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A Method

A.1 Preliminaries

This study aims to predict the spatiotemporal evolution of phase volume-fraction fields at
future times from their initial flow filed. We define the problem as follows: given the initial volume-
fraction field Xy : ®¢ = ¢'(z,y, 0);11 for N different phases, the goal is to predict the evolved fields
X @, = ¢i(x, y,t)fil of each phase at different moments. Typically, ®;, € RYN*H*W represents
the volume-fraction field in a two-dimensional structured grid of size H x W with N phases.

To this end, we build a model with learnable parameters © that infers the desired mapping
by capturing the spatiotemporal dependencies of multiphase volume-fraction fields, Fo : Ay —
A}, thereby substituting the direct computation of the governing multiphase-flow PDEs. In our

framework, the mapping is organized through two sub-models:

1) Reduced-order model A for dimensionality reduction and reconstruction:

Ao, = & + Dy,
20, Zt = Eg(Xo, At), (1)
X, X = Dy(20, Z1),
where & denotes the complete set of operations in sub-model A that compress and reduce the
dimensionality of the initial flow field. D, denotes the complete set of operations in sub-model A
that decode the low-dimensional latent representation and expand it back into the full-resolution

field. Z denotes the latent-space representation. Sub-model A compresses both the original initial

field A and predicted field &} into latent space, yielding the representations Zy and Z;, respectively.
2) Neural operator model B for predicted flow field output using latent representation:

Z; = Bo,(20,t), X = Dy(Z1) (2)

Sub-model B takes the initial latent representation Z together with the time ¢ and predicts the
corresponding latent state Z,. The pretrained decoder D, then maps Z, back to the full physical
field X;.

Our training objectives of architecture are two folds:

1) Reduced-order training target:
We need to minimize the discrepancy between the original volume-fraction field and its recon-

struction produced by sub-model A:

] = arg néin Lo, (A, (X),X). (3)
1
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Fig. S1: Architecture comparison between MLP and KAN.

2) Operator training target:
We need to minimize the difference between the latent-space prediction generated by sub-model

B and the true latent representation of the future phase field:

OF = arg min Lo, (Beo,(20,1), 2t), (4)
2

Hence, the optimal internal parameters ©* = (©F, ©3) are determined based on the above training
processes. Lg, and Lg, are corresponding loss functions that are required to be optimized according

to the iterative parameter updating.

A.2 GRAMKAN

Kolmogorov-Arnold Networks (KANs) are a recently proposed neural-network architecture de-
signed as a drop-in replacement for conventional multilayer perceptrons (MLPs)[1-3]. As illustrated
in Fig. S1, KANs shift the learnable nonlinearities from the neurons themselves to the connecting
edges. In a standard MLP, each neuron first forms a weighted sum of its inputs and then passes the
result through a fixed activation function such as ReLU. By contrast, KAN neurons perform only the
weighted summation; the expressive power arises entirely from smooth, one-dimensional function-
stypically implemented with splineslearned on every edge. This edge-wise parameterization enables
KANSs to achieve higher approximation accuracy with far fewer parameters, making them particu-
larly attractive for scientific-computing tasks that demand precise function representations[4—6].

The original KAN implementation employs B-splines as edge-wise basis functions to approxi-
mate the univariate mappings required by the Kolmogorov-Arnold theorem. Although B-splines
offer local support and controllable smoothness, their piecewise-polynomial form on a continuous
domain entails substantial computational overhead and a large number of trainable parameters. To
address these drawbacks we replace B-splines with Gram polynomials, yielding a new variant we
term GramKAN.

Gram polynomials—also known as discrete Chebyshev polynomials—possess a simple three-
term recurrence and are defined on a finite set of grid points, providing an orthogonal basis with
respect to a discrete inner product[7, 8]. This discrete orthogonality not only reduces parameter

redundancy but also enhances representation power when modelling inherently discrete data such



as images or token sequences. By exploiting the recursive construction of Gram polynomials,
GramKAN achieves comparable or higher approximation accuracy with fewer parameters and lower
runtime, making it especially suitable for large-scale scientific and data-centric applications where
both precision and efficiency are critical.

Unlike standard continuous-domain polynomials, Gram polynomials are orthogonal on a discrete

grid. Selecting m discrete nodes z(i) = —1 + % in [—1, 1] and defining discrete inner product:

(f,9) = ) f(x:),9(xi) (5)

L

Il
—

(2
Under this inner product, Gram polynomials of distinct orders are orthogonal, ensuring that
basis functions of different degrees remain independent when capturing discrete data patterns. The

Gram polynomials satisfy the following recurrence relation:

PO,m,z) =1, P(l,m,z)==x

P(n+1,m,x) =xP(n,m,z) — f(n,m)P(n —1,m,z), (6)
(m? — n?)n?
plnm) = e — 1)

The recurrence relation underscores the computational simplicity of Gram transforms, enabling
rapid generation of discrete basis functions of any order. To confine inputs to the domain [—1, 1] on
which Gram polynomials are defined, we prepend a tanh normalization layer, a step that improves
robustness for image and token-sequence data.

