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Supplementary Text

1. Input models and their corresponding surrogate models
1.1 Vesicle Exocytosis (VE) model

Input model. The vesicle exocytosis (VE) model [1] is an ODE-based model that describes the formation of
insulin vesicles, their dynamics across four distinct pools (ie, the reserve pool, NXE , the immediately releasable
pool, NIVRE , the docked pool, N}D/E , and the fused pool, N}/E , as well as their exocytosis. Model variables and
parameters are provided in Table S1, and the model equations are:
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Surrogate model. The surrogate VE model is constructed with a time step of 10~# minutes, ensuring an
optimal balance between computational efficiency and numerical stability. The process model adapts the ODEs
of the VE input model as forward functions without simplification. The observation model is formulated based
on experimental data or, in its absence, an identical function to maintain consistency between predicted and
observed states. Transition and emission noises are time-variant, defined as 1072 and 1072 of the respective
mean values of the surrogate model variables at each time step.

1.2 Insulin Secretion Kinetic (ISK) model

Input model. The insulin secretion kinetic (ISK) model [2] employs a two-compartment representation to
describe C'a?* distributions in the cytosol, CalS¥ and in the Ca?* microdomains near the voltage-sensitive

Ca*t channels, C’amd , as well as the Ca?*- dependent insulin secretion kinetics of a single [-cell. Model
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variables and parameters are provided in Table S2, and the model equations are:

Cdmd(t) = fmaJr(t) = fmaB[Cama(t) — Caic(t)]
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Surrogate model. The surrogate ISK model is constructed with a time step of 10~® minutes. The process
model adapts the ODEs of the ISK input model as forward functions without simplification, except for the
variable S;’jg , which requires additional interpolation based on the number of secreted vesicles, Ng LSK after
solving the ODEs. The observation model is formulated based on experimental data or, in its absence, an
identical function. Transition and emission noises are time-variant, defined as 1072 and 2% 107! of the respective

mean values of surrogate model variables at each time step.

1.3 Islet Cell Network (ICN) model

Input model. The islet network (ICN) model [3] is a network model that describes the electrical dynamics,
VICN and Ca?t dynamics, Cal¢?, of individual § cells within the islet during insulin secretion. The
model employs hexagonal closest packing to construct an islet network of [-cells, simulating intercellular
communication mediated by gap junctions, K47p channels, Ca?* channels, as well as Ca?t and CI~ pumps.

Model variables and parameters are provided in Table S3, and the model equations are:
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Surrogate model. The surrogate ICN model is constructed with a time step of 5*10~% minutes. The process
model adapts the ODEs of the ICN input model as forward functions without simplification. The observation
model is formulated based on experimental data or, in its absence, an identical function. Transition and
emission noises are time-variant, defined as 10™2 and 10~! of the respective mean values of surrogate model
variables at each time step.

2. Estimation of model joint distribution

For input models lacking inherent uncertainty (eg, ODE models), variable distributions were estimated based
on the experimental data used during model construction. Each variable was assumed to follow a Gaussian
distribution characterized by a mean, p and a standard deviation, o. For time points with experimentally
determined mean and SD values, these were directly assigned as g and o. In case of incomplete data, an
average percentage, p,, was calculated as the ratio of the SD to the corresponding mean of the experimental
data at available time points. For time points where only the mean was known, 1 was set to the experimental
mean, and o was determined as the absolute difference between the experimental mean and the corresponding
model-derived mean. This is justified by the generally good fit of ODE models, as evidenced by the model-
derived mean falling within the experimental SD. For time points lacking both mean and SD, pu was set to
the model-derived variable mean, and o was estimated as p multiplied by p,, where p, was derived from the
available data points. The model’s joint distribution is thus estimated based on experimental data, with robust
approximations for missing values.

