2.
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Supplementary Fig. 6: Coverage of 95% CSs grouped by the CS size for sce-

narios with 5 shared causal variants per region when in-sample LD matrices

are used. For each method, 95% CSs from 200 simulated datasets are aggregated and

grouped by their sizes. The proportion of 95% CSs containing at least one causal variant

within each group is shown, with error bars indicating standard errors. Numerical results

are available in Supplementary Table 6.
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Supplementary Fig. 7: Coverage of 95% CSs grouped by the CS size for sce-

narios with 3 shared causal variants per region when in-sample LD matrices

are used. For each method, 95% CSs from 200 simulated datasets are aggregated and

grouped by their sizes. The proportion of 95% CSs containing at least one causal variant

within each group is shown, with error bars indicating standard errors. Numerical results

are available in Supplementary Table 6.
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Supplementary Fig. 8: Coverage of 95% CSs grouped by the CS size for

scenarios with 1 shared causal variant per region when in-sample LD matrices

are used. For each method, 95% CSs from 200 simulated datasets are aggregated and

grouped by their sizes. The proportion of 95% CSs containing at least one causal variant

within each group is shown, with error bars indicating standard errors. Numerical results

are available in Supplementary Table 6.
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Supplementary Fig. 9: Calibration plot of fine-mapping methods when out-of-

sample LD matrices are used. All values are computed by aggregating 200 simulated

datasets. Colored dots represent the true proportion of causal variants among variants

within each CL or PIP bin, with error bars indicating standard errors. Horizontal seg-

ments indicate the expected proportion of causal variants (i.e. the average CL or PIP

within each bin). Numerical results are available in Supplementary Table 3.
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Supplementary Fig. 10: Comparison of 95% CSs obtained by different fine-

mapping methods when out-of-sample LD matrices are used. All values are

aggregated across 200 simulated datasets, with error bars indicating standard errors. a,

Number of identified 95% CSs. b, Size of 95% CS, defined as the number of variants in

each CS. c, Purity of 95% CS, defined as the minimum absolute correlation between any

pair of variants within the CS. Numerical results are available in Supplementary Table

2.
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Supplementary Fig. 11: Coverage of 95% CSs grouped by the CS size for

scenarios with 5 shared causal variants per region when out-of-sample LD

matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-

gregated and grouped by their sizes. The proportion of 95% CSs containing at least one

causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 12: Coverage of 95% CSs grouped by the CS size for

scenarios with 3 shared causal variants per region when out-of-sample LD

matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-

gregated and grouped by their sizes. The proportion of 95% CSs containing at least one

causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 13: Coverage of 95% CSs grouped by the CS size for

scenarios with 1 shared causal variant per region when out-of-sample LD

matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-

gregated and grouped by their sizes. The proportion of 95% CSs containing at least one

causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 14: Improvement in power of MACHINE compared to

h2-D2 when out-of-sample LD matrices are used. Power improvement is defined

as pPower(MACHINE)
´ Power(h2-D2)

q{Power(h2-D2). Numerical results are available in Sup-

plementary Table 4.
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Supplementary Fig. 15: Violin plots display the distribution of per-variant

heritabilities estimated by (a) g-LDSC and (b) PolyFun for underlying causal

and non-causal variants when out-of-sample LD matrices are used. For each

simulation setting, results are aggregated across 200 simulated datasets.
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Supplementary Fig. 16: Negative log10pP valueq of Wilcoxon-Mann-Whitney

tests comparing estimated per-variant heritabilities between causal and non-

causal variants when out-of-sample LD matrices are used. For each simulation

setting, results are aggregated across 200 simulated datasets. Numerical results are

available in Supplementary Table 5.
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Supplementary Fig. 17: Comparison of computational time in simulation

studies. The scatterplot depicts the CPU time (in seconds) versus the number of vari-

ants per locus, both on a logarithmic scale. For each method, a linear regression model

was fitted with log10pCPU time/sq as the response variable and log10pnumber of variantsq

as the predictor. The fitted regression models and corresponding R2 values are displayed.

Numerical results are available in Supplementary Table 7.
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Supplementary Fig. 18: Comparison of CL and PIP distributions between

GLGC fine mapping and UKBB fine mapping for four lipid traits in EUR.

For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions

of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 19: Comparison of CL and PIP distributions between

GLGC fine mapping and UKBB fine mapping for four lipid traits in AFR.

For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions

of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 20: Comparison of CL and PIP distributions between

GLGC fine mapping and UKBB fine mapping for four lipid traits in EAS.