Relative to the continuous, locally supported B-spline bases used in the original KAN, Gram
polynomials offer distinct advantages. B-splines approximate complex functions by stitching to-
gether piecewise polynomials, requiring knot placement and interval bookkeeping; Gram polyno-
mials, by contrast, form a global, orthogonal basis on a discrete grid. Orthogonality decouples the
contribution of each degree, reducing parameter interplay during training, while the three-term
recurrence eliminates the overhead of managing multiple segments. Most importantly, the discrete
nature of Gram bases aligns naturally with pixel- or symbol-level representations, giving GramKAN
a cleaner implementation and stronger modelling capacity for inherently discrete inputs. Replacing
B-splines with Gram polynomials therefore streamlines the KAN implementation while enhancing

its adaptability and representational power for discrete-input tasks.

A.3 KAN-based autoencoder (KAE)

Autoencoders (AEs) are symmetric networks composed of an encoder, which compresses high-
dimensional data into a low-dimensional latent code, and a decoder, which reconstructs the original
input. Extensive studies show that deep AEs markedly reduce dimensionality while preserving
salient information and often outperform linear techniquessuch as principal component analysis—
at identical latent sizes. Consequently, AEs have become a standard tool for unsupervised feature

learning and dimensionality reduction, providing compact representations for downstream discrim-
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Fig. S2: Proposed KAE architecture.

inative or generative tasks[9-11].

To further enhance compression efficiency and reconstruction fidelity, we couple Kolmogorov-
Arnold Networks with an AE, yielding the KAE. Replacing fixed activations in both encoder and
decoder with learnable univariate functions on each edge augments nonlinear expressiveness in
both compression and reconstruction. In the encoder, stacked KAN layers extract high-order non-
linear features; the decoder mirrors this structure to achieve high-fidelity recovery. Experiments
on retrieval, classification and denoising benchmarks show that KAE significantly lowers recon-
struction error and improves latent-space separability relative to standard AEs and other KAN
variants[3, 12, 13].

KAE is particularly advantageous for multiphase-flow fields, whose data are high-dimensional,
strongly nonlinear, feature sharp phase interfaces and are often contaminated by measurement noise.
First, the encoder’s flexible basis functions (e.g., polynomials or splines) adaptively capture intricate
nonlinear patterns, faithfully encoding complex interface geometries and fine-scale vortical textures
into a compact latent representation. Second, the decoder’s powerful nonlinear mapping not only
reconstructs global structures but also restores subtle local details and cross-scale correlations,
surpassing linear or shallow nonlinear decoders in fidelity. Finally, by incorporating training tricks
such as noise-augmented learning or appropriate regularization, KAE explicitly separates structured
physical modes from random noise within the latent manifold, yielding robust denoising even under
severe perturbations while preserving the underlying physics.

Fig. S2 shows the KAE architecture and its data pipeline. The model ingests a five-dimensional
tensor comprising the volume-fraction field at the initial time ¢y together with IN; subsequent
snapshots, yielding an input of shape (1 + N;, Ny, H, W), where Ny is the number of phases and
H x W denotes the spatial resolution.

Assuming a batch of B = |Bgag| volume-fraction fields, the input data can be represented as

RBx(1+N;)

a tensor BgAg € xNox HxW = Gince the encoder in the KAE model is designed to process

two-dimensional data with an explicit batch dimension, the input tensor must be reshaped. First,
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Fig. S3: Proposed DeepOKAN architecture.

the spatial dimensions H and W are merged into a single feature dimension, resulting in (H x W).
Next, according to our architectural design, two reshaping strategies are available. One option is
to flatten the batch size B, the temporal dimension (1 + N¢), and the number of phases N, into a
single sample axis, yielding a tensor of shape (B x (1 + N¢) x Ny, H x W), which is then processed
by a shared KAE for compression and reconstruction. Alternatively, one may flatten only the batch
and time dimensions to form (B x (1 + N;), H x W) x N, and assign an independent KAE to each
phase.

The core purpose of this reshaping operation is to treat each sample, each time step, and each
phase component as an independent input unit, allowing the encoder to simultaneously process
spatiotemporal data from different phases. The reshaped tensor is then passed into the encoder,
which compresses the high-dimensional spatial features (H x W) into a low-dimensional latent
representation of length L, where L « H x W. Finally, to recover the original batch, time, and phase
structure, the encoder output is reshaped into a four-dimensional tensor of shape (B, 1+ Ny, Ny, L),

which compactly encodes the spatial structures of the input time series in latent space.

A.4 Deep Operator Kolmogorov-Arnold Network (DeepOKAN)

Deep Operator Network (DeepONet) is a neural network architecture designed to learn map-
pings from input functions to output fields[14]. It consists of two subnetworks: a branch net, which
encodes the input functions or parameters, and a trunk net, which processes independent variables
such as spatial coordinates or time. The outputs of these two subnetworks are fused to predict
the target function. Recent studies have demonstrated the capability of DeepONet to approximate
complex operator mappings with high accuracy[15-19].

To further enhance its ability to capture highly nonlinear operator relationships, we propose
DeepOKAN, a variant of DeepONet in which all standard MLP layers in both branch and trunk

nets are replaced with Kolmogorov-Arnold Network (KAN) layers. This substitution increases



the expressive power and nonlinear flexibility of the model. Recent works have also explored the
integration of KAN into neural operator frameworks, using Gaussian radial basis functions or B-
splines as the basis in KAN layers to better approximate the intricate mappings between input and
output fields (see e.g., DeepOKAN).

Applied to the prediction of complex multiphase dynamics, DeepOKAN offers several notable
advantages. In the branch net, the adaptable basis functions of KAN can effectively extract nonlin-
ear correlations among latent features of different phases. This enables the network to learn how ini-
tial multiphase configurations influence interface evolution and interphase mixing more thoroughly
than conventional branch architectures. In the trunk net, KAN’s strong nonlinear approximation
capacity enables accurate modeling of the latent feature evolution over time, capturing both macro-
scopic trends and fine-scale local variations—such as interface propagation, vortex generation, and
dissipation.