3. Validation of graph-based metamodeling using a synthetic benchmark

Toy system. We construct a toy system of glucose-stimulated insulin secretion to describe the dynamics
of five variables over 7 minutes: glucose intake from food digestion, D, intracellular glucose level, G, S-cell
activity, 7, insulin secretion rate of a -cell, S.;;, and insulin secretion rate of an islet, S;qe: (SI Fig. S3A).
These dynamics are governed by five nonlinear Ordinary Differential Equations (ODEs):

dG 2
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dSee
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Each variable is assigned a 15% uncertainty, serving as the Truth. The toy system is then divided into two
subsystems, referred to as the Cell and Body subsystems. Simulated experimental data are generated by
introducing random noise to the Truth of each variable. Input models for the subsystems are constructed by
fitting the parameters of the corresponding ODEs to the simulated data using linear regression.

Input models. The input Cell model describes the dynamics of the intracellular glucose level, G, insulin
secretion rate, S¢, and cell activity, ¢, on a timescale of 0.01 minutes, using three ODEs:

dG° 2
el B1SC + B2(v€)5 + B3
dsc

T ﬁ4’Yc + B55Y + Bs

d C

T = Br(S9) + s

The input Body model describes the dynamics of insulin secretion rate of an islet, SE, in response to the
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glucose uptake from food digestion, DZ, on a timescale of 0.05 minutes, using two ODEs:

dDPB

7dt = Q1 IH(SB) + a2

d B

% = ag(DP)* + auD” + a5

Surrogate models. The surrogate Cell and Body models are constructed with time steps of 0.01 and 0.05
minutes, respectively. The process model adapts the ODEs as forward functions, while the observation model
uses the simulated experimental data as observations. Joint distributions of the input and surrogate Body
models largely overlap, validating the conversion step (SI Fig. S3B).

Metamodel. Two surrogate models with varying timesteps (Cell: 0.01 min; Body: 0.05 min) are redefined to
the universal time step of 0.01 min. The Cell surrogate model required no redefinition, as its timestep already
matches the universal timestep. For the Body surrogate model, the process model was redefined using an ODE
solver at the universal timestep; the observation model was computed through interpolation of the simulated
experimental data. The connecting variables, S¢ and SZ, are selected by comparing the Pearson correlation
coefficient for all pairs of surrogate model variables (SI Fig. S3C). The coupling variable S¢,;; is introduced,
with its prior distribution defined as a mixture function of the connecting variable distributions with equal
weights. To establish their statistical dependencies, two edges are introduced from the coupling variable to the
connecting variables S¢ «+ — SB (SI Fig. S3D), with conditional distributions, P(S¢|S<,,,), P(SB|S¢.;,),
defined as:

cell

( t+1| cell, t7 ) = N([wlsgell,t + (1 - wl)fB(SthDF)]v(?%)v
P( t+1|S('Pll 5, ) N([WQSgell,t + (1 — W2)fC(StCa"YtC; Gtc)]v ¢t2)

where w1 and wsy are weights determined by the relative overlaps between the coupling variable distribution and
the connecting variable distributions. Metamodel inference was performed using both the Unscented Kalman
Filter (UKF) and the Particle Filter (PF), yielding comparable accuracy, with the PF exhibiting smaller
uncertainty as expected (SI Fig. S3E). We also integrate two input models using widely adopted Common
Timestep Integration (CTI) approach [4] to evaluate changes in model accuracy before and after integration.
As a result, graph-based metamodeling achieves superior accuracy compared to both the input models and the
CTT approach (SI Fig. S3F). The synthetic metamodel is available on Github https://github.com/SunLab-
SH/GraphMM.
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Fig. S1 The top panel illustrates three diverse input models: molecular signaling pathways (milliseconds),
cellular components and dynamics (seconds), and multicellular communications (minutes). The middle panel
outlines three metamodeling stages: (i) unifying representations of diverse inputs using state space models; (ii)
standardized coupling across timescales using nonlinear and linear mappings to unify temporal resolutions,
followed by constructing coupling PGM graph using a standardized strategy; and (iii) efficient metamodel
inference employing factor graphs and Kalman Filters (KFs) for estimating model variable distributions.
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Fig. S2 (A-C) Selection of connecting variables based on the Pearson coefficient analysis. White stars
indicate two sets of selected connecting variables: the number of insulin vesicles fused with membrane in VE
model, NI‘;/E , and those in the releasable state in ISK model, N II{SK : the intracellular Ca?t levels in the ISK