For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions

of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 21: Number of shared and ancestry-specific 95% CSs

identified by each method using UKBB summary statistics for four lipit traits.

Numerical results are available in Supplementary Table 11.
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Supplementary Fig. 22: Number of shared and ancestry-specific 95% CSs

identified by each method using GLGC meta-analysis summary statistics for

four lipit traits. Numerical results are available in Supplementary Table 11.
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in UKBB fine mapping that do not overlap with any 95% CS shared by these ancestries

identified in GLGC fine mapping. Numerical results are available in Supplementary

Table 12.
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Supplementary Tables2

Supplementary Table 1: List of 200 blocks on chr1 selected for simulation3

studies. For each block, the 1-based start coordinate and end coordinate in GRCh374

are shown (both positions are inclusive).5

Supplementary Table 2: Numerical results of simulations. The columns are (1)6

LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample7

size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal8

variants, EAS for EAS causal variants, Shared for shared causal variants; (5) method:9

method name; (6) nVar 0.9: number of variants with CL or PIP ě 0.9; (7) FDR 0.9:10

proportion of non-causal variants among variants with CL or PIP ě 0.9; (8) FDR 0.9 sd:11

s.d. of FDR 0.9; (9) power 0.9: proportion of causal variants with CL or PIP ě 0.9; (10)12

power 0.9 sd: s.d. of power 0.9; (11) n CS95: total number of identified 95% CSs across13

200 simulated datasets; (12) n CS95 sd: s.d. of the number of identified 95% CSs across14

200 simulated datasets; (13) coverage CS95: the proportion of CSs that contain at least15

one causal variant; (14) coverage CS95 sd: s.d. of coverage CS95; (15) power CS95: the16

proportion of causal variants included in the 95% CSs; (16) power CS95 sd: s.d. of17

power CS95; (17) size CS95: average size of 95% CSs; (18) size sd: s.d. of size across18

95% CSs; (19) purity CS95: average purity of 95% CSs; (20) purity sd: s.d. of purity19

across 95% CSs.20

Supplementary Table 3: Numerical results of calibration in simulations. The21

columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3);22

(3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for23

EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants;24

(5) method: method name; (6) group: CL or PIP bin; (7) nSNPs: number of variants25

within bin; (8) Expected: the average CL or PIP within bin; (9) Prop: proportion of26

causal variants within bin; (10) Prop sd: s.d. of Prop.27

Supplementary Table 4: Numerical results of improvement in power of MA-28

CHINE compared to h2-D2 calibration in simulations. The columns are (1) LD:29

LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample size30

of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal vari-31

ants, EAS for EAS causal variants, Shared for shared causal variants; (5) anno method:32

method for incorporating functional annotations; (6) h2-D2 0.9: power of CLě 0.9 for33

h2-D2; (7) MACHINE 0.9: power of CLě 0.9 for MACHINE; (8) improve 0.9: im-34

24



provement in power of CLě 0.9; (9) h2-D2 CS95: power of 95% CSs for h2-D2; (10)35

MACHINE CS95: power of 95% CSs for MACHINE; (11) improve CS95: improvement36

in power of 95% CSs.37

Supplementary Table 5: P values of Wilcoxon-Mann-Whitney tests compar-38

ing estimated per-variant heritabilities between causal and non-causal vari-39

ants. The columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1,40

2, or 3); (3) setting: the combination of ancestry and sample size; (4) anno method:41

method for incorporating functional annotations; (5) p: P values of Wilcoxon-Mann-42

Whitney tests.43

Supplementary Table 6: Coverage of 95% CSs grouped by the CS size. The44

columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3);45

(3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for46

EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants;47

(5) method: method name; (6) size: size group; (7) n CS95: total number of identified48

95% CSs across 200 simulated datasets within the group; (8) coverage: the proportion49

of 95% CSs within the group that contain at least one causal variant; (9) coverage sd:50

s.d. of coverage.51

Supplementary Table 7: Information of fitted linear regression models with52

log10pCPU time/sq as the response variable and log10pnumber of variantsq as53

the predictor. The columns are (1) LD: LD matrices used; (2) method: method name;54

(3) intercept: intercept of the fitted linear model; (4) intercept sd: s.d. of intercept;55

(5) slope: slope of the fitted linear model; (6) slope sd: s.d. of slope; (7) adj.r.squared:56

adjusted R2 value of the fitted linear model.57

Supplementary Table 8: Sample size of each lipid trait in each ancestry. The58

columns are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) UKBB.n: sample59

size of UKBB summary data; (4) GLGC.n: sample size of GLGC summary data.60

Supplementary Table 9: RFRs of fine-mapping methods in real data analysis61

of four lipid traits. The columns are (1) pheno: name of lipid trait; (2) pid: ancestry62