The final output is formed by pointwise multiplication of branch and trunk features, enabling a
tightly coupled representation of initial conditions and temporal dynamics. Furthermore, since all
predictions are performed in the latent space learned by the preceding KAE module—which already
separates physical structure from random noise—DeepOKAN benefits from strong robustness. Even
under heavy noise contamination in the initial inputs, the compressed representations and temporal
evolution predicted by DeepOKAN yield reconstructions that faithfully reflect the true flow field
evolution while suppressing noise amplification.

Fig. S3 illustrates the schematic architecture and data processing workflow of the DeepOKAN
model. The input to DeepOKAN is the low-dimensional latent representation obtained from the
KAE encoder, corresponding to the multiphase volume fraction fields at the initial time step ¢ = 0.

Assuming a batch of B = |Bpok| samples, with N, phases and a latent dimension of L per phase,
the entire input to the branch net can be represented as Bpok € RBxNexL Ty accommodate the
multiphase input structure, we employ Ny parallel sub-branch nets, each responsible for processing
the latent vector of a specific phase. Each sub-branch net consists of multiple KAN layers with
uniform width, extracting high-order nonlinear features from the input. The final layer of each sub-
branch net expands the output to a vector of length Ny x L. The outputs from the Ny sub-branch
nets are then element-wise multiplied, producing a fused vector of shape (B, Ny x L), which is
subsequently reshaped into a latent tensor of shape (B, Ny, L), representing the initial latent state.

On the trunk side, the network receives time inputs of shape, (N¢, 1), where Nt denotes the
number of prediction time steps. These temporal inputs are processed through a series of KAN
layers, producing outputs of size Ny x L, which are reshaped to form a tensor of shape (Ny, Ng, L).
Next, the outputs from the branch net (B, Ny, L), and trunk net (N;, Ny, L) are combined via
element-wise multiplication, yielding the predicted latent features with shape (B,;, Ng, L). These
are then passed through the KAE decoder to reconstruct the full multiphase flow fields in physical
space, resulting in outputs of shape (B, Nt, Ny, H,W).

The DeepOKAN model is trained by minimizing the discrepancy between the predicted and

ground-truth latent features, thereby ensuring accurate learning of the latent-space evolution dy-



namics of multiphase volume fraction fields.

B Dataset

The dataset encompasses snapshots of the temporal evolution for three representative two-phase

flows and one three-phase flow case:

(a) Rising bubble in quiescent water (Bubble rise);

(b) Settling of solid particles in liquid (Particle deposition);

(¢) Gas-driven fluidization of solid particles (Fluidized bed);
)

(d) Gas-liquid-solid multiphase system with bubble-particle interaction (Bubble-particle coupling
problem).

As illustrated in Fig. S3, each subfigure presents the computational domain configuration, initial
control parameters, and representative transient structures of the volume fraction fields for each
case. These cases cover typical interactions in gas-liquid, liquid-solid, gas-solid, and gas-liquid-solid
multiphase systems. All simulations were performed using the open-source software OpenFOAM.
The configuration of each case, along with its initial conditions, numerical methods, and dataset
construction details, is described as follows.

Case 1: Bubble rise (Fig. S4-a) simulates the rising of a single air bubble in stagnant water
using the Volume of Fluid (VOF) method to accurately capture the gas-liquid interface. The
computational domain is a 2D rectangular tank of size 1 m x 1 m, with an initial water level set to
H; = 0.66m. At t = 0, a static circular bubble is initialized at the bottom. Independent samples are
generated by varying the initial bubble radius Ry € [0.08 m, 0.12 m] and the vertical position of the
bubble center Hy € [0.12m,0.42m]. All boundaries are no-slip walls. Under buoyancy and gravity,
the bubble deforms and rises, exhibiting characteristic wake vortices (Fig. S4-a). The simulation
lasts for 1 s, and the liquid phase volume fraction is saved at fixed time intervals of 0.1 s.

Case 2: Particle deposition (Fig. S4-b) models the sedimentation of solid particles in water
using a two-fluid EulerbEuler model. The computational domain is a 0.5 m x 0.3 m vertical 2D
container with all boundaries set as no-slip walls. At the initial time, solid particles are uniformly
suspended in the upper half of the water column, while the lower half is clear water, forming a
strongly unstable stratification. Driven by gravity, the denser upper layer sinks, interacting with the
lower layer through entrainment and mixing, forming characteristic finger-like falling structures and
vortex roll-ups (Fig. S4-b). Independent trajectories are generated by varying the initial particle
volume fraction ¢, € [0.5,0.6] and the particle-water interface height Hy € [0.1m,0.2m]. The
simulation lasts 2 s, and particle volume fraction fields are recorded every 0.2 s.

