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Equations of State

Multiparametric equations of state are functions that describe the thermodynamic properties of a real fluid, either
as a single-component or multicomponent substance. Once a specific functional form is chosen, a large set of
experimental data is fitted by adjusting appropriate free parameters. This process yields an expression in the
form of a thermodynamic potential, such as the Helmholtz free energy, as a function of reduced state variables,
namely the reduced density δ = ρ/ρc and the inverse reduced temperature τ = Tc/T . This expression provides a
complete description of the fluid’s thermodynamic behaviour, from which all relevant properties can be derived via
appropriate thermodynamic differentiation. For a single-component fluid, the Helmholtz free energy per unit mass
is typically expressed as the sum of an ideal part ϕ0 and a residual part ϕr, which accounts for deviations from
ideal behaviour:

f̂(ρ, T )

RT
= ϕ(δ, τ) = ϕ0(δ, τ) + ϕr(δ, τ) (1)

where R is the specific gas constant. The behaviour of water is modelled using the IAPWS-95 formulation [1], while
the thermodynamic properties of nitrogen and helium IV are taken from the GERG-2008 [2] equation of state.
The specific functional forms used, along with the fitted parameter values, are presented comprehensively in the
following subsections. For further details, the reader is referred to the original works.

Nitrogen and Helium IV - GERG2008

The GERG-2008 [2] equation of state was developed to accurately represent the thermodynamic properties of natural
gases and a wide variety of other gas mixtures. The functional forms for the ideal and residual contributions are
shown in equations 2, 3. The respective coefficients for the two fluids are reported in Tables 3, 4. The symbol R∗

denotes a reference ideal gas constant whose value is R∗ = 8.314510 J mol−1 K−1.

ϕo(δ, τ) = ln (δ) +
R∗

R

no1 + no
2τ + no3 ln (τ) +

∑
k=4,6

nok ln
(∣∣∣sinh(ϑokτ)∣∣∣ )+ ∑

k=5,7

nok ln
(
cosh

(
ϑokτ

)) (2)

ϕr(δ, τ) =

KPol∑
k=1

nkδ
dkτ tk +

KPol+KExp∑
k=KPol+1

nkδ
dkτ tk exp(−δck) (3)

Fluid Tc (K) Pc (MPa) ρc (kg/m³)

Nitrogen 126.192 3.396 313.3
Helium 5.195 0.227 69.6
Water 647.096 22.064 322.0

Table 1: Critical Parameters of Nitrogen, Helium and Water

1



Water - IAPWS95

The IAPWS-95 [1] is the most accurate equation of state for water, capable of reproducing its thermodynamic
properties over a wide range of temperatures and densities. The following expressions give the ideal and residual
parts of the Helmholtz free energy, while the corresponding coefficients are listed in Tables 5, 6

ϕo = ln(δ) + no1 + no
2τ + no3 ln(τ) +

8∑
i=4

noi ln [1− exp(−γoi τ)] (4)

ϕr =

7∑
i=1

niδ
diτ ti +

51∑
i=8

niδ
diτ ti exp (−δci) +

54∑
i=52

niδ
diτ ti exp

[
−αi (δ − εi)

2 − βi (τ − γi)
2
]
+

56∑
i=55

ni∆
aiδ ψ (5)

with

∆ = θ2 +Bi

[
(δ − 1)2

]ai

θ = (1− τ) +Ai

[
(δ − 1)2

]( 1
2βi

)
ψ = exp

[
−Ci(δ − 1)2 −Di(τ − 1)2

] (6)

EoS Correction

The van der Waals square-gradient approximation provides a method to represent the coexistence of multiple phases
in a fluid. To apply this approach, it is necessary to have an equation of state capable of describing not only the fluid
under stable conditions but also under metastable and unstable states. The advantage of multiparametric equations
of state is that they are derived by fitting experimental data that also cover metastable fluid states, enabling an
accurate and quantitative description of the metastable regime. In the instability region, however, experimental
measurements are not feasible, as the fluid undergoes spinodal decomposition. As a result, the predictions of the
multiparametric equations of state in this region are physically unreliable. Specifically, quantities such as energy,
pressure, and chemical potential exhibit strong oscillations, commonly referred to as Maxwell loops [3], which lead
to the appearance of non-physical stationary states and can compromise the stability and convergence of numerical
methods. To address this issue, the correction method proposed in [4] has been applied. The Helmholtz free energy
per unit mass is expressed as a piecewise-defined function:

f̂ corr(ρ, T ) =

{
f̂eos(ρ, T ), ρ ≤ ρspin

V
(T ) ∪ ρ ≥ ρspin

L
(T )

f̂mod(ρ, T ), ρspin
V

(T ) < ρ < ρspin
L

(T )
(9)

where ρspinv and ρspinl denote the densities along the spinodal curve, the line that separates the metastable region
from the unstable one. By enforcing continuity and differentiability of the energy across the two branches of the
function, and recalling that the spinodal curve satisfies the condition ∂p/∂ρ = 0, any modified equation of state

f̂mod is required to meet the following conditions:

pmod
(
ρspin

V

)
= p

(
ρspin

V

)
pmod

(
ρspin

L

)
= p

(
ρspin

L

)
∂pmod

∂ρ

(
ρspin

V

)
= 0
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∂ρ
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L

