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Supplementary Fig. 1: Calibration plot of fine-mapping methods when in-

sample LD matrices are used. All values are computed by aggregating 200 simulated

datasets. Colored dots represent the true proportion of causal variants among variants

within each CL or PIP bin, with error bars indicating standard errors. Horizontal seg-

ments indicate the expected proportion of causal variants (i.e. the average CL or PIP

within each bin). Numerical results are available in Supplementary Table 3.
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Supplementary Fig. 2: Improvement in power of MACHINE compared to

h2-D2 when in-sample LD matrices are used. Power improvement is defined as
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(Power — Power /Power(hz'm). Numerical results are available in Supple-

mentary Table 4.
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lation setting, results are aggregated across 200 simulated datasets.
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Supplementary Fig. 5: Comparison of 95% CSs obtained by different fine-
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within each group is shown, with error bars indicating standard errors. Numerical results

are available in Supplementary Table 6.
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are used. For each method, 95% CSs from 200 simulated datasets are aggregated and
grouped by their sizes. The proportion of 95% CSs containing at least one causal variant
within each group is shown, with error bars indicating standard errors. Numerical results

are available in Supplementary Table 6.
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Supplementary Fig. 9: Calibration plot of fine-mapping methods when out-of-
sample LD matrices are used. All values are computed by aggregating 200 simulated
datasets. Colored dots represent the true proportion of causal variants among variants
within each CL or PIP bin, with error bars indicating standard errors. Horizontal seg-
ments indicate the expected proportion of causal variants (i.e. the average CL or PIP

within each bin). Numerical results are available in Supplementary Table 3.
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Supplementary Fig. 10: Comparison of 95% CSs obtained by different fine-
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aggregated across 200 simulated datasets, with error bars indicating standard errors. a,
Number of identified 95% CSs. b, Size of 95% CS, defined as the number of variants in
each CS. ¢, Purity of 95% CS, defined as the minimum absolute correlation between any
pair of variants within the CS. Numerical results are available in Supplementary Table
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Supplementary Fig. 11: Coverage of 95% CSs grouped by the CS size for
scenarios with 5 shared causal variants per region when out-of-sample LD
matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-
gregated and grouped by their sizes. The proportion of 95% CSs containing at least one
causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 12: Coverage of 95% CSs grouped by the CS size for
scenarios with 3 shared causal variants per region when out-of-sample LD
matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-
gregated and grouped by their sizes. The proportion of 95% CSs containing at least one
causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 13: Coverage of 95% CSs grouped by the CS size for
scenarios with 1 shared causal variant per region when out-of-sample LD
matrices are used. For each method, 95% CSs from 200 simulated datasets are ag-
gregated and grouped by their sizes. The proportion of 95% CSs containing at least one
causal variant within each group is shown, with error bars indicating standard errors.

Numerical results are available in Supplementary Table 6.
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Supplementary Fig. 14: Improvement in power of MACHINE compared to

h2-D2 when out-of-sample LD matrices are used. Power improvement is defined
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plementary Table 4.
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Supplementary Fig. 15: Violin plots display the distribution of per-variant
heritabilities estimated by (a) g-LDSC and (b) PolyFun for underlying causal
and non-causal variants when out-of-sample LD matrices are used. For each

simulation setting, results are aggregated across 200 simulated datasets.
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tests comparing estimated per-variant heritabilities between causal and non-
causal variants when out-of-sample LD matrices are used. For each simulation
setting, results are aggregated across 200 simulated datasets. Numerical results are

available in Supplementary Table 5.
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Supplementary Fig. 17: Comparison of computational time in simulation
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ants per locus, both on a logarithmic scale. For each method, a linear regression model
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as the predictor. The fitted regression models and corresponding R? values are displayed.

Numerical results are available in Supplementary Table 7.
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Supplementary Fig. 18: Comparison of CL and PIP distributions between
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of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 19: Comparison of CL and PIP distributions between
GLGC fine mapping and UKBB fine mapping for four lipid traits in AFR.
For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions
of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 20: Comparison of CL and PIP distributions between
GLGC fine mapping and UKBB fine mapping for four lipid traits in EAS.
For each CL or PIP bin defined by GLGC fine mapping, the corresponding distributions
of CL or PIP from UKBB fine mapping are presented. Numerical results are available

in Supplementary Table 10.
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Supplementary Fig. 21: Number of shared and ancestry-specific 95% CSs
identified by each method using UKBB summary statistics for four lipit traits.

