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Equations of State

Multiparametric equations of state are functions that describe the thermodynamic properties of a real fluid, either
as a single-component or multicomponent substance. Once a specific functional form is chosen, a large set of
experimental data is fitted by adjusting appropriate free parameters. This process yields an expression in the
form of a thermodynamic potential, such as the Helmholtz free energy, as a function of reduced state variables,
namely the reduced density § = p/p. and the inverse reduced temperature 7 = T,./T. This expression provides a
complete description of the fluid’s thermodynamic behaviour, from which all relevant properties can be derived via
appropriate thermodynamic differentiation. For a single-component fluid, the Helmholtz free energy per unit mass
is typically expressed as the sum of an ideal part ¢y and a residual part ¢,, which accounts for deviations from
ideal behaviour:
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where R is the specific gas constant. The behaviour of water is modelled using the TAPWS-95 formulation [1], while
the thermodynamic properties of nitrogen and helium IV are taken from the GERG-2008 [2] equation of state.
The specific functional forms used, along with the fitted parameter values, are presented comprehensively in the
following subsections. For further details, the reader is referred to the original works.

Nitrogen and Helium IV - GERG2008

The GERG-2008 [2] equation of state was developed to accurately represent the thermodynamic properties of natural
gases and a wide variety of other gas mixtures. The functional forms for the ideal and residual contributions are
shown in equations 2, 3. The respective coefficients for the two fluids are reported in Tables 3, 4. The symbol R*
denotes a reference ideal gas constant whose value is R* = 8.314510 J mol ! K.
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Fluid T. (K) P. (MPa) pe (kg/m?)

Nitrogen 126.192 3.396 313.3

Helium 5.195 0.227 69.6

Water 647.096 22.064 322.0

Table 1: Critical Parameters of Nitrogen, Helium and Water



Water - IAPWS95

The TAPWS-95 [1] is the most accurate equation of state for water, capable of reproducing its thermodynamic
properties over a wide range of temperatures and densities. The following expressions give the ideal and residual
parts of the Helmholtz free energy, while the corresponding coefficients are listed in Tables 5, 6
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EoS Correction

The van der Waals square-gradient approximation provides a method to represent the coexistence of multiple phases
in a fluid. To apply this approach, it is necessary to have an equation of state capable of describing not only the fluid
under stable conditions but also under metastable and unstable states. The advantage of multiparametric equations
of state is that they are derived by fitting experimental data that also cover metastable fluid states, enabling an
accurate and quantitative description of the metastable regime. In the instability region, however, experimental
measurements are not feasible, as the fluid undergoes spinodal decomposition. As a result, the predictions of the
multiparametric equations of state in this region are physically unreliable. Specifically, quantities such as energy,
pressure, and chemical potential exhibit strong oscillations, commonly referred to as Maxwell loops [3], which lead
to the appearance of non-physical stationary states and can compromise the stability and convergence of numerical
methods. To address this issue, the correction method proposed in [4] has been applied. The Helmholtz free energy
per unit mass is expressed as a piecewise-defined function:
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where p$P™ and p;* ™ denote the densities along the spinodal curve, the line that separates the metastable region
from the unstable one. By enforcing continuity and differentiability of the energy across the two branches of the
function, and recalling that the spinodal curve satisfies the condition dp/dp = 0, any modified equation of state

fmod is required to meet the following conditions:
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The functional forms used for the free energy and for the pressure are the following
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where A, B, C, D, E and F are constants chosen to satisfy the constraints described above. The specific functional

form adopted does not appear to significantly affect macroscopic observables such as the nucleation rates [4]. Figure
(1) shows the GERG-2008 pressure correction for Nitrogen at —160°C.
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Figure 1: In solid black, the EoS isotherm curve is kept unchanged; in dashed black, the Van der Waals loop of
the EoS isotherm; in red the corrected version. Additionally, the spinodal and binodal lines are shown in blue and
green, respectively.