)
= 0

f̂mod
(
ρspin

V

)
= f̂

(
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V

)
f̂mod

(
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L
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= f̂

(
ρspin

L

)

(10)
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The functional forms used for the free energy and for the pressure are the following

f̂mod =

∫
pmod

ρ2
dρ+ F

pmod = Aρ3 +Bρ2 + Cρ+D + E exp(ρ)ρ2

(7)

where A, B, C, D, E and F are constants chosen to satisfy the constraints described above. The specific functional
form adopted does not appear to significantly affect macroscopic observables such as the nucleation rates [4]. Figure
(1) shows the GERG-2008 pressure correction for Nitrogen at −160◦C.

Figure 1: In solid black, the EoS isotherm curve is kept unchanged; in dashed black, the Van der Waals loop of
the EoS isotherm; in red the corrected version. Additionally, the spinodal and binodal lines are shown in blue and
green, respectively.

Surface Tension

In order to properly calibrate the diffuse interface model, the surface tension of the planar interface needs to be
known. The surface tension correlations used in this work [5] are based on a version of the NIST REFPROP model
[6]. The general expression is reported below, while the parameters used are listed in Table 2.

σ(T ) =

k−1∑
i=0

σi

(
1− T

Tc

)ni

(8)

Fluid σ0 n0 σ1 n1 σ2 n2

Nitrogen 0.028 98 1.246
Helium 0.000 465 6 1.040 0.001 889 2.468 −0.002 006 2.661
Water −0.1306 2.471

Table 2: Surface Tension parameters of Nitrogen, Helium and Water
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Capillary coefficient

Once an equation of state and the surface tension of the planar interface are known, the capillary coefficient can be
estimated using the following relation [4]

λ(T ) =
σ2(T )(∫ ρsat

L

ρsat
V

√
2∆ω dρ

)2 (9)

where ∆ω = ρf − µsatρ+ psat denotes the difference in grand potential density. The capillary coefficient is treated
as a fitting parameter to reproduce the surface tension at a fixed temperature and has no explicit connection to
the fluid’s direct correlation function. The values of the dimensionless capillary coefficient (λref = PcL

2
ref/ρc with

Lref = 1nm and Pc , ρc as reported in Table 1) as a function of temperature for the fluids under study are shown
in Figure 2. Since the equations of state are mean-field, they do not accurately reproduce the scaling behaviour
near the critical point. Similarly, the expression for the surface tension is derived from fitting experimental data
and does not account for the proper critical exponents. Therefore, simulations conducted too close to the critical
point may yield inaccurate results and have been avoided.

Figure 2: The capillary coefficient λ as a function of temperature is reported for the three fluids analyzed in the
study: water in light blue, nitrogen in gray, helium in brown.

Density Profile MEP

This section presents the Minimum Energy Path for the nucleation of a vapour bubble in superheated water.
The sequence of density profiles constituting the MEP has the saddle-point configuration highlighted in black.
Supercritical (shades of red) and precritical (shades of blue) profiles are also shown. The arrows indicate the
direction of progression along the reaction pathway. The thermodynamic conditions are the same as those discussed
in the Results section of the main text (ρ = 684.2kg/m3 and θ = 302◦C). In all simulations, the path is resolved
using 400 images, with refinement of the early stage of the process conducted using Allen-Cahn dynamics relaxation.
The spatial discretisation space ∆ = 0.125nm on a domain of length L = 100nm. The pseudo-time step was selected
as ∆t̃ = 0.001.
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Figure 3: Density profiles on the MEP.
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EoS Coefficients

k no
k ϑo

k k no
k ϑo

k

Nitrogen

1 11.083 407 489 5 −0.146 60 −5.393 067 706
2 −22.202 102 428 6 0.900 66 13.788 988 208
3 2.500 31 7
4 0.137 32 5.251 822 620