Case 3: Fluidized Bed (Fig. S4-c) investigates gas-solid fluidization using a two-fluid Euler-
Euler approach. The computational domain is a vertical 2D container of size 0.5 m x 0.4 m. A
gas inlet (velocity uaiy = 0.1 m/s) is located at the bottom, a pressure outlet at the top, and the

sidewalls are no-slip boundaries. Initially, solid particles are uniformly packed at the bottom, and
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the gas phase shares the same velocity as the inlet. This initialization eliminates spurious startup
sedimentation and accelerates the transition into the fluidization regime. Once the gas velocity

exceeds the minimum fluidization velocity, rising gas bubbles and voids emerge within the bed,



triggering vigorous particle motion (Fig. S4-c). Simulations run for 1 s, and snapshots of the particle
volume fraction are saved every 0.1 s. By varying the initial particle volume fraction ¢ € [0.5,0.6]
and bed height H € [0.1 m, 0.3 m], diverse gas-solid fluidization behaviors are captured.

Case 4: Three phases coupling problem (Fig. S4-d) simulates a gas-liquid-solid three-phase
system using a multiphase Euler-Euler model. The domain is a closed 1 m x 1 m 2D container.
Initially, the lower region is filled with water (H; = 0.8m), and solid particles are uniformly
suspended in the upper layer, with the bottom interface of the particle layer located at Hs = 0.4 m.
A static air bubble is initialized underwater as a perturbation. Once released, the bubble rises,
penetrating the particle layer and inducing coupled motion among all three phases (Fig. S4-d).
The simulation duration is 1 s, with liquid (water) and solid (particle) volume fraction snapshots
saved every 0.1 s. Independent cases are generated by varying the initial bubble radius Ry €
[0.08 m, 0.12m] and particle volume fraction ¢4 € [0.4,0.5], enabling broad sampling of three-phase
interaction dynamics.

All simulations were performed on a uniform 2D grid with a fixed spatial resolution of 128 x
128. For each case, 1,000 independent samples were generated under randomized combinations
of initial parameters. Each sample contains the volume fraction field at the initial time step and
10 subsequent snapshots at uniform time intervals, resulting in 11 frames per sample. Due to
the volume-fraction summation constraint ZZ]\L 1 ¢ = 1, only N-1 phase-fraction fields are stored
for each sample. Specifically, two-phase cases store only one phase field, while three-phase cases
retain two selected phase fields (e.g., liquid and solid). As a result, each snapshot has a spatial
dimension of (N — 1) x 128 x 128, where N is the number of phases. The dataset is randomly split
into training and testing sets with a ratio of 9:1, and used for model training and evaluation. All
simulations adopt standard physical parameters: air as the gas phase, water as the liquid phase,

and incompressible solids with a density of approximately 2500 kg/ m® for the particulate phase.

C Architecture comparison for autoencoders and operators

C.1 Controlled ablation studies

To elucidate the functional roles of distinct architectural components, we conducted a series of
controlled ablation studieshere referring to systematic variations of individual architectural hyper-
parameters rather than the removal of entire modules on the KAE and DOK, varying the width of
KAN layers (w), the polynomial order of Gram expansions (¢), and the network depth (I).

In KAE, the encoder and decoder adopt a symmetric design. Here, w denotes the width of the
encoder’s input layer (first layer) or the decoder’s output layer (last layer), which directly handles
raw inputs or reconstructed outputs and thus critically governs compression and reconstruction
fidelity. The depth [ specifies the number of layers in the encoder/decoder, with widths decreasing
geometrically along the depth. The order ¢ is uniform across all KAN layers in the KAE.

For DOK, ablations are applied solely to the branch network operating on KAE-compressed

features, while the trunk network remains fixed. In this context, w is the uniform width of all hidden

10
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Fig. S5: Controlled ablation settings for KAE and DOK.

Table S1: Baseline models for KAE and DOK

Model Input Shape Layers Degree
KAE 128 x 128 1008-144 3
DOK-branch 144 288 x 6 3
DOK-trunk  (10,1) 96 x 6 3

layers except the output layer, [ is the number of hidden layers, and ¢ is the Gram polynomial order
of the branch network’s KAN layers.

Across all configurations, the base hidden-layer width is fixed at 144. w is expressed as a
multiple of this base, i.e., actual width = 144 x w. The parameter search ranges are:

KAE: ¢€{2,3,...,8,9},we {3,5,...,17,19},1 € {1,2,...,8,9}

DOK: g€ {2,3,...,5,6},we {1,2,...,8,9},1 € {2,3,...,9,10}

Baseline configurations (Table S1) are defined as | = 2,w = 7,q = 3 for the KAE, and | = 6,w =
2,q = 3, for the DOK branch network, with the DOK trunk network fixed at | = 6,w = 2/3,q = 3.
Due to the symmetry of the KAE, Table 1 reports only encoder layer widths, while in the DOK the
reported layers exclude the final output layer, whose width is Ny x 144, where Ny is the number
of phases input to the DOK (N, = 1 for two-phase cases and N, = 2 for three-phase case).

C.2 Detailed design of architecture

For model comparisons, we should note that the KAN is an MLP-derived architecture. In ad-
dition to the conventional MLP-KAN comparison, we further introduce convolution-based variants
of both MLP and KAN to isolate the effect of incorporating KAN layers[20, 21]. Fig. S6 illustrates

the base-layer designs for each model. The Base Linear layer uses SiLLU as the activation function,

11
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while the Base KAN layer couples SiLLU basis functions with learnable Gram polynomials. In the
Base Conv and Base ConvKAN layers, the Linear modules in the Base Linear and Base KAN
designs are replaced with 3 x 3 convolutional modules.