Surface Tension

In order to properly calibrate the diffuse interface model, the surface tension of the planar interface needs to be
known. The surface tension correlations used in this work [5] are based on a version of the NIST REFPROP model
[6]. The general expression is reported below, while the parameters used are listed in Table 2.

o(T) = kim (1 - g)n (8)
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Fluid oo no o1 ni o2 na
Nitrogen 0.028 98 1.246

Helium 0.000 465 6 1.040 0.001 889 2.468 —0.002 006 2.661
Water —0.1306 2.471

Table 2: Surface Tension parameters of Nitrogen, Helium and Water



Capillary coefficient

Once an equation of state and the surface tension of the planar interface are known, the capillary coefficient can be
estimated using the following relation [4]
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where Aw = pf — p*®p + p*** denotes the difference in grand potential density. The capillary coefficient is treated
as a fitting parameter to reproduce the surface tension at a fixed temperature and has no explicit connection to
the fluid’s direct correlation function. The values of the dimensionless capillary coefficient (Aqc; = P.L?, f /pe with
L,y =1nm and P, , p. as reported in Table 1) as a function of temperature for the fluids under study are shown
in Figure 2. Since the equations of state are mean-field, they do not accurately reproduce the scaling behaviour
near the critical point. Similarly, the expression for the surface tension is derived from fitting experimental data
and does not account for the proper critical exponents. Therefore, simulations conducted too close to the critical
point may yield inaccurate results and have been avoided.
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Figure 2: The capillary coefficient A as a function of temperature is reported for the three fluids analyzed in the
study: water in light blue, nitrogen in gray, helium in brown.

Density Profile MEP

This section presents the Minimum Energy Path for the nucleation of a vapour bubble in superheated water.
The sequence of density profiles constituting the MEP has the saddle-point configuration highlighted in black.
Supercritical (shades of red) and precritical (shades of blue) profiles are also shown. The arrows indicate the
direction of progression along the reaction pathway. The thermodynamic conditions are the same as those discussed
in the Results section of the main text (p = 684.2kg/m? and 6 = 302°C). In all simulations, the path is resolved
using 400 images, with refinement of the early stage of the process conducted using Allen-Cahn dynamics relaxation.
The spatial discretisation space A = 0.125nm on a domain of length L = 100nm. The pseudo-time step was selected
as At = 0.001.
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Figure 3: Density profiles on the MEP.



EoS Coefficients
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Table 3: Nitrogen and Helium ideal part EoS coefficients for Equation 2
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Table 4: Nitrogen and Helium residual part EoS coefficients for Equation 3
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Table 5: Water ideal part EoS coefficients for Equation 4
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Table 6: Water residual part EoS coefficients for Equation 5

Dynamical prefactor from the linearized Rayleigh—Plesset dynamics

We aim to compute the dynamical prefactor x entering Langer’s nucleation rate for a vapour bubble. Rather than
extracting the unstable eigenvalue of the full capillary Navier—Stokes system, we follow pioneering droplet analyses
[7] and adopt a single collective—coordinate description in terms of the bubble radius R(t). In this reduced model,



k is the unstable eigenvalue of the Rayleigh—Plesset dynamics linearised about the critical radius. We pursue this
route also to obtain a compact, readily usable nucleation—rate expression for applications. The estimated dynamical
prefactor x and its comparison with the numerical value obtained by linearising the compressible Navier—Stokes
(CNS) equations are shown in Fig. 4.

For an incompressible liquid of density p; and dynamic viscosity 77, assuming isothermal conditions with bubble
interior pressure p, = py and Ap = py — pr, > 0 constant, the Rayleigh—Plesset equation reads
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Within the one-coordinate RP description, the dynamical prefactor entering Langer’s rate is identified with this
unstable growth rate,
K= Kg. (14)

Overdamped limit. Neglecting inertia in the linearised RP, the equation for AR(t) is
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Figure 4: Dynamical prefactor x versus temperature. The solid lines represent the numerical values obtained from
the linearised CNS equations, the dash—dotted line represents the theoretical estimate from the overdamped RP
model, and the dashed line represents the estimate from the full RP dynamics.

Asymptotic solution of the Rayleigh—Plesset dynamics in the large-radius limit.
Starting from the Rayleigh—Plesset equation

_ 20 _4mR
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and neglecting the 1/R contributions in the large radius limit, with R — 0 one obtains
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