Helium

1 13.628 409 737 5
2 −143.470 759 602 6
3 1.500 00 7
4

Table 3: Nitrogen and Helium ideal part EoS coefficients for Equation 2

k nk ck dk tk k nk ck dk tk

Nitrogen

1 0.598 897 118 012 01 1 0.125 13 −0.169 366 415 549 83 2 2 4.500
2 −0.169 415 574 807 31·101 1 1.125 14 0.135 468 460 417 01 2 3 4.750
3 0.245 797 361 917 18 2 0.375 15 −0.330 667 120 953 07·10−1 2 3 5.000
4 −0.237 224 567 551 75 2 1.125 16 −0.606 908 170 185 57·10−1 2 4 4.000
5 0.179 549 187 151 41·10−1 4 0.625 17 0.127 975 482 928 71·10−1 2 4 4.500
6 0.145 928 757 202 15·10−1 4 1.500 18 0.587 436 641 072 99·10−2 3 2 7.500
7 0.100 080 659 362 06 1 1 0.625 19 −0.184 519 519 719 69·10−1 3 3 14.000
8 0.731 571 153 855 32 1 1 2.625 20 0.472 266 220 424 72·10−2 3 4 11.500
9 −0.883 722 723 363 66 1 1 2.750 21 −0.520 240 796 805 99·10−2 6 5 26.000
10 0.318 876 602 467 08 1 2 2.125 22 0.435 635 059 566 35·10−1 6 6 28.000
11 0.207 664 917 287 99 1 3 2.000 23 −0.362 516 907 509 39·10−1 6 6 30.000
12 −0.193 793 154 541 58·10−1 1 6 1.750 24 −0.289 740 268 665 43·10−2 6 7 16.000

(KPol,i = 6,KExp,i = 18)

Helium

1 −0.455 790 240 067 37 1 0.000 7 0.162 274 147 117 78·10−1 1 5 0.125
2 0.125 163 907 549 25·101 1 0.125 8 −0.574 718 182 008 92·10−1 1 5 1.250
3 −0.154 382 316 506 21·101 1 0.750 9 0.194 624 164 307 15·10−1 1 5 2.000
4 0.204 674 897 072 21·10−1 4 1.000 10 −0.332 956 801 230 20·10−1 2 2 1.000
5 −0.344 762 123 807 81 1 1 0.750 11 −0.108 635 773 723 67·10−1 3 1 4.500
6 −0.208 584 595 127 87·10−1 1 3 2.625 12 −0.221 733 652 459 54·10−1 3 2 5.000

(KPol,i = 4,KExp,i = 8)

Table 4: Nitrogen and Helium residual part EoS coefficients for Equation 3
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i no
i γo

i i no
i γo

i

Water

1 −8.320 446 482 01 5 0.973 15 3.537 342 22
2 6.683 210 526 8 6 1.279 50 7.740 737 08
3 3.006 32 7 0.969 56 9.244 377 96
4 0.012 436 1.287 289 67 8 0.248 73 27.507 510 5

Table 5: Water ideal part EoS coefficients for Equation 4

i ci di ti ni i ci di ti ni

Water

1 1 −0.5 0.125 335 479 355 23·10−1 27 2 3 10 0.580 833 999 857 59
2 1 0.875 0.789 576 347 228 28·101 28 2 4 3 0.499 691 469 908 06·10−2

3 1 1 −0.878 032 033 035 61·101 29 2 4 7 −0.313 587 007 125 49·10−1

4 2 0.5 0.318 025 093 454 18 30 2 4 10 −0.743 159 297 103 41
5 2 0.75 −0.261 455 338 593 58 31 2 5 10 0.478 073 299 154 80
6 3 0.375 −0.781 997 516 879 81·10−2 32 2 6 6 0.205 279 408 959 48·10−1

7 4 1 0.880 894 931 021 34·10−2 33 2 6 10 −0.136 364 351 103 43
8 1 1 4 −0.668 565 723 079 65 34 2 7 10 0.141 806 344 006 17·10−1