For the dimensionality-reduction and reconstruction task, we designed four autoencoder vari-
ants: the linear-layer-based AE and KAE, and the convolution-layer-based CAE and KCAE. The

AE and KAE share a similar architecture, each comprising multiple Base Linear or Base KAN

12



Table S2: Architectural parameters and performance of autoencoder variants. In "Layers", values for AE and KAE
correspond to neuron counts per layer, whereas for CAE and KCAE, all but the last value represent convolutional
channel numbers.

Model Type Layers Degrees Parameters (M) Flops (M) Epoch Time (s)
AE-H (I =4,w=33) 4752-1486-464-144 - 171.41 171.42 2.30
AE-L (=2w="7) 1008-144 33.34 33.33 1.62
KAE-Base (I=2,w=7,q=3) 1008-144 3 166.68 166.61 2.38
KAE-Lw (I=2w=35,q=3) 504144 3 83.37 83.31 1.65
KAE-Hw (Il =2,w=105,¢g=3) 1512-144 3 250.00 250.00 3.21
KAE-Lq (l=2,w="T,q=2) 1008-144 2 133.34 133.29 1.94
KAEHq (I=2w=T,q=4)  1008-144 4 200.02 199.93 2.78
CAE-H (I =4,¢c=280) 80-40-20-16-10-144 (linear) 0.38 173.96 2.10
CAE-L (I =4,c=26) 26-20-16-10-144 (linear) - 0.23 33.61 2.01
KCAE (l=4,c=26,q=3)  26-20-16-10-144 (lincar) 3 1.16 165.63 3.06

layers (Fig. S2). In contrast, the CAE and KCAE employ, in the encoder, a series of Base Conv or
Base ConvKAN layers with a stride of 2 to progressively downsample the input. To ensure a consis-
tent latent-space dimensionality across all models, the downsampled two-dimensional feature maps
are flattened into one-dimensional vectors before being processed by a Base Linear or Base KAN
layer. The decoder mirrors the encoder’s structure and restores the processed data to its original
spatial resolution via upsampling. We evaluated three upsampling strategies: bilinear interpolation
(followed by a convolution layer for feature refinement), transposed convolution, and PixelShuffle.
Bilinear interpolation offers simplicity, while transposed convolution can introduce distortions due
to its aggressive upsampling. PixelShuffle, originally developed for super-resolution tasks (Fig. S6-
c), first increases the channel dimension by a factor of 72 via convolution, then rearranges the
channels to enlarge the spatial dimensions (H and W) by a factor of r while reducing channels
by r2. Compared with bilinear interpolation, PixelShuffle achieves higher representational capac-
ity with the same number of parameters and improved computational efficiency[22]. We therefore
adopted PixelShuffle with an upsampling factor » = 2 to match the stride-2 downsampling in the
encoder.

For the latent-space prediction task, we likewise developed four operator models: the linear-
layer-based DON and DOK, and the convolution-layer-based CON and KCON. All models use a
trunk network that accepts scalar time inputs. Because such inputs cannot be directly accommo-
dated by a convolutional architecture—and to maintain comparability across models—the trunk
nets in all four variants comprise stacked Base Linear or Base KAN layers of uniform width. The
branch net, in contrast, processes one-dimensional latent vectors. For CON and KCON, these
vectors are reshaped into two-dimensional feature maps, enabling feature extraction via multiple
Base Conv or Base ConvKAN layers with identical channel counts and a stride of 1. The extracted
features are then flattened, passed through a Base Linear or Base KAN layer for mapping, and
output with the same dimensionality as the DON/DOK branch nets.

Tables S2 and S3 summarize the architectural parameters and performance metrics of the

13



Table S3: Architectural parameters of neural operator variants. In "Branch/Trunk Layers', values for DON and
DOK denote (neurons x layers), whereas for CON and KCON they denote (convolutional channels x layers).

Model Type Branch Layers Trunk Layers Degrees Parameters (M) Flops (M) Epoch Time (s)
DON-H (l=6,w=05.5) 792 x 6 288 x 6 - 4.93 11.67 1.11
DON-L (I=6,w=25) 288 x 6 96 x 6 - 0.95 2.38 0.98
DOK-Base (Il=6,w=2,g=3) 288x6 96 x 6 3 4.74 11.80 2.56
DOK-Lw (l=6,w=1,¢=3) 144x6 96 x 6 3 2.24 8.31 1.65
DOK-Hw (l=6,w=4,¢q=3) 576x6 96 x 6 3 13.23 18.89 3.20
DOK-Lq (I=6w=2g=2) 288x6 96 x 6 2 3.79 9.44 1.94
DOK-Hq (l=6,w=2,¢g=4) 288x6 96 x 6 4 5.68 14.15 3.04
CON-H (I=16,c=16) 16 x 6 288 x 6 - 3.42 11.85 2.94
CON-L (l=6,c=4) 4x6 96 x 6 - 0.83 2.36 0.95
KCON (Il=6,c=4) 4x6 96 x 6 3 4.11 11.72 2.83

autoencoder and operator models, respectively. In the operator models, all inputs are latent-space

representations generated by the KAE-Base model.

