

Molybdenum-independent [4Fe-4S]-Catalyzed Sulfate Assimilation Sustains *Salmonella* Virulence

Ju-Sim Kim¹, Siva Uppalapati¹, Alyssa Margolis¹, Michael McClelland², Hanan Elajaili³, Eva Nozik³, Lin Liu¹, and Andres Vazquez-Torres^{1,4*}

¹University of Colorado School of Medicine, Department of Immunology and Microbiology,
Aurora, Colorado-80045, USA

²University of California Irvine School of Medicine, Department of Microbiology and Molecular
Genetics, Irvine, CA, USA

³Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine,
University of Colorado Anschutz Medical Campus, Aurora, Colorado-80045, USA

⁴Veterans Affairs, Eastern Colorado Health Care System, Aurora, Colorado-80045, USA

Lead contact: Andres Vazquez-Torres
Department of Immunology and Microbiology
University of Colorado School of Medicine
12800 East 19th Avenue MS 8333
RC1 North room P18-9131
Aurora, Colorado 80045, USA
Email: andres.vazquez-torres@cuanschutz.edu

Supplementary Tables

Table S1. Identity and similarity of DmsA (STM14_1089) paralogs.

	Identity	Similarity
STM14_1809	66%	80%
STM14_1811	68%	80%
STM14_3103	40%	58%
STM14_5178	49%	64%

Table S2. Bacterial strains used in this study.

Strain	Relevant characteristics	Reference
Salmonella		
14028s	wild-type of <i>S. Typhimurium</i>	ATCC
AV20164	WT, pHluorin	1
AV24157	WT, pWSK29::STM_1811-1807 [WT pPSR3]	This study
AV24051	WT, pWSK29::STM_3103-3101 [WT pPSR1]	This study
AV24041	WT, pWSK29::STM_5178-5180 [WT pPSR2]	This study
AV23012	WT, pWSK29::iscS [WT pISCS]	1
AV13165	Δ cysJ::Cm [Δ cysJ]	lab stock
AV22025	Δ dmsABC::Km [Δ dmsABC]	1
AV0785	Δ iscS::Km [Δ iscS]	1
AV08158	Δ menA::FRT [Δ menA]	lab stock
AV21016	Δ moaABCDE::Km [Δ moa]	1
AV22175	Δ mstA::Km [Δ mstA]	This study
AV22195	Δ phsABC::Cm [Δ phsABC]	lab stock
AV24143	Δ pspE::Km [Δ pspE]	This study
AV10074	Δ ubiC::Cm [Δ ubiC]	lab stock
AV24048	Δ STM_1811::Cm [Δ 1811]	This study
AV24001	Δ STM_1811-1807::Cm [Δ 1809 or Δ psr3]	This study
AV24055	Δ STM_1811-1807::Cm, pWSK29::iscS [Δ psr3 pISCS]	This study
AV24035	Δ STM_1811-1807::Cm, pWSK29::STM_1811-1807 [Δ 1809 p1809]	This study
AV24158	Δ STM_1811-1807::Cm, pWSK29::STM_3103-3101 [Δ 1809 p3103]	This study
AV24159	Δ STM_1811-1807::Cm, pWSK29::STM_5178-5180 [Δ 1809 p5178]	This study
AV24002	Δ STM_3103-3101::Cm [Δ 3103 or Δ psr1]	This study
AV24053	Δ STM_3103-3101::Cm, pWSK29::iscS [Δ psr1 pISCS]	This study
AV24160	Δ STM_3103-3101::Cm, pWSK29::STM_1811-1807 [Δ 3103 p1809]	This study
AV24052	Δ STM_3103-3101::Cm, pWSK29::STM_3103-3101 [Δ 3103 p3103]	This study
AV24161	Δ STM_3103-3101::Cm, pWSK29::STM_5178-5180 [Δ 3103 p5178]	This study
AV24003	Δ STM_5178-5180::Cm [Δ 5178 or Δ psr2]	This study
AV24042	Δ STM_5178-5180::Cm, pWSK29::iscS [Δ psr2 pISCS]	This study
AV24162	Δ STM_5178-5180::Cm, pWSK29::STM_1811-1807 [Δ 5178 p1809]	This study
AV24163	Δ STM_5178-5180::Cm, pWSK29::STM_3103-3101 [Δ 5178 p3103]	This study
AV24003	Δ STM_5178-5180::Cm, pWSK29::STM_5178-5180 [Δ 5178 p5178]	This study
AV24069	Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT [1809+]	This study
AV24059	Δ STM_1811-1807::FRT, Δ STM_5178-5180::Cm [3103+]	This study
AV24068	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm [5178+ or psr2+]	This study
AV24070	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT [4 Δ]	
AV24144	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, pHluorin	This study
AV24152	Δ STM_1811-1807::FRT, pWSK29::iscS [4 Δ pSCIS]	This study
AV24087	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, Δ dmsABC::Km [5 Δ]	This study
AV24200	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, Δ dmsABC::Km, pWSK29::STM_1809-1807 [psr3+ or psr3ABC+]	This study
AV25112	Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, Δ dmsABC::Km,	
AV25113	pWSK29::STM_1809-1807 Δ N66 [psr3 Δ N66+] Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, Δ dmsABC::Km,	This study
AV24201	pWSK29::STM_1809-1807 R105A [psr3 R105A+] Δ STM_1811-1807::FRT, Δ STM_3103-3101::Cm, Δ STM_5178-5180::FRT, Δ dmsABC::Km,	This study

AV25021	pWSK29::STM_1809-1807 S199G [psr3 S199G+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔmoaABCDE::Km	This study
AV24196	pWSK29:: pWSK29::STM_1809-1807 [psr3+ Δmoa] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25117	pWSK29::dmsABC [dmsA+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25118	pWSK29::dmsABC ΔN66 [dmsA ΔN66+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV24197	pWSK29::dmsABC R106A [dmsA R106A+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25020	pWSK29::dmsABC S205G [dmsA S205G+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔmoaABCDE::Km	This study
AV25046	pWSK29::dmsABC [dmsA+ Δmoa] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25047	pWSK29::STM_3103~3101 [psr1+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25048	pWSK29::STM_3103~3101 S205G [psr1 S205G+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25049	pWSK29::STM_5178~5180 [psr2+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25065	pWSK29::STM_5178~5180 S198G [psr2 S198G+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25091	pWSK29::STM_1809 & 1808 [psr3AB+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25073	pWSK29::STM_1809 [psr3A+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25074	pWSK29::p1809::STM_1808 [psr3B+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
AV25066	pWSK29::p1809::STM_1808 & 1807 [psr3BC+] ΔSTM_1811-1807::FRT, ΔSTM_3103-3101::Cm, ΔSTM_5178-5180::FRT, ΔdmsABC::Km,	This study
	pWSK29::p1809::STM_1807 [psr3C+]	This study