ID; (3) method: method name; (4) num variants 0.9.UKBB: number of variants with CL63

or PIP ě 0.9 in UKBB fine mapping; (5) num variants 0.9.UKBB 0.1.GLGC: number of64

variants with CL or PIP ě 0.9 in UKBB fine mapping and ă 0.1 in GLGC fine mapping;65

(6) RFR 0.9: RFR for variants with CL or PIP ě 0.9 in UKBB fine mapping; (7)66

RFR 0.9 sd: s.d. of RFR 0.9; (8) UKBB nCS: number of 95% CSs identified in UKBB67
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fine mapping; (9) UKBB in GLGC: number of 95% CSs identified in UKBB fine mapping68

that overlap with any 95% CSs identified in GLGC fine mapping; (10) RFR CS95: RFR69

for 95% CSs; (11) RFR CS95 sd: s.d. of RFR CS95.70

Supplementary Table 10: Comparison of CL and PIP distributions between71

GLGC fine mapping and UKBB fine mapping for four lipid traits. The columns72

are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) method: method name; (4)73

group UKBB: CL or PIP bin of UKBB fine mapping; (5) group GLGC: CL or PIP bin74

of GLGC fine mapping; (6) nVar: number of variants within bins.75

Supplementary Table 11: Number of shared and ancestry-specific 95% CSs76

identified by each method for four lipid traits. The columns are (1) db: database77

of GWAS summary data; (2) pheno: name of lipid trait; (3) method: method name;78

(4)-(10): number of shared and ancestry-specific 95% CSs.79

Supplementary Table 12: RFRs for 95% CSs shared by two or three an-80

cestries for four lipid traits. The columns are (1) pheno: name of lipid trait; (2)81

method: method name; (3) pops: combination of ancestries; (4) nCS common: number82

of shared 95% CSs identified in UKBB fine mapping that overlap with any shared 95%83

CSs identified in GLGC fine mapping; (5) RFR CS95: RFR for shared 95% CSs; (6)84

RFR CS95 sd: s.d. of RFR CS95.85

Supplementary Table 13: Enrichment of functionally important variants86

in high-confidence variants and 95% CSs identified by each method for87

four lipid traits. The columns are (1) db: database of GWAS summary data;88

(2) pheno: name of lipid trait; (3) method: method name; (4) num variants: to-89

tal number of variants included in fine-mapping analyses; (5) num variants 0.9: num-90

ber of high-confidence variants (CL or PIP ě 0.9); (6) num CS95: number of identi-91

fied 95% CSs; (7) num variants eQTL: number of eQTLs among all variants included92

in fine-mapping analyses; (8) num variants 0.9 eQTL: number of eQTLs among high-93

confidence variants; (9) num CS95 eQTL: number of 95% CSs containing at least94

one eQTL; (10) num variants Coding: number of coding variants among all vari-95

ants included in fine-mapping analyses; (11) num variants 0.9 Coding: number of cod-96

ing variants among high-confidence variants; (12) num CS95 Coding: number of 95%97

CSs containing at least one coding variant; (13) num variants Regulatory: number98

of putative regulatory variants among all variants included in fine-mapping analyses;99

(14) num variants 0.9 Regulatory: number of putative regulatory variants among high-100
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confidence variants; (15) num CS95 Regulatory: number of 95% CSs containing at least101

one putative regulatory variant.102

Supplementary Table 14: Number of shared and ancestry-specific 95% CSs103

identified by each method for SCZ. The columns are (1) method: method name; (2)104

EUR EAS: number of identified 95% CSs shared by EUR and EAS; (3) EUR-specific:105

number of identified EUR-specific 95% CSs; (4) EUR-specific: number of identified EAS-106

specific 95% CSs.107

Supplementary Table 15: Enrichment of functionally important variants in108

medium-high-confidence variants and 95% CSs identified by each method109

for SCZ. The columns are (1) method: method name; (2) num variants: total num-110

ber of variants included in fine-mapping analyses; (3) num variants 0.5: number of111

medium-high-confidence variants (CL or PIP ě 0.5); (4) num CS95: number of iden-112

tified 95% CSs; (5) num variants eQTL: number of eQTLs among all variants included113

in fine-mapping analyses; (6) num variants 0.5 eQTL: number of eQTLs among medium-114

high-confidence variants; (7) num CS95 eQTL: number of 95% CSs containing at least115

one eQTL; (8) num variants Coding: number of coding variants among all variants in-116

cluded in fine-mapping analyses; (9) num variants 0.5 Coding: number of coding vari-117

ants among medium-high-confidence variants; (10) num CS95 Coding: number of 95%118