C.3 Visualization of prediction for different architectures

To more clearly illustrate the predictive capabilities of different models, we selected six autoen-
coder variants and six neural operator variants (twelve models in total) and plotted the temporal
evolution of phase volume fraction errors across different time steps. Because the inter-model errors
are small, we employed a logarithmic colour scale to enhance visual contrast. To avoid singularities
in regions with zero error, we introduced a coefficient SLinear, and defined the linear mapping range
as [—SLinear X AMax, Spinear X AMax|, where AMax is the maximum absolute error. Additionally,
small markers (mini tricks) were placed just above and below the zero-value region of the colour
bar to clearly delineate this linear zone. The visual comparison results are shown in Fig. S8- S11.
A holistic analysis of the results shows that the overall error distribution patterns are consistent
with those discussed in the main text. Incorporating KAN or ConvKAN layers markedly improves
the dimensionality reduction and reconstruction accuracy of the autoencoder models. In contrast,
the corresponding accuracy gains in neural operator models are more modest. Notably, in the
current comparisons, ConvKAN methods yielded slightly lower accuracy than their conventional

convolutional counterparts.

D Noise-tolerance generalization

D.1 Experimental design for noise-robustness evaluation

To evaluate the robustness of the models to input perturbations, we applied zero-mean Gaus-
sian multiplicative noise to all flow-field data. The noise is defined by multiplying the original
field values with a random matrix (1 + 7), where the noise matrix is nonzero only at randomly

selected grid points and satisfies n ~ N(0,0); at unselected locations 7 = 0. The noise intensity
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Fig. S12: Schematic diagram of the noise-experiment workflow.

is expressed as a percentage of the original field amplitude. Five intensity levels were considered:
n = 5%,10%, 20%, 30%, 40%. For example, a 10% noise intensity indicates that, at masked posi-
tions, n follows a Gaussian distribution with zero mean and standard deviation equal to 0.1 times
the original value.

The proportion of perturbed locations (noise ratio) p was likewise set to five levels: p =
5%, 10%, 20%, 30%, 40%. For each specific combination of noise intensity ¢ and noise ratio p,
we randomly selected the corresponding proportion of grid points within the field to apply the per-
turbation , leaving all other points unchanged. This yielded 25 distinct noise-evaluation scenarios

(50 x 5p). The perturbed flow field is expressed as:

unoisy(x7y7t> = Uorig(x7yat) [1 + n(mayat)]a (7)

Here, n(z,y,t) takes Gaussian-distributed values at perturbed locations and is zero elsewhere. No-
tably, this noise-adding procedure is applied to all time frames, including the initial state and
all subsequent time steps of the phase volume-fraction fields. This design enables a comprehen-
sive assessment of the model’s robustness to input perturbations throughout the entire temporal
evolution.

As illustrated in Fig. S12, the experimental workflow proceeds as follows. First, Gaussian noise
is added to the flow fields at all time steps in the original dataset (including the initial frame and

the subsequent evolution sequence) according to the procedure described above, yielding perturbed
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input data for model training and testing. Second, the full noisy time series is fed into the KAE,
which is trained to reconstruct the corresponding noise-free flow-field sequence. Through training,
the KAE encoder learns to compress high-dimensional noisy fields into low-dimensional latent
vectors, while the decoder learns to reconstruct the clean fields from these latent representations.
After training, the encoder is capable of extracting robust feature representations from noisy inputs
that correspond to the structural patterns of the original flow fields.

In the prediction stage, only the noisy initial field is passed through the trained KAE encoder
to obtain its low-dimensional latent representation. This vector encapsulates the essential features
of the initial flow while suppressing noise due to the encoder’s denoising capability. The initial
latent vector is then supplied to the branch network of the DOK model, while the target prediction
time t; is input to the trunk network. For each future time ¢;, the trunk network combines the
temporal parameter with the initial latent information provided by the branch network to produce
the corresponding latent vector &. This continuous-time modelling in the latent space facilitates
smoother temporal evolution and mitigates the influence of noise on predictions at different time
steps. Finally, the sequence of latent vectors {&;} predicted by the DOK for all specified time steps
is passed through the trained KAE decoder to reconstruct the complete flow-field distributions at
those times. This procedure is applied identically to each target time in the sequence, thereby

enabling multi-step predictions of future flow fields from an initial noisy state.

D.2 Visualization of noise-experiment results

To illustrate the impact of noise injection on model outputs, we visualized results for represen-
tative test cases. Figures S13-S15 show the final-frame comparisons for the bubble-rise, particle-
deposition, and fluidised-bed cases, respectively, under five noise-level combinations: (5%, 5%),
(10%, 10%), ..., (40%, 40%). Each figure presents the KAE and DOK outputs along with the
corresponding absolute prediction errors for the given noise condition. In all cases, the first row
displays the noisy input flow fields fed to the KAE, serving as a reference for the pre-denoising
state.

In the bubble-rise case, increasing noise amplitude and ratio leads to a gradual growth of
interface-contour errors in the KAE reconstructions. Nevertheless, even under the (40%,40%)
condition, the bubble outline remains clearly recognizable, indicating that the KAE preserves the
fidelity of the primary interface features. By comparison, the DOK reconstructions maintain sim-
ilarly well-defined gas-liquid interfaces across all noise levels, but with slightly larger overall error
magnitudes. This suggests that temporal prediction in the latent space smooths part of the high-
frequency noise while sacrificing a small amount of local accuracy in single-frame reconstructions.
In all cases, the dominant error regions are consistently localized at the bubble diffusion boundary,
where the sparse, single-interface structure tends to amplify the effect of strong noise.