E.coli

DH5α	supE44 ΔlacU169 (φ80 lacZ ΔM15) hsdR17 recA1	2
AV21115	endA1 gyrA96 thi-1 relA1	1
AV25102	DH5α (pWSK29-dmsABC)	This study
AV25106	DH5α (pWSK29-dmsABC ΔN66)	This study
AV24193	DH5α (pWSK29-dmsABC R106A)	This study
AV23019	DH5α (pWSK29-dmsABC S205G)	1
AV24044	DH5α (pWSK29::STM_1811-1807)	This study
AV24076	DH5α (pWSK29::STM_1809-1807)	This study
AV25101	DH5α (pWSK29::STM_1809-1807 ΔN66)	This study
AV25105	DH5α (pWSK29::STM_1809-1807 R105A)	This study

AV24166	DH5α (pWSK29::STM_1809-1807 S199G)	This study
AV25063	DH5α (pWSK29::STM_1809 & 1808)	This study
AV25075	DH5α (pWSK29::STM_1809)	This study
AV25080	DH5α (pWSK29::p1809::STM_1808)	This study
AV25079	DH5α (pWSK29::p1809::STM_1808 & 1807)	This study
AV25064	DH5α (pWSK29::p1809::STM_1807)	This study
AV24046	DH5α (pWSK29::STM_3103-3101)	This study
AV25032	DH5α (pWSK29::STM_3103-3101 S205G)	This study
AV24040	DH5α (pWSK29::STM_5178-5180)	This study
AV25057	DH5α (pWSK29::STM_5178-5180 S198G)	This study

Table S3. Plasmids used in this study.

Plasmid	Relevant characteristics	Reference
pWSK29	low copy plasmid, <i>lacZα</i> , <i>Pn</i> ^r	3
pKD13	template vector for FRT-flanked <i>Km</i> ^r cassette, <i>Km</i> ^r <i>Pn</i> ^r	4
pKD3	template vector for FRT-flanked <i>Cm</i> ^r cassette, <i>Cm</i> ^r <i>Pn</i> ^r	4
pHluorin	pH-sensitive green fluorescent proteins <i>inpGEMEX-2</i> , <i>Pn</i> ^r	5
pISCS	pWSK29 + 1.60-kb DNA containing <i>piscS::iscS</i> , <i>Pn</i> ^r	1
pDMS	pWSK29 + 4.22-kb DNA containing <i>pdmsA::dmsABC</i> , <i>Pn</i> ^r	1
pDMS ΔN66	pWSK29 + 4.22-kb DNA containing <i>pdmsA::dmsABC</i> , <i>dmsA</i> N66 deletion, <i>Pn</i> ^r	This study
pDMS R106A	pWSK29 + 4.22-kb DNA containing <i>pdmsA::dmsABC</i> , <i>dmsA</i> R106A mutation, <i>Pn</i> ^r	This study
pDMS S205G	pWSK29 + 4.22-kb DNA containing <i>pdmsA::dmsABC</i> , <i>dmsA</i> S205G mutation, <i>Pn</i> ^r	This study
p1811~1807	pWSK29 + 6.8-kb DNA containing <i>p1811::1811</i> and <i>p1809::1809,1808, and1807</i> , <i>Pn</i> ^r	This study
p1809~1807	pWSK29 + 4.2-kb DNA containing <i>p1809::1809,1808, and1807</i> , <i>Pn</i> ^r	This study
p1809~1807 ΔN66	pWSK29 + 4.2-kb DNA containing <i>p1809::1809,1808, and1807</i> , <i>1809</i> N66 deletion, <i>Pn</i> ^r	This study
p1809~1807 R105A	pWSK29 + 4.2-kb DNA containing <i>p1809::1809,1808, and1807</i> , <i>1809</i> R105A mutation, <i>Pn</i> ^r	This study
p1809~1807 S199G	pWSK29 + 4.2-kb DNA containing <i>p1809::1809,1808, and1807</i> , <i>1809</i> S199G mutation, <i>Pn</i> ^r	This study
p1809 & 1808	pWSK29 + 3.3-kb DNA containing <i>p1809::1809 and 1808</i> , <i>Pn</i> ^r	This study
p1809	pWSK29 + 2.7-kb DNA containing <i>p1809::1809</i> , <i>Pn</i> ^r	This study
p1808	pWSK29 + 0.21-kb <i>p1809</i> DNA + 0.62-kb 1808 gene containing <i>p1809::1808</i> , <i>Pn</i> ^r	This study
p1808 & 1807	pWSK29 + 0.21-kb <i>p1809</i> DNA + 1.5-kb 1808&1807 genes containing <i>p1809::1808 and 1807</i> , <i>Pn</i> ^r	This study
p1807	pWSK29 + 0.21-kb <i>p1809</i> DNA + 0.88-kb 1807 gene containing <i>p1809::1807</i> , <i>Pn</i> ^r	This study
p3103~3101	pWSK29 + 4.1-kb DNA containing <i>p3103::3103,3102, and 3101</i> , <i>Pn</i> ^r	This study
p3103~3101 S205G	pWSK29 + 4.1-kb DNA containing <i>p3103::3103,3102, and 3101</i> , <i>3103</i> S205G mutation, <i>Pn</i> ^r	This study
p5178~5180	pWSK29 + 4.1-kb DNA containing <i>p5178::5178,5179, and 5180</i> , <i>Pn</i> ^r	This study
p5178~5180 S198G	pWSK29 + 4.1-kb DNA containing <i>p5178::5178,5179, and 5180</i> , <i>5178</i> S198G mutation, <i>Pn</i> ^r	This study

Table S4. Oligonucleotides used in this study.