Numerical results are available in Supplementary Table 11.
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Supplementary Fig. 22: Number of shared and ancestry-specific 95% CSs
identified by each method using GLGC meta-analysis summary statistics for

four lipit traits. Numerical results are available in Supplementary Table 11.
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Supplementary Fig. 23: RFRs for 95% CSs shared by two or three ancestries.
RFR is defined as the proportion of 95% CSs shared by two or three ancestries identified
in UKBB fine mapping that do not overlap with any 95% CS shared by these ancestries
identified in GLGC fine mapping. Numerical results are available in Supplementary

Table 12.
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Supplementary Tables

Supplementary Table 1: List of 200 blocks on chrl selected for simulation
studies. For each block, the 1-based start coordinate and end coordinate in GRCh37
are shown (both positions are inclusive).

Supplementary Table 2: Numerical results of simulations. The columns are (1)
LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample
size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal
variants, EAS for EAS causal variants, Shared for shared causal variants; (5) method:
method name; (6) nVar_0.9: number of variants with CL or PIP > 0.9; (7) FDR_.0.9:
proportion of non-causal variants among variants with CL or PIP > 0.9; (8) FDR_0.9_sd:
s.d. of FDR_0.9; (9) power_0.9: proportion of causal variants with CL or PIP > 0.9; (10)
power_0.9_sd: s.d. of power_0.9; (11) n_CS95: total number of identified 95% CSs across
200 simulated datasets; (12) n-CS95_sd: s.d. of the number of identified 95% CSs across
200 simulated datasets; (13) coverage CS95: the proportion of CSs that contain at least
one causal variant; (14) coverage_CS95_sd: s.d. of coverage CS95; (15) power_CS95: the
proportion of causal variants included in the 95% CSs; (16) power_CS95.sd: s.d. of
power_CS95; (17) size_CS95: average size of 95% CSs; (18) size_sd: s.d. of size across
95% CSs; (19) purity_CS95: average purity of 95% CSs; (20) purity_sd: s.d. of purity
across 95% CSs.

Supplementary Table 3: Numerical results of calibration in simulations. The
columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3);
(3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for
EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants;
(5) method: method name; (6) group: CL or PIP bin; (7) nSNPs: number of variants
within bin; (8) Expected: the average CL or PIP within bin; (9) Prop: proportion of
causal variants within bin; (10) Prop_sd: s.d. of Prop.

Supplementary Table 4: Numerical results of improvement in power of MA-
CHINE compared to h2-D2 calibration in simulations. The columns are (1) LD:
LD matrices used; (2) scenario: simulation scenario (1, 2, or 3); (3) N2: sample size
of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for EUR causal vari-
ants, EAS for EAS causal variants, Shared for shared causal variants; (5) anno_method:
method for incorporating functional annotations; (6) h2-D2_0.9: power of CL> 0.9 for

h2-D2; (7) MACHINE_0.9: power of CL> 0.9 for MACHINE; (8) improve 0.9: im-
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provement in power of CL> 0.9; (9) h2-D2_CS95: power of 95% CSs for h2-D2; (10)
MACHINE_CS95: power of 95% CSs for MACHINE; (11) improve_CS95: improvement
in power of 95% CSs.

Supplementary Table 5: P values of Wilcoxon-Mann-Whitney tests compar-
ing estimated per-variant heritabilities between causal and non-causal vari-
ants. The columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1,
2, or 3); (3) setting: the combination of ancestry and sample size; (4) anno_method:
method for incorporating functional annotations; (5) p: P values of Wilcoxon-Mann-
Whitney tests.

Supplementary Table 6: Coverage of 95% CSs grouped by the CS size. The
columns are (1) LD: LD matrices used; (2) scenario: simulation scenario (1, 2, or 3);
(3) N2: sample size of EAS; (4) POP: Cross for cross-ancestry causal variants, EUR for
EUR causal variants, EAS for EAS causal variants, Shared for shared causal variants;
(5) method: method name; (6) size: size group; (7) n-CS95: total number of identified
95% CSs across 200 simulated datasets within the group; (8) coverage: the proportion
of 95% CSs within the group that contain at least one causal variant; (9) coverage_sd:
s.d. of coverage.

Supplementary Table 7: Information of fitted linear regression models with
log,,(CPU time/s) as the response variable and log,,(number of variants) as
the predictor. The columns are (1) LD: LD matrices used; (2) method: method name;
(3) intercept: intercept of the fitted linear model; (4) intercept_sd: s.d. of intercept;
(5) slope: slope of the fitted linear model; (6) slope_sd: s.d. of slope; (7) adj.r.squared:
adjusted R? value of the fitted linear model.