In the particle deposition case, increasing noise levels lead to a uniform rise in KAE errors, yet
the boundaries of key structures—such as particle-dispersion wakes and recirculation vortices—

remain clearly delineated. The error distribution is relatively homogeneous, without pronounced
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Fig. S13: Predictions of flow field evolutions for the bubble rise case in noise experiment.

localised concentrations. In contrast, across five noise combinations, the DOK reconstructions from
multiple independent trials exhibit highly consistent results, with no perceptible change in error
distribution or magnitude as noise increases. Compared with the bubble-rise case, the particle-
deposition flow field spans a larger spatial domain, displays more complex morphologies, and un-
dergoes more pronounced feature variations. Because such strong and diverse spatial information
is preserved with high contrast after encoding, latent-space temporal propagation can more reli-
ably capture critical patterns, thereby rendering DOK comparatively less sensitive to noise in this
scenario.

In the fluidized bed case, higher noise levels cause KAE errors to rise uniformly across the
domain, yet phase-phase boundaries remain well discernible. The errors form small patch-like
distributions along regional boundaries, with relatively larger deviations at the top interface between
particles and air. Notably, for DOK, the overall error exhibits a slight "decline" at higher noise
levels—both in regions densely populated by solid particles and along bubble-flow channels. This
effect may arise because strong noise, once compressed by the encoder, is mapped to latent-space
perturbations of smaller amplitude and more dispersed directionality, acting as a mild regularization

on the features. As a result, DOK reduces its reliance on high-frequency details and focuses on
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Fig. S14: Predictions of flow field evolutions for the particle deposition case in noise experiment.
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Fig. S15: Predictions of flow field evolutions for the fluidized bed case in noise experiment.

dominant patterns such as bed expansion and bubble-channel formation, thereby achieving more
accurate temporal predictions.

Across all cases, the influence of noise on predictive accuracy is inversely related to the spatial-
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feature density of the flow field. In interface-sparse scenarios such as bubble rise, noise directly
affects the entire region, leading to rapid error accumulation and significant degradation in interface
recognition. In contrast, particle deposition and fluidized-bed flows contain abundant, spatially
dispersed multiscale structures, causing random perturbations to be "diluted" in the latent space.
The denoising capability of KAE and the temporal modelling of DOK together act as a form of
implicit regularization, making the overall error less sensitive to noise—and in some high-noise
cases, even improving prediction accuracy. This suggests that future model designs could enhance
predictive robustness under strong noise by increasing feature redundancy in the flow field and

introducing explicit regularisation in the latent space.

E Learning potential for fewer training size and finer temporal

resolution

This section presents two experimental designs to evaluate the proposed models under (i) limited
training size and (ii) varying numbers of prediction time steps, using the same baseline architecture
(Table S1).

In the limited-data scenario, the test set was fixed at 100 samples, while the training set size
was varied. The full set of 900 training samples was taken as the 100% baseline, and subsets corre-
sponding to 20%, 30%,. .., and 90% of the full data were used for model training and evaluation.
For each training ratio, subsets were randomly sampled and the experiments were independently
repeated five times with different random seeds to ensure statistical consistency. At each data
scale, we evaluated the reconstruction accuracy of the KAE and the prediction accuracy of the
DOK (decoded through the KAE), both measured using mean squared error (MSE). Results were
compared against the baseline trained on the full dataset to quantify the effect of reduced training
data on reconstruction and prediction performance.

The second set of experiments examined model performance under different numbers of pre-
diction time steps. In the baseline configuration, each sample comprised the initial field and ten
subsequent flow-field frames (11 frames in total), spanning the evolution from the initial time to a
fixed final time T'. Keeping the total duration T fixed, we used higher time-resolution simulation
data to extend the sequence length to 10, 15, 20, 25, and 30 frames, where more frames correspond
to shorter intervals between successive time steps and require the model to predict more intermedi-
ate states. For each configuration, the KAE was trained on flow fields from all time frames in that
setting (with higher frame counts providing more unsupervised training samples), while the DOK
learned to map from the same initial field (branch input) and varying time parameters (trunk input)
to the corresponding latent vectors. After training, reconstruction errors for the KAE and predic-
tion errors for the DOK (decoded through the KAE) were computed on the corresponding test sets,
both reported as MSE. Each configuration was trained and tested five times with different random
seeds to ensure robustness. Comparing error trends across time-step densities enables assessment

of how prediction accuracy and stability vary with increasing temporal resolution requirements.
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Fig. S16: Experimental designs under limited training size and different time steps.

E.1 Learning potential for fewer training size and finer temporal resolution

As the proportion of training data increases from 20% to 100%, the MSE of both modules
decreases monotonically. Across all proportions, the KAE consistently achieves lower errors than
the DOK, with the largest gap observed at 100% data availability—consistent with the fact that
the DOK’s lower error bound is constrained by the reconstruction error of the KAE’s latent space.
A clear capacity threshold is evident at approximately 40%: for 40% training data, both modules
produce stable predictions with well-recovered global structures and fine details; for <40%, errors
rise sharply, with notable degradation in flow-field texture and phase alignment. Even at 20-30%
data availability, the models can reconstruct the primary outline in all cases, but discrepancies are
more pronounced in sensitive regions such as interfaces, shear layers, and single-valued features.
In particular, the fluidised-bed case shows the most significant error growth, with numerous high-
error spots appearing in the upper air region. These deviations steadily diminish as the training
proportion increases to 60-100%. Overall, ensuring at least ~40% of effective training samples
is necessary for reliable predictions, with greater data availability improving KAE reconstruction

accuracy and, in turn, enhancing DOK temporal-prediction performance based on its latent space.
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Fig. S17: Predictions of flow field evolution under fewer training size tests. a Bubble rise; b Particle deposition
case; ¢ Fluidized bed.