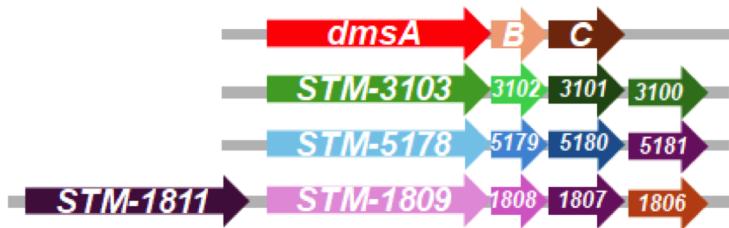
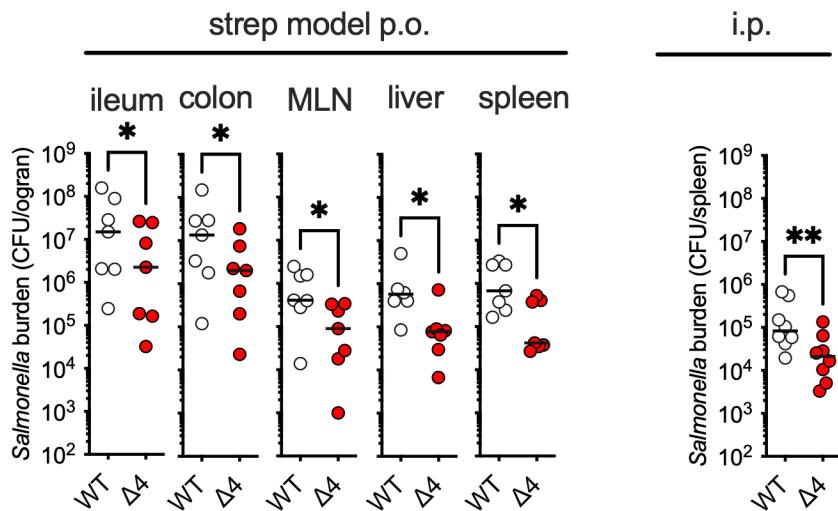
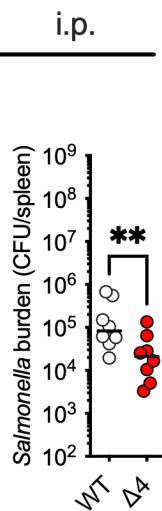
Strains	Primer Sequence (5' → 3')
$\Delta dmsABC::Km$	F: GCATTTACCTGCCATTACCCGATCGCTAACGCCGCAGTGTAGGC TGGAGCTGCTTCG R: CGCCAGCAGTCAGAATGAAGGCGACAGAGAGCAACGGTACCGATTCCG GG GATCCGTGAC
$\Delta moaABCDE::Km$	F: TACTTGCCTTGTGATTACCGATGTGTAACTTCGTGTAGGCTG GAGCTGCTTCG R: AACGGCGCACGGGTTTCAGATAATCCATAATGAAGACTGACCATTCCGG GGATCCGTGAC
$\Delta mstA::Km$	F: GACGCCGTATGGGCCGCCAGGACAGGAACATCGTATGTAGG CTGGAGCTGCTTCG R: TCCAGCGTGGCGAGCGCCAGCACCGACCAGCGCCGTACATTCC GGGGATCCGTGAC
$\Delta pspE::Km$	F: GGAATATTGCGTTAGCGTTATTCAAGCCATGCCGTTGTAGGCT GGAGCTGCTTCG R: TTTTTTACTTCGGCATATCAAGACGACTGATACCGCCCAATTCCGG GGATCCGTGAC
$\Delta 1809::Cm$ [$\Delta psr3$]	F: GGAGAAAAGCAACAAACAGGCCCTAGCCGAGGACGTTAGTGTAGGC TGGAGCTGCTTCG R: ACCTGCGACGGCCATACCTACGGTATATGCAGGCCATAACATATGAA TATCCTCCTTAG
$\Delta 3103::Cm$ [$\Delta psr1$]	F: CGGATCATGAAAATATAAAAGCCAGGGAAATGGCGAAGTGTAGGC TGGAGCTGCTTCG R: AGCCAATACTAAAGAAGACGTAGCGCAGCATAATCTGCCCATATGA ATATCCTCCTTAG
$\Delta 5178::Cm$ [$\Delta psr2$]	F: AAATGGCTGAACACAAACATAACCCGACGTGATGCTATTGTGTAGGC TGGAGCTGCTTCG R: TTGGCAGCGTCCACAGATTGTAAAACGCAATCCTACCCGCCATATGA ATATCCTCCTTAG
$\Delta 1811::Cm$	F: GGAGAAAAGCAACAAACAGGCCCTAGCCGAGGACGTTAGTGTAGGC TGGAGCTGCTTCG R: TGACTTTGGCGGGTAGACGCACCTCTCCACGATCGTTAACATATGAA TATCCTCCTTAG
Plasmids	
p1811~1807	F: ATCGAAGCTTGCACGACACGCAT R: ATCGCTCGAGTGCAGGTCGCCCCGCACG
p1809~1807	F: ATCGAAGCTTGCACGACACGCAT R: ATCGCTCGAGTGCAGGTCGCCCCGCACG
p1809~1808	F: ATCGAAGCTTGCACGACACGCAT R: ATCGCTCGAGCAGTGCACCTCCACTTCCC
p1809	F: ATCGAAGCTTGCACGACACGCAT R: ATCGCTCGAGCAGTGCACCTCCACTTCCC
p1808	Promoter 1809 part F: ATCGAAGCTTGCACGACACGCAT R: CACTTCCCATAACAGCTCACTATGCTC
	1808 part F: TAGTGAGCTGTTATGGGAAGTGGATGGCA R: ATCGCTCGAGTGCAGGTCGCCCCGCACG
p1808 & 1807	Promoter 1809 part F: ATCGAAGCTTGCACGACACGCAT R: CACTTCCCATAACAGCTCACTATGCTC
	1808 & 1807 part

	F: GTGAGCTGTTATGACAACCCAGTATGGA R: ATCGCTCGAGTGCAGGTCGCCCCGACG
p1807	Promoter 1809 part F: ATCGAAGCTTGCACACGGCGCCTGCAT R: CACTTCCCATAACAGCTCACTATGCTC 1807 part F: TAGTGAGCTGTTATGGGAAGTGGATGGCA R: ATCGCTCGAGTGCAGGTCGCCCCGACG
p3103~3101	F: ATCGAAGCTTAAATGGCGAACCTGTTAATGGC R: ATCGCTCGAGCCGGATCGATCGTCAGGTT
p5178~5180	F: ATCGAAGCTTGCCTTGCAGGGCGCGCT R: ATCGCTCGAGCATAAACCGGGCAAAAAA