CSs containing at least one coding variant; (11) num variants Regulatory: number of119

putative regulatory variants among all variants included in fine-mapping analyses; (12)120

num variants 0.5 Regulatory: number of putative regulatory variants among medium-121

high-confidence variants; (13) num CS95 Regulatory: number of 95% CSs containing at122

least one putative regulatory variant.123
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Supplementary Note124

MCMC sampling algorithm125

For k P t1, . . . , Ku and j P t1, . . . , Ju, we introduce a latent variable ψ
pkq

j „ Expp1q, such126

that the Laplace prior distribution β
pkq

j | σ
pkq

j „ DE

ˆ

0,
b

σ
pkq

j {2

˙

can be expressed as127

β
pkq

j | ψ
pkq

j , σ
pkq

j „N
´

0, ψ
pkq

j σ
pkq

j

¯

,

ψ
pkq

j „Expp1q.

Let γ
pkq

j “ log
´

σ
pkq

j {Kj

¯

. The prior distribution of Γ “

!

γ
pkq

j

)

can be expressed as128

ppΓq9
ź

j:Kj“1

k:γ
pkq

j “1

exp
!

ajγ
pkq

j

)

ˆ
ź

j:Kją1

$

’

&

’

%

¨

˝

ÿ

kPKj

eγ
pkq

j

˛

‚

aj´
ř

kPKj
c

pkq

j
ź

kPKj

exp
!

c
pkq

j γ
pkq

j

)

,

/

.

/

-

ˆ

¨

˝1 ´

J
ÿ

j“1

ÿ

kPKj

eγ
pkq

j

˛

‚

b´1

ˆ 1

$

&

%

J
ÿ

j“1

ÿ

kPKj

eγ
pkq

j ď 1

,

.

-

.

Let129

µpkq
“

?
N pkqRpkq

´

Rpkq
` pλpkqIJpkq

¯´1

zpkq

“
?
N pkqU pkqDpkq

´

Dpkq
` pλpkqIJpkq

¯´1
`

U pkq
˘J

zpkq,

W pkq
“ N pkqRpkq

´

Rpkq
` pλpkqIJpkq

¯´1

Rpkq

“ N pkqU pkqDpkq
´

Dpkq
` pλpkqIJpkq

¯´1

Dpkq
`

U pkq
˘J
.

The complete data likelihood is130

ppZ,B,T ,Ψq

9

K
ź

k“1

exp

"

µpkqJ
βpkq

´
1

2
βpkqJ

W pkqβpkq

*

ˆ

J
ź

j“1

ź

kPKj

´

ψ
pkq

j eγ
pkq

j

¯´ 1
2
exp

$

’

&

’

%

´

´

β
pkq

j

¯2

2Kjψ
pkq

j eγ
pkq

j

,

/

.

/

-

ˆ

J
ź

j“1

ź

kPKj

exp
!

´ψ
pkq

j

)

ˆ
ź

j:Kj“1

k:γ
pkq

j “1

exp
!

ajγ
pkq

j

)

ˆ
ź

j:Kją1

$

’

&

’

%

¨

˝

ÿ

kPKj

eγ
pkq

j

˛

‚

aj´
ř

kPKj
c

pkq

j
ź

kPKj

exp
!

c
pkq

j γ
pkq

j

)

,

/

.

/

-

ˆ

¨

˝1 ´

J
ÿ

j“1

ÿ

kPKj

eγ
pkq

j

˛

‚

b´1

ˆ 1

$

&

%

J
ÿ

j“1

ÿ

kPKj

eγ
pkq

j ď 1

,

.

-

.
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We propose the following MCMC algorithm to sample parameters from the posterior131

distribution:132

(i) Set initial values for B, T , and Ψ.133

(ii) For each j P t1, . . . , Ju and each k P Kj:134

(i) Update γ
pkq

j using Metropolis-Hastings algorithm according to the unnormal-135

ized density136

p
´

γ
pkq

j | β
pkq

´j , ψ
pkq

j ,T z

!

γ
pkq

j

)

, z
pkq

j

¯

9

b

rσ
pkq

j ˆ exp

"

1

2
rσ

pkq

j

´

u
pkq

j

¯2
*

ˆ exp

"ˆ

c
pkq
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1

2

˙

γ
pkq

j

*

ˆ

¨

˝eγ
pkq
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ÿ

k1PKjztku
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j

˛

‚
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ř

k1PKj
c

pk1q

j

ˆ

¨

˝1 ´ eγ
pkq
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ÿ
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e
γ
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j1

˛

‚

b´1

ˆ1

$

&

%

γ
pkq

j ď ln

¨

˝1 ´
ÿ

pk1,j1q‰pk,jq

e
γ

pk1q

j1

˛

‚

,

.