E.2 Experimental results for different time step prediction

In the bubble-rise case, KAE errors show a slight decrease as the number of time steps increases;
in particle deposition and fluidized bed cases, KAFE errors rise slightly with step count, though the
magnitude is small. The DOK is more sensitive to temporal densification: for bubble rise, the error
increases sharply from 10 to 20 steps but returns to a level comparable to 10 steps at 25-30 steps; in
particle deposition, prediction accuracy declines steadily with more steps, as wake and shear-band

textures gradually blur while the overall settling profile remains identifiable; in the fluidized bed,

25



Predict

KAE

Error

Predict

DOK

Error

Predict

2

Error

Predict

DOK

Error

Predict

KAE

Error

Predict

DOK

Error —_—= S ll e — -0.00

-0.13

Fig. S18: Predictions of flow field evolution under different time step tests. a Bubble rise; b Particle deposition
case; ¢ Fluidized bed.

26



<N
©©
Z=T

e

T
Sl

Base KAE Model

H/
Q¢

Fig. S19: KAE training strategies for multiphase flow.

accuracy decreases most markedly, particularly between 20 and 30 steps, where striped high-error
bands emerge at gas-solid interfaces and internal particle textures become increasingly diffuse.
Overall, temporal-resolution densification yields limited yet stable gains for KAE. For DOK, the
increase in error is not due to "accumulation" from iterative rollouts, but rather to fixed model ca-
pacity and training budget being distributed across more time points, requiring approximation over
a broader temporal spectrum and more complex spatiotemporal couplings. Interface-dominated
flows with simple topology, such as bubble rise, remain relatively robust at higher resolutions,
whereas vortex-dominated particle deposition and strongly multiscale fluidized bed flows contain

richer high-frequency information, making them harder to fit and more prone to error growth.

F Framework extension: Multiphase flow applications

In the preceding experiments, the focus was on two-phase flows, where the prediction target was
the temporal evolution of a single phase’s volume fraction. To address multiphase (Ng > 2), flow
problems, the baseline model architecture must be extended to handle multi-input/multi-output
tasks. Taking a three-phase flow as an example, the goal is to simultaneously predict the temporal
evolution of two-phase volume fraction fields.

For the KAE, we designed three dimensionality-reduction and reconstruction strategies (S1-S3)
for comparison (Fig. S19):

Strategy S1: A single baseline KAE (Table S1) is used to encode and decode both phase volume-

fraction fields, i.e., the same encoder/decoder weights process all phase data. This maps different
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Table S4: Model parameters for different KAE strategies.

Strategy Parameters (M) FLOPs (M) Epoch time (s)

S1 166 M 333 M 445
S2 333 M 666 M 6.6 s
S3 333 M 333 M 5.6s

phases into a shared latent space to extract cross-phase structural features.

Strategy S2: Builds upon S1 by increasing the baseline KAE’s hidden-layer width from 1008
to 2016 (latent dimension unchanged) to enhance representation capacity for multiphase complex-
ity. Phases still share a single latent space, but the wider network can capture more intricate
relationships.

Strategy S3: Constructs an independent KAE (identical to the baseline architecture) for each
phase, each learning its own latent representation. This gives each phase an independent latent
space, avoiding cross-phase interference but preventing direct capture of shared features. Two
KAEs must be trained, but without parameter count or computational overhead exceeding S1.

For the DOK, all strategies adopt the same multi-input/multi-output design shown in Fig. S2.
Two independent branch nets extract the initial latent vectors for the respective phases, which
are then fused via element-wise multiplication into a combined initial feature. This is merged
with trunk-net temporal features to produce the latent vector for the target time. Finally, the
corresponding KAE decoder reconstructs the two-phase volume-fraction fields at each predicted
time.

The training results for each strategy are shown in Fig. S20, with prediction errors reported in
Fig. 8 of the main text. With the DOK structure fixed, all three KAE strategies achieve high-
fidelity reconstruction and temporal prediction for both phases. Prediction errors are similar overall,
indicating comparable global accuracy; however, in high-gradient regions such as interface details
and local vorticity, the errors follow the trend S1 > S2 > S3. S1 is limited by shared latent-space
capacity, making it harder to capture fine-scale features of both phases simultaneously. S2 alleviates
this limitation through width expansion, though some interference remains. S3, by assigning each
phase its own latent space, minimizes local error and maximizes physical consistency while matching
S1’s parameter count and computational cost, achieving the best overall accuracy.

As summarized in Table S4, S1 offers the shortest training time at 4.4 s per epoch due to minimal
parameter count and FLOPs, making it suitable for rapid prototyping or resource-constrained
scenarios. S2 balances accuracy and capacity but increases training time to 6.6 s per epoch,
reflecting the combined linear and quadratic costs of width scaling. S3 matches S2’s parameter
count but, owing to independent branches and a fixed 333 M FLOPs, trains in 5.6 s per epochabout
15% faster than S2—making it advantageous for large-scale concurrent inference and online updates.

In summary, if maximum local accuracy and physical consistency are the priority and moderate

training cost is acceptable, S3 is recommended. If constrained by memory or real-time requirements,
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Fig. S20: Predictions of flow field evolution multiphase cases under different KAE training strategies. The snapshots
at time frames for a Bubble rise; b Particle deposition case; ¢ Fluidized bed.

S1 enables rapid iteration. S2 is appropriate when both accuracy and shared latent-space alignment

are important and computational resources are sufficient.
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