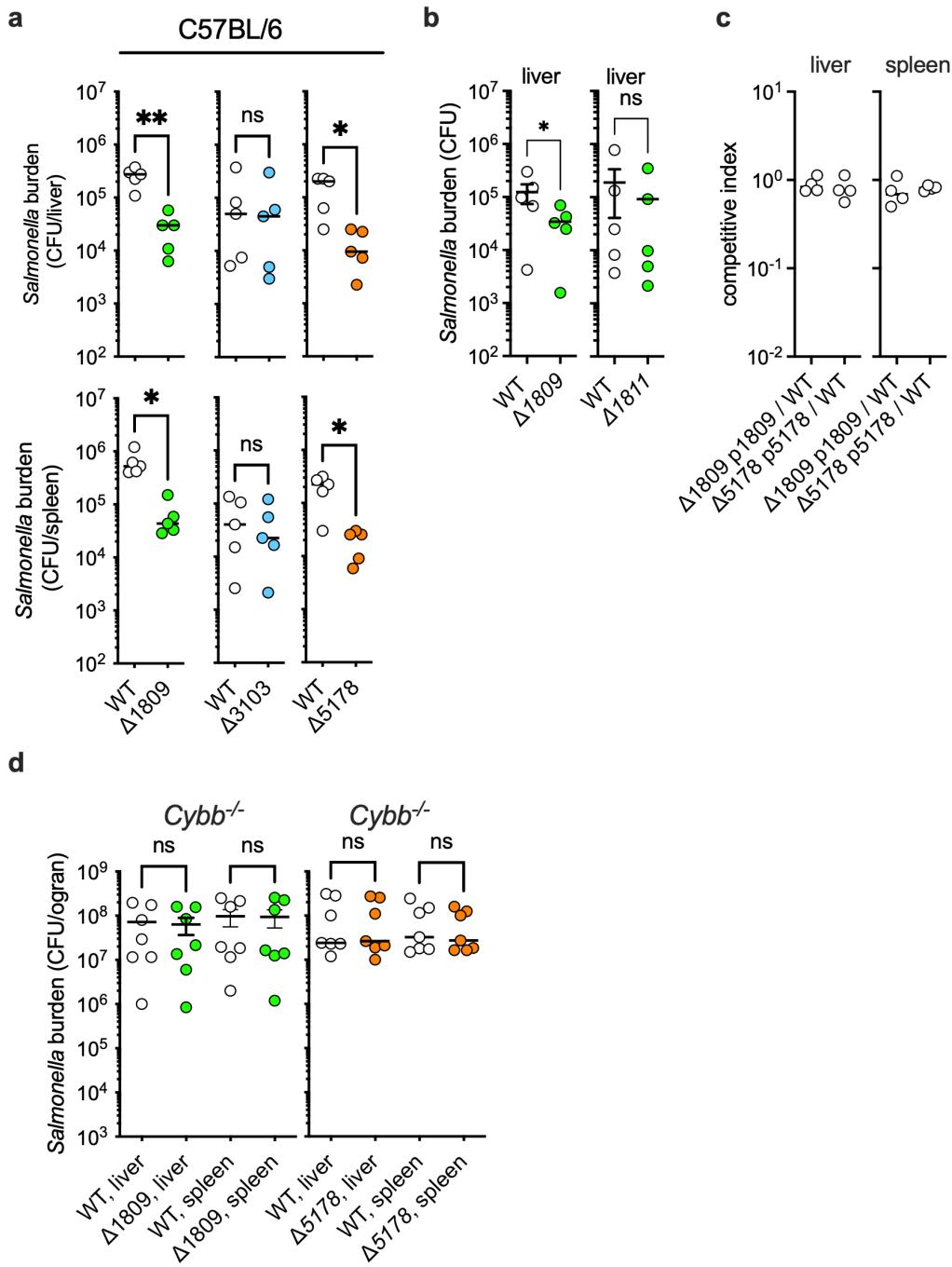
Real-time qRT-PCR

<i>cysJ</i>	F: TTGCAAACCGGCAATGCGC R: TCGCCGAGGGCTAACACACGGC Probe: 6-FAM- ATTCAACACAGATTGCCAGTGA-3BHQ-1
<i>cysK</i>	F: TATTGCGCTGGCGTATGTCG R: CCGGAGATAAACACACATCCACC Probe: 6-FAM- TTCAGAAAGCCGAAGAAATTGT-3BHQ-1
<i>cysM</i>	F: CGGTGAAAGATCGCCGCGC R: CAGACATAGCGAGCGCTAAATC Probe: 6-FAM- AAGGTTATCGCATGAAGCTGTTGA-3BHQ-1
<i>iscS</i>	F: TTGCCGAGAAAATGATGCAGTT R: TGTGCTTGCCTTTTTCTGAT Probe: 6-FAM- TTGGGAAACCCGGCGTCTCGT-3BHQ-1
<i>mstA</i>	F: CGAATATCGCGCCGGACATATT R: CATTGCGCTCGCTGCCAGCC Probe: 6-FAM- AAACACCTGGTCATATACGATGA-3BHQ-1
<i>phsA</i>	F: ACGCGCTATCTGGTTTCGTT R: AACGCGGATCGAAGCTCAC Probe: 6-FAM- CCTGCGCGGTATTAACTCATGGG-3BHQ-1
<i>pspE</i>	F: CGTTAGCGTTATTCATAGCC R: ACCGCCATATTATCGCGTG Probe: 6-FAM- ATATTCAAGGCAGCGATTAAATA-3BHQ-1
<i>rpoD</i>	F: GTGGCTTGCATTCCCTTGAT R: AGCATCTGGCGAGAAATA Probe: 6-FAM- ATAAGTTCGAATACCGTCGCG-3BHQ-1
STM_1811	F: TTGAGCGCAAGCCCAC R: ATGCCGGATCTCTTGCGCT Probe: 6-FAM- ATTGCGCCTGTGTACGGCCTT-3BHQ-1
STM_3103	F: GCACGGCAAGCTACCTGA R: GCTTCTCATCGCGCCCTG Probe: 6-FAM- ATGCCTAATTCGCCGCCACC-3BHQ-1
STM_5178	F: TGCCATTGTCGCTGTCG R: CTTTCACACCCATTGTCGT Probe: 6-FAM- CTGAATGGCGTCCGTCCACA-3BHQ-1