Supplementary Table 8: Sample size of each lipid trait in each ancestry. The
columns are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) UKBB.n: sample
size of UKBB summary data; (4) GLGC.n: sample size of GLGC summary data.
Supplementary Table 9: RFRs of fine-mapping methods in real data analysis
of four lipid traits. The columns are (1) pheno: name of lipid trait; (2) pid: ancestry
ID; (3) method: method name; (4) num_variants_0.9.UKBB: number of variants with CL
or PIP > 0.9 in UKBB fine mapping; (5) num_variants_0.9.UKBB_0.1.GLGC: number of
variants with CL or PIP > 0.9 in UKBB fine mapping and < 0.1 in GLGC fine mapping;
(6) RFR.0.9: RFR for variants with CL or PIP > 0.9 in UKBB fine mapping; (7)
RFR_0.9.sd: s.d. of RFR_0.9; (8) UKBB_nCS: number of 95% CSs identified in UKBB
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fine mapping; (9) UKBB_in_ GLGC: number of 95% CSs identified in UKBB fine mapping
that overlap with any 95% CSs identified in GLGC fine mapping; (10) RFR_CS95: RFR
for 95% CSs; (11) RFR_CS95.sd: s.d. of RFR_CS95.

Supplementary Table 10: Comparison of CL and PIP distributions between
GLGC fine mapping and UKBB fine mapping for four lipid traits. The columns
are (1) pheno: name of lipid trait; (2) pid: ancestry ID; (3) method: method name; (4)
group_UKBB: CL or PIP bin of UKBB fine mapping; (5) group-.GLGC: CL or PIP bin
of GLGC fine mapping; (6) nVar: number of variants within bins.

Supplementary Table 11: Number of shared and ancestry-specific 95% CSs
identified by each method for four lipid traits. The columns are (1) db: database
of GWAS summary data; (2) pheno: name of lipid trait; (3) method: method name;
(4)-(10): number of shared and ancestry-specific 95% CSs.

Supplementary Table 12: RFRs for 95% CSs shared by two or three an-
cestries for four lipid traits. The columns are (1) pheno: name of lipid trait; (2)
method: method name; (3) pops: combination of ancestries; (4) nCS_common: number
of shared 95% CSs identified in UKBB fine mapping that overlap with any shared 95%
CSs identified in GLGC fine mapping; (5) RFR_CS95: RFR for shared 95% CSs; (6)
RFR_CS95 sd: s.d. of RFR_CS95.

Supplementary Table 13: Enrichment of functionally important variants
in high-confidence variants and 95% CSs identified by each method for
four lipid traits. The columns are (1) db: database of GWAS summary data;
(2) pheno: name of lipid trait; (3) method: method name; (4) num_variants: to-
tal number of variants included in fine-mapping analyses; (5) num_variants_0.9: num-
ber of high-confidence variants (CL or PIP > 0.9); (6) num_CS95: number of identi-
fied 95% CSs; (7) num_variants_eQTL: number of eQTLs among all variants included
in fine-mapping analyses; (8) num_variants_0.9_eQTL: number of eQTLs among high-
confidence variants; (9) num_CS95_eQTL: number of 95% CSs containing at least
one eQTL; (10) num_variants_Coding: number of coding variants among all vari-
ants included in fine-mapping analyses; (11) num _variants_0.9_Coding: number of cod-
ing variants among high-confidence variants; (12) num_CS95_Coding: number of 95%
CSs containing at least one coding variant; (13) num_variants_Regulatory: number
of putative regulatory variants among all variants included in fine-mapping analyses;

(14) num_variants_0.9_Regulatory: number of putative regulatory variants among high-
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confidence variants; (15) num_CS95_Regulatory: number of 95% CSs containing at least
one putative regulatory variant.

Supplementary Table 14: Number of shared and ancestry-specific 95% CSs
identified by each method for SCZ. The columns are (1) method: method name; (2)
EUR_EAS: number of identified 95% CSs shared by EUR and EAS; (3) EUR-specific:
number of identified EUR-specific 95% CSs; (4) EUR-specific: number of identified EAS-
specific 95% CSs.

Supplementary Table 15: Enrichment of functionally important variants in
medium-high-confidence variants and 95% CSs identified by each method
for SCZ. The columns are (1) method: method name; (2) num_variants: total num-
ber of variants included in fine-mapping analyses; (3) num_variants_0.5: number of
medium-high-confidence variants (CL or PIP > 0.5); (4) num_CS95: number of iden-
tified 95% CSs; (5) num_variants_eQTL: number of eQTLs among all variants included
in fine-mapping analyses; (6) num_variants_0.5_eQTL: number of eQTLs among medium-
high-confidence variants; (7) num_CS95_eQTL: number of 95% CSs containing at least
one eQTL; (8) num_variants_Coding: number of coding variants among all variants in-
cluded in fine-mapping analyses; (9) num_variants_0.5_Coding: number of coding vari-
ants among medium-high-confidence variants; (10) num_CS95_Coding: number of 95%
CSs containing at least one coding variant; (11) num_variants_Regulatory: number of
putative regulatory variants among all variants included in fine-mapping analyses; (12)
num_variants_0.5_Regulatory: number of putative regulatory variants among medium-
high-confidence variants; (13) num_CS95_Regulatory: number of 95% CSs containing at

least one putative regulatory variant.
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= Supplementary Note

s MCMC sampling algorithm

s Forke{l,...,K}andje{l,...,J}, weintroduce a latent variable @b](-k) ~ Exp(1), such
127 that the Laplace prior distribution ﬂ](-k) | ~ DE ( \/O; / 2> can be expressed as