9 1 1 6 0.204 338 109 509 65 35 2 9 1 0.833 265 048 807 13·10−2

10 1 1 12 −0.662 126 050 396 87·10−4 36 2 9 2 −0.290 523 360 095 85·10−1

11 1 2 1 −0.192 327 211 560 02 37 2 9 3 0.386 150 855 742 06·10−1

12 1 2 5 −0.257 090 430 034 38 38 2 9 4 −0.203 934 865 137 04·10−1

13 1 3 4 0.160 748 684 862 51 39 2 9 8 −0.165 540 500 637 34·10−2

14 1 4 2 −0.400 928 289 258 07·10−1 40 2 10 6 0.199 555 719 795 41·10−2

15 1 4 13 0.393 434 226 032 54·10−6 41 2 10 9 0.158 703 083 241 57·10−3

16 1 5 9 −0.759 413 770 881 44·10−5 42 2 12 8 −0.163 885 683 425 30·10−4

17 1 7 3 0.562 509 793 518 88·10−3 43 3 3 16 0.436 136 157 238 11·10−1

18 1 9 4 −0.156 086 522 571 35·10−5 44 3 4 22 0.349 940 054 637 65·10−1

19 1 10 11 0.115 379 964 229 51·10−8 45 3 4 23 −0.767 881 978 446 21·10−1

20 1 11 4 0.365 821 651 442 041·10−6 46 3 5 23 0.224 462 773 320 06·10−1

21 1 13 13 −0.132 511 800 746 68·10−11 47 4 14 10 −0.626 897 104 146 85·10−3

22 1 15 1 −0.626 395 869 124 54·10−9 48 6 3 50 −0.557 111 185 656 45·10−9

23 2 1 7 −0.107 936 009 089 32 49 6 6 44 −0.199 057 183 544 08
24 2 2 1 0.176 114 910 087 52·10−1 50 6 6 46 0.317 774 973 307 38
25 2 2 9 0.221 322 951 675 46 51 6 6 50 −0.118 411 824 259 81
26 2 2 10 −0.402 476 697 635 28

i ci di ti ni αi βi γi εi

52 3 0 −0.313 062 603 234 35×102 20 150 1.21 1
53 3 1 0.315 461 402 377 81×102 20 150 1.21 1
54 3 4 −0.252 131 543 416 95×104 20 150 1.25 1

i ai bi Bi ni Ci Di Ai βi

55 3.5 0.85 0.2 −0.148 746 408 567 124 28 700 0.32 0.3
56 3.5 0.95 0.2 0.318 061 108 784 144 32 800 0.32 0.3

Table 6: Water residual part EoS coefficients for Equation 5

Dynamical prefactor from the linearized Rayleigh–Plesset dynamics

We aim to compute the dynamical prefactor κ entering Langer’s nucleation rate for a vapour bubble. Rather than
extracting the unstable eigenvalue of the full capillary Navier–Stokes system, we follow pioneering droplet analyses
[7] and adopt a single collective–coordinate description in terms of the bubble radius R(t). In this reduced model,
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κ is the unstable eigenvalue of the Rayleigh–Plesset dynamics linearised about the critical radius. We pursue this
route also to obtain a compact, readily usable nucleation–rate expression for applications. The estimated dynamical
prefactor κ and its comparison with the numerical value obtained by linearising the compressible Navier–Stokes
(CNS) equations are shown in Fig. 4.
For an incompressible liquid of density ρL and dynamic viscosity η1, assuming isothermal conditions with bubble
interior pressure pb ≈ pV and ∆p = pV − pL > 0 constant, the Rayleigh–Plesset equation reads

ρL

(
RR̈+ 3

2 Ṙ
2
)

= ∆p − 2σ

R
− 4η1

R
Ṙ, (10)

where σ is the surface tension. The critical radius Rc satisfies

Rc =
2σ

∆p
. (11)

Let R(t) = Rc +∆R(t), equation linearised version of Eq. 10 reads

∆̈R +
4η1
ρLR2

c

∆̇R − 2σ

ρLR3
c

∆R = 0. (12)

The unstable mode ∆R(t) ∝ eκ+t, with κ+ > 0, is

κ+ =
1

2

[
− η1 ∆p

2

ρL σ2
+

√
η21∆p

4

ρ2Lσ
4

+
∆p3

ρL σ2

]
. (13)

Within the one-coordinate RP description, the dynamical prefactor entering Langer’s rate is identified with this
unstable growth rate,

κ ≡ κ+. (14)

Overdamped limit. Neglecting inertia in the linearised RP, the equation for ∆R(t) is

4η1
ρLR2

c

∆̇R − 2σ

ρLR3
c

∆R = 0 , (15)

and the dynamical prefactor is

κOD =
∆p

4 η1
. (16)

Figure 4: Dynamical prefactor κ versus temperature. The solid lines represent the numerical values obtained from
the linearised CNS equations, the dash–dotted line represents the theoretical estimate from the overdamped RP
model, and the dashed line represents the estimate from the full RP dynamics.

Asymptotic solution of the Rayleigh–Plesset dynamics in the large-radius limit.

Starting from the Rayleigh–Plesset equation

ρL

(
RR̈+ 3

2 Ṙ
2
)
= ∆p− 2σ

R
− 4η1Ṙ

R
,

and neglecting the 1/R contributions in the large–radius limit, with R̈→ 0 one obtains

3
2ρṘ

2 ≃ ∆p ⇒ Ṙ ≈
√

2∆p
3 ρL

.
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