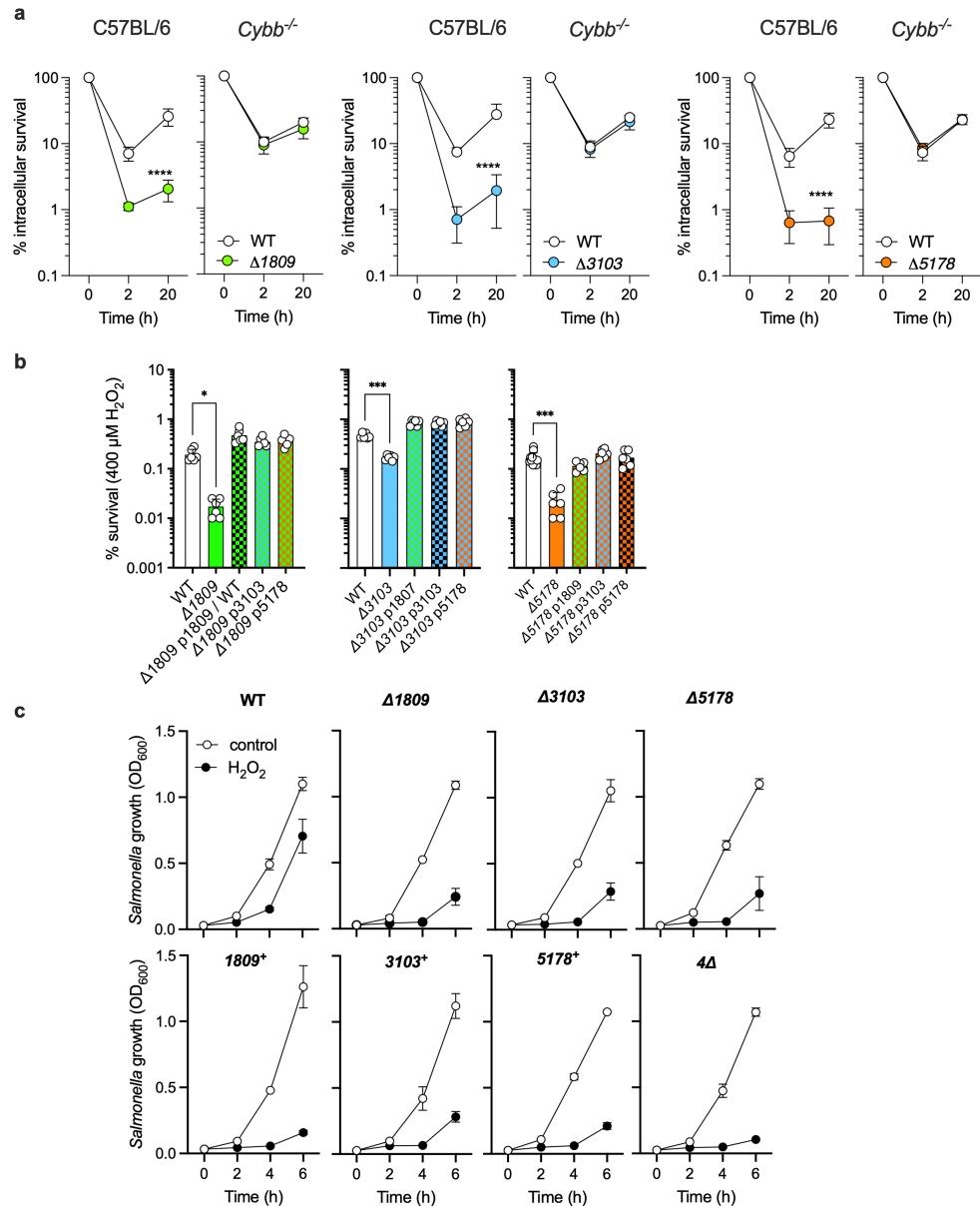
Site-directed point mutations




<i>dmsA</i> ΔN66	F: TGGAGCGCCTGTACGGTA*TGTGGCAGGCCGTTGTCCG R: CGGACAAACGGCTGCCACA*TACCGTACAGGCGCTCCA
<i>dmsA</i> R106A	F: GTTCGCGCCTGCCTGGCCGGTCGTTCTATGCGC R: GCGCATAGAACGACCGGCCAGGCAGGCGCGAAC

<i>dmsA</i> S205G	F: TACGGTGATTAC <u>GGTTCCGCGCAAATCGCA</u> R: TCGGATTTCGCG <u>GGAAACCGTAATCACCGTA</u>
1809 ΔN66	F: TGGAGTTCATGTACCGTT*TGCGGCAGCCGCTGCCCTG R: CAGGCAGCGGCTGCCGCA*AACGGTACATGAACCTCA
1809 R105A	F: CAGGTACGCGCCTGCCCT <u>GGCCGGCCGTTCTATTCTG</u> R: ACGAATAGAACGGCC <u>GGCC</u> CAGGCAGGCGTACCTG
1809 S199G	F: TACGGTAGCTAC <u>GGCACCGCCCAAATC</u> R: GATTGGCGGT <u>GCC</u> GTAGCTACCGTA
3103 S205G	F: TACCATTCTGT <u>GGGC</u> CATGGGCAACACGGCG R: CGCCGTGTTGCCAT <u>GCCC</u> CACAGAATGGTA
5178 S198G	F: CACAACACCTAT <u>GGCACGGCGCAAATGCC</u> R: GCGATTGCGCCGT <u>GCC</u> ATAGGTGTTGTG


* Restriction enzyme sites are underlined.

** Point mutation sites are indicated in bold and italic.


*** Deleted sites are marked with an asterisk.

a**b****c**

Figure S1. Operon organization of DmsA paralogs and their contribution to *Salmonella* fitness. **a.** Scheme of *dmsA* paralog operons. **b.** Competition of $\Delta 4$ (quadruple mutant in all four *dmsA* paralogs) and wild-type *Salmonella* in the ileum, colon, MLN, liver and spleen of C57BL/6 mice in a streptomycin-treated model of oral infection. The bacterial burden was assessed by calculating the CFUs 4 days post-infection after p.o. inoculation. The data are mean \pm SD from 7 mice in 2 independent experiments. **c.** Virulence of $\Delta 4$ *Salmonella* was assessed by counting bacterial burden in the spleens of C57BL/6 3 days after i.p. inoculation of ~ 500 CFU mixture of equal numbers of wild-type and mutant *Salmonella*. The data are presented as mean \pm SD from 8 mice in 2 individual experiments. *, **, $p < 0.1$, 0.01 , respectively, as estimated by paired *t*-test (b, c).