model, Ca!?% and the ICN model, CalS"N models. (D) Coupling among three models by introducing two
coupling variables, Nrpg and Ca,., to statistically relate the two sets of connecting variables, respectively. Gray
arrows indicate the flow of information between the coupled models.
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Fig. S3 (A) Schematic representation of the toy model, comprising a cell system (1072 min) and a body
system (5% 1072 min). (B) Joint distribution of the input body model (blue dashed line) and its corresponding
surrogate model (red solid line). (C) Selection of connecting variables between the cell and body models based
on the Pearson coefficient analysis. White star indicates the selected connecting variables: the insulin secretion
rates in the cell model S¢ and in the Body model SB. (D) Meta PGM graph over the cell and body surrogate
models. (E) Time courses of all five variables in the synthetic metamodel. The comparison includes predictions
of the metamodel constructed using GraphMM and infered using Unscented Kalman Filters (UKF, blue solid
line) and Particle Filters (PF, orange solid line), and the Truth (black dashed line). The comparison includes

the input model (dashed orange line), surrogate model (blue solid line), updated surrogate model (red solid

line), and the Truth (black solid line). Shaded regions represent standard deviations (SDs). (F) Overlap of
model variable distributions with the Truth, averaged across all variables and time courses. The comparison
includes the input model, the metamodel constructed using GraphMM, and the metamodel constructed using a
common timescale integration (CTI) approach. An example time course of the insulin secretion rate in the
body model, SZ, is shown for the Truth (black solid line), input model (blue dashed line), metamodel using
GraphMM (red solid line), and metamodel using CTI (green solid line).
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Fig. S4 Ion channel and gap junction conductance of Metamodel-57 and Metamodel-153. The conductance
values for various ion channels and gap junctions include: ATP/ADP-dependent potassium channel
conductance, gratp, voltage-gated potassium channel conductance, g, slow inhibitory potassium channel
conductance, g, voltage-gated C'a?* channel conductance, g.,, calcium pump rate, k.o, and gap junction
conductance, g..
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Fig. S5 Metamodel predictions across molecular, cellular and islet scales under four intercellular
communication conditions: GJ+/Karp+, GJ-/Karp+, GJ+/Karp-, and GJ-/Karp. Predictions include the
fraction of insulin vesicles in the reserve pool N} ¥, the pool of vesicle membrane materials VY, the Ca?*
concentration in the microdomain Cafde , the cytosolic C'a®* concentration C’a{cs K and the membrane
potential of each cell VICN for all S-cells in the islet network.
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two conditions: activate all cells and silence individual cells. Highlighted in red are conditions including:
activating all cells; silencing cell 11, which significantly reduces [-cell activity; silencing cells 21 and 27, which
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Table S1 Variables and parameters of the Vesicle Exocytosis (VE) model