(k k) k k
9, o N (0,4001),
i ~Exp(1).
J

s Let 7](14) = log (a](-k) /K j>. The prior distribution of ' = {y(k)} can be expressed as

) (k)
aj *Zkeicj 2

p(T)oc H exp {aﬂ;k)} X 1_[ Z &1 H exp {cgk)vj(»k)}

j:Kj:]. j:Kj>1 kE’C]’ k)E’C]’
(k)
k.'yj 1
b—1
J J
’Y(k> ,y(k)
x | 1-— Z e'i x 1 Z e <1
J=1kek; J=1kek;

129 Let

N -1
W = NOR® (R + AP L,0)  R®
N ~1
- NOU®D® (DW 4+ 301, ) D ()"

1o The complete data likelihood is

p(Z,B,T,¥)
K T 1 T
o H exp {“(k) Bw 25 (k) k)ﬁ(k }
k=1
1 (5<k>>2 ;
W\ "2
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131 We propose the following MCMC algorithm to sample parameters from the posterior

122 distribution:
33 (i) Set initial values for B, T', and W.

s (i) For each je {1,...,J} and each k € K;:

135 (i) Update ’y](-k) using Metropolis-Hastings algorithm according to the unnormal-

136 ized density

k: k
p (17189, 1\ {1}, o)
1
~ (k) ~(k) (, (k)
/3 xexp{zj @)}

1 ) (") ’
X exp { (cgk) — 5) yj(k)} X e%k + Z e%‘k
k'elCi\{k}
b—1

(k) )
x| 1—-¢e% — Z el

(K'.5")#(k.7)

(k)
x1 % <In|1- Z e’ )
(K'.5")# (k.5)

137 if K; > 1, otherwise

k
p (1184, 0, 1 {50},
1
o 5]@) y exp{Q ](k) (ugk)> }

b—1
1 (k) )
% eXp{(% - 5) 7](-'“)} wl1-ev” = 2 Rl
(K",5")#(k,j)
NE)
x1 fy 111 1- Z e i’ ,
(k"5 #(k,j)
138 where .
~(k) _ (k) 1 ®  ® -
wj ¢’ J'#5
1 (ii) Update ﬁ;k) ~N <~j(-k)u§k), ~](k)>'
10 (iii) Update
(k)
L 9a7; /2
(k) | B;,7; ~ InvGaussian [ mean = JL, shape = 2

¥;

B
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(iii) To improve mixing of MCMC chain, after every 5 steps, we will choose several

pairs of SNPs with high LD in at least one ancestry and propose a proposal by

switching the values of each pair. For a given pair j; and j5 with high LD in the

k-th ancestry, the proposal is given by setting

'VJ(i)new ’73(5)77](;)new 7§f),¢§f,)new J2/ 117 g,new Jl/ J2o
and
Bl = B Biaew = By
if le j, > 0, or
B = ~ B+ Bmen = —B3)
if le , < 0. Let s =sgn <Rj(lf)]2> The acceptance probability is
expy | D5 (W W) A = s | (80— s8))
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(iv) Repeat Steps (ii)-(iii) until convergence.

Choice of hyper-parameter b

The choice of hyper-parameter b is based on the relationship between hyper-parameters

and the prior expectation of local heritability. The averaged prior expectation of local

heritability across ancestries is

| K

_ (k)

150 zsz7<>

k=1 K= 1 je (k)
(k)
1 C; A*
Y Ky

KZ] 145 +bk 1 jeg (k) Zk'elcj CE' b A+D
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where A = ijl a; and

The procedure of specifying b is:

(i) Set initial hey = 107 and set b = A* /By — A.

(ii)) Run MCMC algorithm for nyeme (default 400) steps. Discard the first npumin
(default 200) samples as burn in.

(iii) For n € {npurmin + 1, .-, Pmeme}, let By, = [B,(zl), . ,B,EK)] denote the n-th MCMC
sample of B. The n-th MCMC sample of the local heritability of the k-th ancestry
T
is computed by hP = <B7(lk)> R(k),B,(@K). Let

1 K
hp = = Y AW,
I

(iv) Perform a t-test to compare the mean of {En | 7€ {Nburnin + 1, . .. ,nmcmc}} with

hest. If the P value is less than 0.05, set

1 Mmecme

hest = Z hm

Nmeme — Mburnin

N=Nhurnin+1

b= A*/hesy — A, and go back to step (ii). Otherwise, stop the algorithm.
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