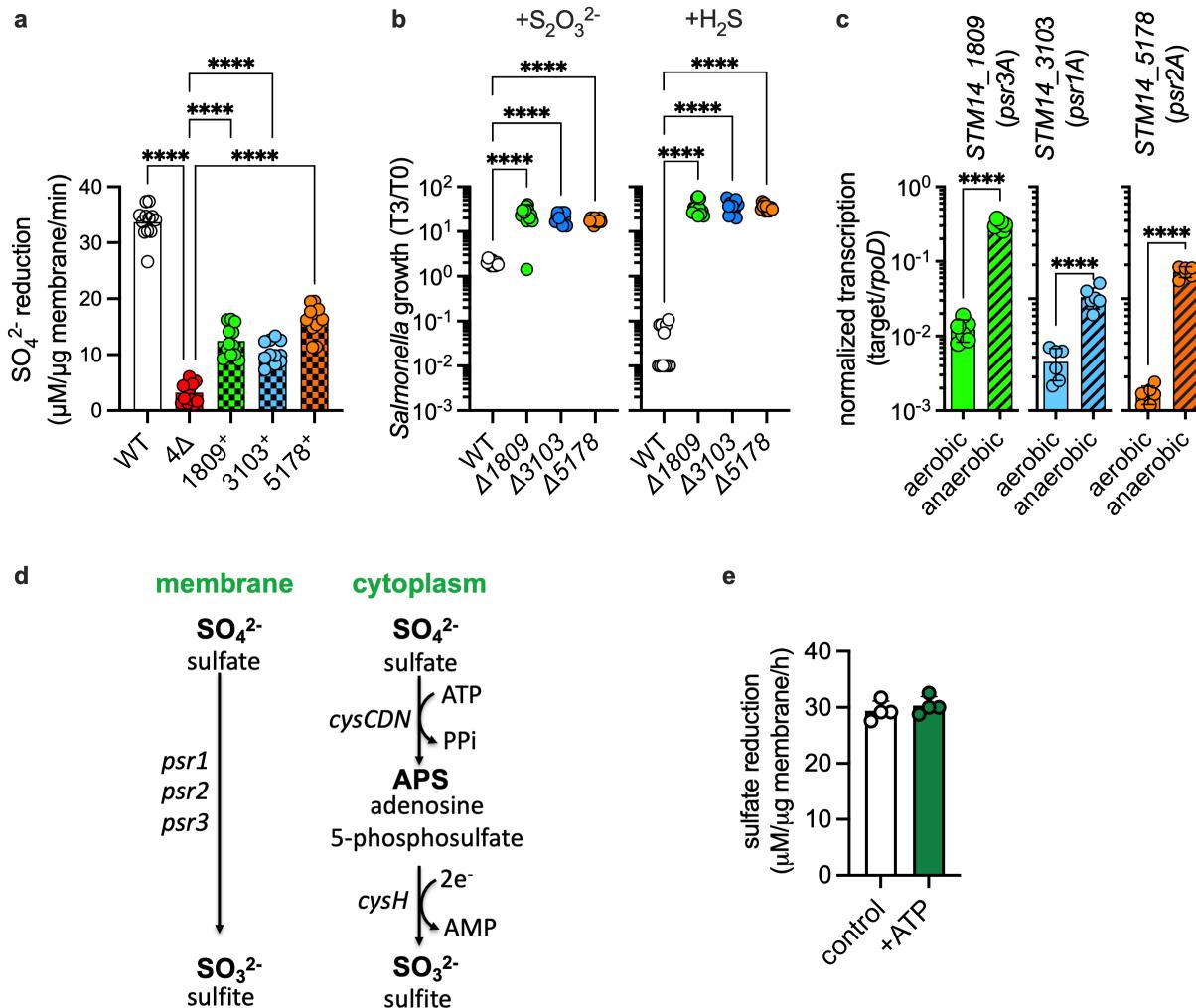


Figure S2. DmsA paralogs enhance *Salmonella* resistance to phagocyte NADPH oxidase-driven oxidative stress. **a, b, c, d.** The bacterial burden was quantified in the spleens and livers of C57BL/6 mice 3 days after i.p. inoculation with ~300 CFU of a mixture containing equal numbers of wild-type *Salmonella* and isogenic mutants (**a, b, d**). Competitive index (**c**) was calculated 3 days after i.p. infection. Data represent mean \pm SD from 2 independent experiments (**a** liver and spleen n=5 mice; **b** n=4 mice; **c** n=5 mice; **d** liver and spleen n=7 mice). *; **, p < 0.1, 0.01 as estimated by paired t-test (**a, b, c**) or one-way ANOVA (**d**).

Figure S3. Susceptibility of *dmsA* paralog mutants to oxidative stress. **a.** The percent survival of single *dmsA* paralog deletion mutants was assessed in periodate-elicited macrophages from C57BL/6 and *Cybb*^{-/-} mice. CFU were enumerated at 0, 2, and 20 h post-infection to determine bacterial replication. The data are mean \pm SD from 2 independent experiments (C57BL/6, n=7; *Cybb*^{-/-}, n=10). **b.** Single *dmsA* paralog deletion mutants were cultured aerobically in LB broth at 37°C and challenged with 400 μ M H_2O_2 in PBS for 2 h. Bacterial survival was determined by CFU enumeration. Cross-complementation was performed using the *dmsA* paralog cloned into the low-copy plasmid pWSK29. The data are mean \pm SD; n=6 (right panel WT n=12) from 3-4 individual experiments. *, ***, **** p < 0.1, 0.001, 0.0001, respectively, were calculated by two-way (a) or one-way ANOVA (b). **c.** Growth, as measured by OD₆₀₀, of *dmsA* paralog mutants in MOPS-GLC-sulfate minimal medium supplemented with 400 μ M H_2O_2 . The strains carried single (e.g., $\Delta 1809$) or quadruple (i.e., $\Delta 4$) mutations in *dmsA* paralogs. Strains expressing single *dmsA* paralogs (e.g., 1809⁺) were constructed by complementing the $\Delta 4$ strain

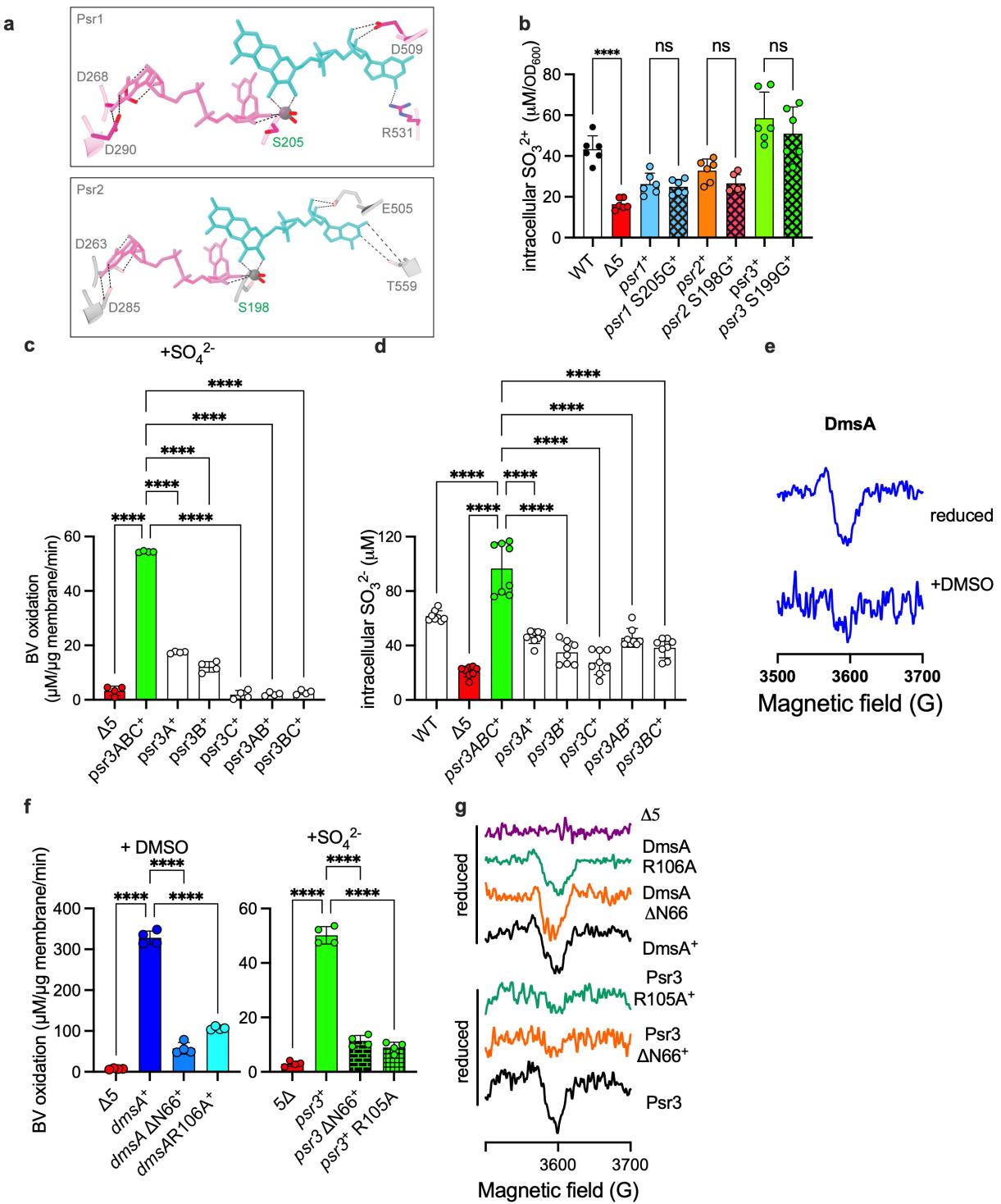

with the pWSK29 plasmid bearing *psr1*, *psr2*, or *psr3* operons. Data are represented as mean \pm SD from 2 biological replicates in 2 independent experiments.