Model variables:
Name Description Unit

1 Pool of proinsulin aggregates -
V Pool of granule membrane material -
Np Insulin secretion rate of a pancreas -
Ng Number of vesicles in the reserve pool -
Np Number of vesicles in the pool of docked vesicles -
Nir Number of vesicles in the pool of immediately releasable vesicles -
vy Rate coeflicient of granule externalization and priming /min
d Oscillatory forcing function that represents the events inducing [ATP] oscillations -
P Rate coefficient of granule fusion with cell membrane /min
G Glucose concentration mM
hy Glucose activation -
h, The action of [ATP] on Ca?* -
S Insulin secretion rate pM/min
Model parameters:
k Rate of formation of proinsulin-containing vesicles /min
ar Rate of degradation of proinsulin aggregates /min
br Biosynthesis rate of proinsulin aggregates /min
Qy Rate of degradation of granule membrane material /min
by Rate of biosynthesis of granule membrane material /min
o Rate of insulin release from vesicles fused with cell membrane /min
Ty Time delay related to recycling of granule membrane material min
ki Rate of association for the binding between vesicle and Ca channel /min
kT Rate of dissociation for the binding between vesicle and Ca channel /min
Cr Pool of total Ca channels -
n Rate in the equation for y /min
Vb Basal rate coefficient of granule externalization and priming /min
€ Rate constant in the equation for p /min
h Maximal value of h., /min
el Time delay related to time required by glucose metabolism for activation of ~y min
G Glucose concentration over which h, remains constant mM
G* Glucose concentration threshold for the activation of ~ mM
Iy Insulin amount contained in a granule amol
ko Parameter representing the sensitivity of p on the activatory action of amol
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Table S2 Variables and parameters of the Insulin Secretion Kinetic (ISK) model

Model variables:

Name Description Unit
Cama Microdomain Ca?T concentration mM
Cae Cytosol Ca?* concentration mM
JL Molar Ca?* influx through open L-type Ca?* channels puM/s
Jr Molar Ca?* influx through open R-type Ca?* channels uM/s
Ny Number of primed vesicles inside the microdomain -
Ny Number of bounded vesicles -
N3 Number of triggered vesicles -
Ny Number of pre-fused vesicles -
N5 Number of primed vesicles outside the microdomain -
Ng Number of vesicles just arrived from reserve pool -
Nr Number of fused vesicles -
Ng Number of releasing vesicles -
Ng Number of secreted vesicles -
S Insulin secretion rate mM /min
Model parameters:
Name Description Unit
Jmd Ratio of the free to the bound C'a®T in the microdomain compartment -
fi Ratio of the free to the bound Ca?* in the cytosol compartment -
B Transport rate of Ca?t between the two compartments -
fo Ratio of the compartmental volume of the microdomain to that of the cytosol -
Q@ Constant factor that converts the current into the mole flux of Ca-ions -
Vcell Volume of the cell pl
VUmd Volume of the microdomain compartment fl
ky Rate coefficient /uM/s
k_y Rate coefficient /s
1 Rate coefficient /s
r_q Rate coefficient /s
T9 Rate coefficient /s
r_9 Rate coefficient /s
T3 Rate coefficient /s
r_3 Rate coefficient /s
7R Rate coefficient /s
42 Rate coefficient /s
3 Rate coefficient /s
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Table S3 Variables and parameters of the Islet Cell Network (ICN) model

Model variables:

Name Description Unit
Vi Membrane potential of each cell 4 mV
Tiatp ATP/ADP ratio dependent potassium current pS -mV
I Voltage-dependent calcium current pS -mV

I Voltage-gated potassium current pS -mV
I Slow inhibitory potassium current pS -mV
Leoup Passive coupling current pS -mV
I Passive chloride current pS -mV
n; Voltage gated potassium channel gating variable of each cell ¢ -
Si Slow inhibitory potassium channel gating variable of each cell i -
Ca; Intracelluar C'a®* concentration of each cell i uM
Model parameters:
Name Description Unit
kea Ca®T pump rate pS
Gkatp ATP/ADP dependent potassium channel conductance pS
Jea Voltage-gated C'a®t channel conductance pS
Gk Voltage-gated potassium channel conductance pS
Js Slow inhibitory potassium channel conductance pS
Je Gap junction conductance -75 mV
Vi Potassium Nernst potential 25 mV
Vea Calcium Nernst potential -70 mV
Va Chloride Nernst potential pS
Neenr Number of cells per islet -
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