-

,

if Kj ą 1, otherwise137

p
´

γ
pkq

j | β
pkq

´j , ψ
pkq

j ,T z

!

γ
pkq

j

)

, z
pkq

j

¯

9

b

rσ
pkq
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"

1

2
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pkq
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´

u
pkq
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¯2
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"ˆ

aj ´
1
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˙
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pkq
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ˆ

¨

˝1 ´ eγ
pkq

j ´
ÿ

pk1,j1q‰pk,jq

e
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˛

‚
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$

&

%

γ
pkq

j ď ln

¨
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ÿ
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γ
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-

,

where138

rσ
pkq

j “

»

–W
pkq

jj `
1

ψ
pkq

j eγ
pkq

j

fi

fl

´1

, u
pkq

j “ µ
pkq

j ´
ÿ

j1‰j

W
pkq

jj1 β
pkq

j .

(ii) Update β
pkq

j „ N
´

rσ
pkq

j u
pkq

j , rσ
pkq

j

¯

.139

(iii) Update140

1

ψ
pkq

j

| βj, γj „ InvGaussian

¨

˝mean “

?
2eγ

pkq

j {2

ˇ

ˇ

ˇ
β

pkq

j

ˇ

ˇ

ˇ

, shape “ 2

˛

‚.
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(iii) To improve mixing of MCMC chain, after every 5 steps, we will choose several141

pairs of SNPs with high LD in at least one ancestry and propose a proposal by142

switching the values of each pair. For a given pair j1 and j2 with high LD in the143

k-th ancestry, the proposal is given by setting144

γ
pkq

j1,new
“ γ

pkq

j2
, γ

pkq

j2,new
“ γ

pkq

j1
, ψ

pkq

j1,new
“ ψ

pkq

j2
Kj2{Kj1 , ψ

pkq

j2,new
“ ψ

pkq

j1
Kj1{Kj2 ,

and145

β
pkq

j1,new
“ β

pkq

j2
, β

pkq

j2,new
“ β

pkq

j1
,

if R
pkq

j1,j2
ą 0, or146

β
pkq

j1,new
“ ´β

pkq

j2
, β

pkq

j2,new
“ ´β

pkq

j1
,

if R
pkq

j1,j2
ă 0. Let s “ sgn

´

R
pkq

j1,j2

¯

. The acceptance probability is147
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%
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)

^ 1.

(iv) Repeat Steps (ii)-(iii) until convergence.148

Choice of hyper-parameter b149

The choice of hyper-parameter b is based on the relationship between hyper-parameters150

and the prior expectation of local heritability. The averaged prior expectation of local151

heritability across ancestries is152

1

K

K
ÿ

k“1

Ephpkq
q “

1

K

K
ÿ

k“1

ÿ

jPJ pkq

KjE pξjqE
´

η
pkq

j

¯

“
1

K

1
řJ

j“1 aj ` b

K
ÿ

k“1

ÿ

jPJ pkq

Kjaj
c

pkq

j
ř

k1PKj
c

pk1q

j

“
A˚

A ` b
,
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where A “
řJ

j“1 aj and153

A˚
“

1

K

K
ÿ

k“1

ÿ

jPJ pkq

Kjaj
c

pkq

j
ř

k1PKj
c

pk1q

j

.

The procedure of specifying b is:154

(i) Set initial hest “ 10´4 and set b “ A˚{hest ´ A.155

(ii) Run MCMC algorithm for nmcmc (default 400) steps. Discard the first nburnin156

(default 200) samples as burn in.157

(iii) For n P tnburnin ` 1, . . . , nmcmcu, let Bn “

”

β
p1q
n , . . . ,β

pKq
n

ı

denote the n-th MCMC158

sample of B. The n-th MCMC sample of the local heritability of the k-th ancestry159

is computed by h
pkq
n “

´

β
pkq
n

¯J

Rpkqβ
pKq
n . Let160

hn “
1

K

K
ÿ

k“1

hpkq
n .

(iv) Perform a t-test to compare the mean of
␣

hn | n P tnburnin ` 1, . . . , nmcmcu
(

with161

hest. If the P value is less than 0.05, set162

hest “
1

nmcmc ´ nburnin

nmcmc
ÿ

n“nburnin`1

hn,

b “ A˚{hest ´ A, and go back to step (ii). Otherwise, stop the algorithm.163
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