Figure S4. DmsA paralogs function as membrane-associated sulfate reductases, indirectly facilitating sulfur acquisition to support the growth of *Salmonella*. **a.** Sulfate reductase activities were measured in membranes isolated from the indicated strains. The strains carried quadruple (i.e., $\Delta 4$) mutations in *dmsA* paralogs. Strains expressing single *dmsA* paralogs (e.g., 1809⁺) were constructed by complementing the $\Delta 4$ strain with the pWSK29 plasmid bearing specific operons. Sulfate reductase activity was monitored by following the oxidation of benzyl viologen. The data are mean \pm SD; n=12 from 4 independent experiments. **b.** Growth rescue of *dmsA* paralog mutants by exogenous sulfur compounds. Growth defects observed in single *dmsA* paralog deletion mutants were rescued by supplementation with 100 μM sodium thiosulfate (Na₂S₂O₃), or sodium sulfide (Na₂S). Mutants were cultured in MOPS-GLC-minimal medium containing thiosulfate or sulfide for 3 h at 37°C under hypoxic conditions. Bacterial viability was assessed by CFU enumeration. The data are mean \pm SD; n=12 from 3 independent experiments. **c.** Transcripts of *dmsA* paralog genes were quantified by real-time qRT-PCR using RNA isolated from *Salmonella* cultured aerobically or anaerobically in MOPS-GLC-minimal medium supplemented with 250 μM sulfate. The data are mean \pm SD; n=6 from 2 independent experiments. **d.** Pathway of sulfate reduction in the cell membrane and cytoplasm of *Salmonella*. **e.** Evaluation of ATP-dependent sulfate reduction. Sulfate utilization was measured in isolated

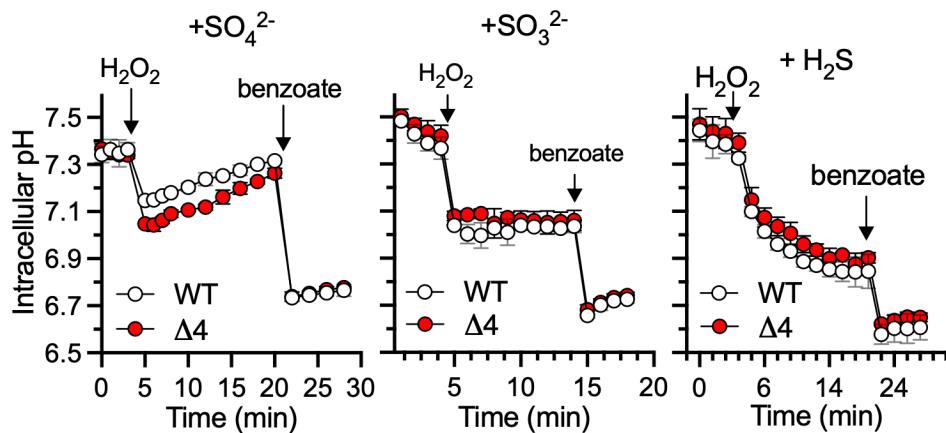
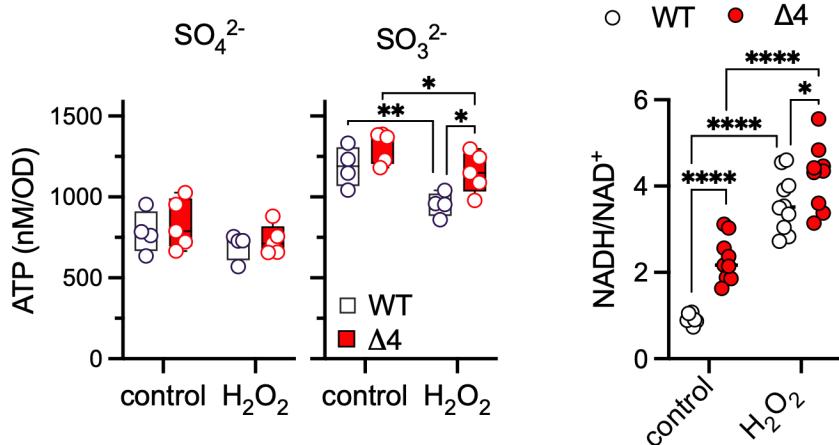
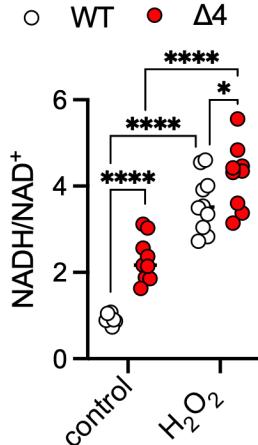



membrane fractions of *Salmonella* in the presence of 0.2 mM ATP. Data represent mean \pm SD; n=4 from 2 individual experiments. **** $p < 0.0001$ as estimated by one-way ANOVA (**a**, **b**) or unpaired *t* test (**c**).

Figure S5. See attached Excel file.

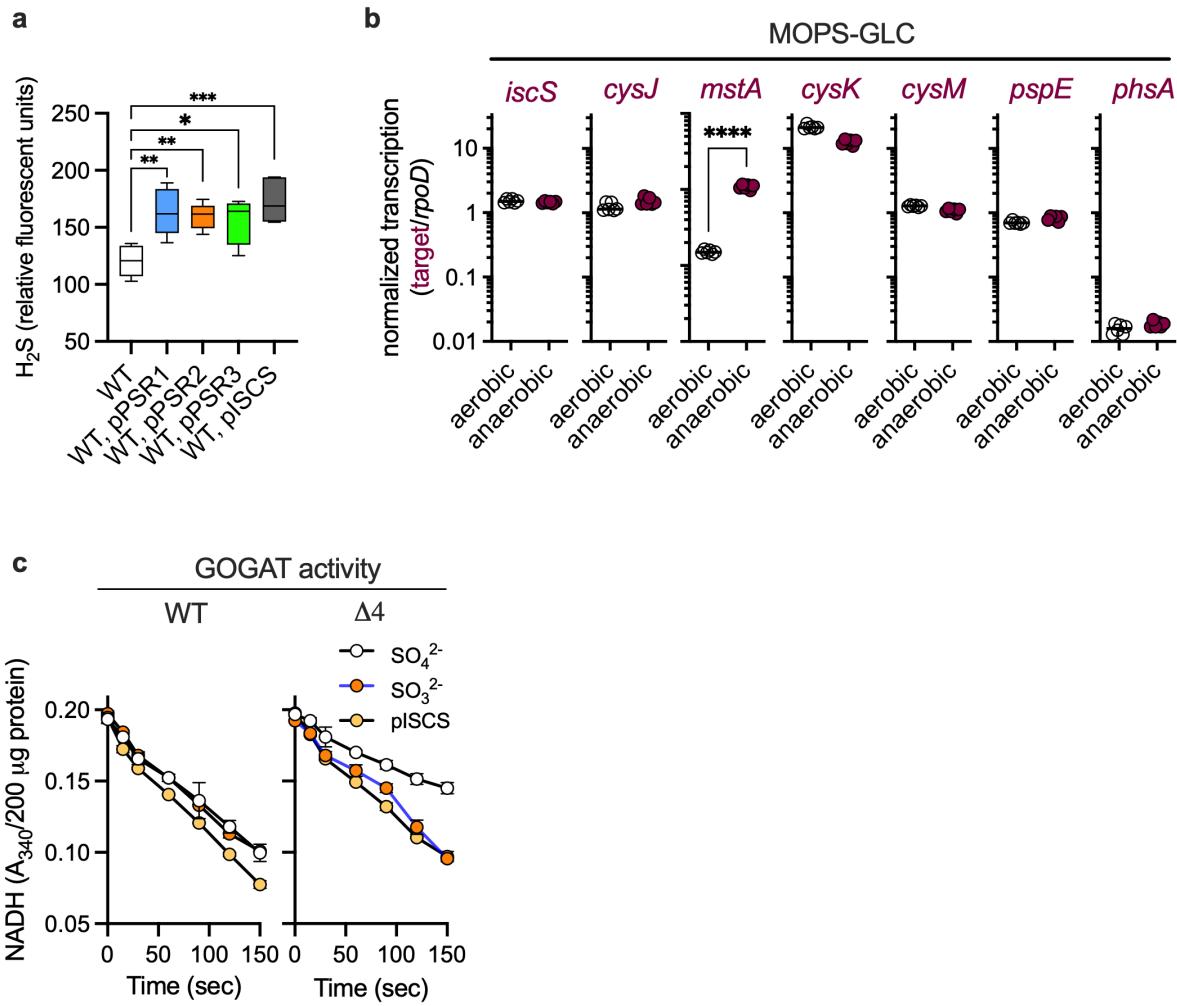


Figure S6. The function of periplasmic sulfate reductase in *Salmonella* is dependent on the FS0 [4Fe-4S], but not molybdenum, cofactor. **a.** The predicted Mo-bis PGD in Psr1A and Psr2A as determined by AlphaFold₃. **b, d.** Intracellular sulfite concentrations were measured in wild-type *Salmonella*, the 5Δ mutant deficient in *dmsA* and all 4 *dmsA* paralogs, and various complemented strains after overnight growth under hypoxic conditions in MOPS-GLC minimal medium supplemented with sulfate. The data are presented as mean \pm SD from 2 individual tests (**b**, n=6; **d**, n=8). **c.** Sulfate reductase activities were assessed by monitoring benzyl viologen oxidation in

membranes isolated from the $\Delta 5$ mutant and its complemented strains expressing individual genes, gene pairs, or the entire *psr3ABC* operon. Data presents mean \pm SD from 2 independent experiments (n=4). **e.** EPR spectra of membranes isolated from *Salmonella* were recorded after reduction with 2 mM dithionite, either alone (reduced) or in the presence of 50 mM DMSO (**e**, +DMSO). **f.** The membranes used for EPR spectroscopy were evaluated for DMSO and sulfate reductase activities by measuring the oxidation of benzyl viologen in the presence of DMSO (left, +DMSO) or sulfate (right, $+\text{SO}_4^{2-}$). The data are presented as mean \pm SD from 2 independent experiments (n=4). **, ***, **** $p < 0.01, 0.001, 0.0001$, respectively, as estimated by one-way ANOVA (**b, c, d, f**).

a**b****c**

Figure S7. Effect of periplasmic sulfate reductases in the sulfate assimilatory pathway. a. Intracellular pH of exponential-phase *Salmonella* cultured in MOPS-GLC minimal medium either 250 μ M sulfate, 250 μ M sulfite, or 100 μ M sulfide was measured using ratiometric pH-sensitive reporter pHluorin. Where indicated, the specimens were treated with 400 μ M H_2O_2 or 40 mM of the protonophore benzoate. The data are mean \pm SD; n=3 from 3 independent experiments. **b.** Intracellular ATP levels were measured using a luciferase-based assay from *Salmonella* grown in MOPS-GLC minimal medium supplemented with either sulfate or sulfite. Data represent the mean \pm SD from 2 individual experiments (WT n=4, Δ4 n=5). **c.** Intracellular NADH / NAD $^+$ ratios were quantified in *Salmonella* grown aerobically in MOPS-GLC minimal medium supplemented with sulfate. The data are the mean \pm SD from 2 individual experiments (WT control n=8; WT H_2O_2 n=10; Δ4 n=9). *, **, **** p < 0.1, 0.01, 0.0001, respectively, as estimated by one-way ANOVA (b, c).

Figure S8. Periplasmic sulfate reductases are involved in the assimilation of sulfur. **a.** Hydrogen sulfide (H₂S) production was evaluated in wild-type *Salmonella* harboring each individual periplasmic sulfate reductase operon (*psr1*, *psr2* and *psr3*) or the *iscS* gene in pWSK29. Cells were cultured in MOPS-GLC minimal medium containing sulfate. H₂S was detected using the WSP5 fluorescent probe. The data are the mean \pm SD from 2-3 independent experiments (WT, n=6; pPSR3, n=4). **b.** Expression of indicated genes was quantified by real-time qRT-PCR using RNA isolated from wild-type *Salmonella* cultured aerobically or anaerobically in MOPS-GLC-minimal medium supplemented with sulfate. The data are mean \pm SD; n=6 from 2 individual experiments. *, **, ***, **** p <0.1, 0.01, 0.001, 0.0001, respectively, as estimated by one-way ANOVA (a), or unpaired t-test (b). **c.** Glutamate synthase (GOGAT) activity was assessed kinetically by measuring the oxidation of NADH. Specimens were prepared from *Salmonella* grown in MOPS-GLC minimal medium containing either sulfate or sulfite. Selected strains harbored the *iscS* gene from the pWSK29 plasmid. The data are mean \pm SD; n=3 from 2 independent experiments.

References

1. Kim, J.-S. *et al.* Anaerobic respiration of host-derived methionine sulfoxide protects intracellular *Salmonella* from the phagocyte NADPH oxidase. *Cell Host Microbe* **32**, 411-424.e10 (2024).
2. Chakraborty, S. *et al.* Glycolytic reprogramming in *Salmonella* counters NOX2-mediated dissipation of ΔpH . *Nat. Commun.* **11**, 1783 (2020).
3. Hanahan, D. Studies on transformation of *Escherichia coli* with plasmids. *J. Mol. Biol.* **166**, 557–580 (1983).
4. Rong Fu Wang & Kushner, S. R. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in *Escherichia coli*. *Gene* **100**, 195–199 (1991).
5. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci.* **97**, 6640–6645 (2000).
6. Miesenböck, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. *Nature* **394**, 192–195 (1998).