Supplementary Methods for the Ancestry-specific genetic effects on urinary 6-sulfatoxymelatonin: a multi-ancestry GWAS meta-analysis
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[bookmark: _Toc207488906]Cohorts’ descriptions, GWAS phenotyping and genotyping
[bookmark: _Toc207488907]The Taiwan Biobank 
The Taiwan Biobank study recruited 5,000 cancer-free individuals of East Asian ancestry, excluding participants with neurological or psychiatric disorders. First morning urinary melatonin metabolite (aMT6s) levels were measured using an enzyme-linked immunosorbent assay (ELISA) and normalized to creatinine concentrations to adjust for urine dilution. Genotyping was conducted with the Axiom-TWB chip, and quality control procedures were applied using PLINK 1.91. These included the exclusion of single nucleotide polymorphisms (SNPs) and individuals with high missingness, extreme heterozygosity, or close relatedness. Genotype imputation was performed using SHAPEIT for phasing and IMPUTE2, using the 1000 Genomes Project East Asian reference panel. Variants with insertion-deletion polymorphisms (indels) were excluded from the analysis. Ultimately, 2,373 participants had both urine samples and genotyping data available, meeting the exclusion criteria and passing quality checks. GWAS was performed using a linear regression model in PLINK 1.91 adjusted for sex, age at sample collection and 10 first principal components of ancestry. 
Urinary concentrations of aMT6s in participants from the Taiwan Biobank were quantified using an enzyme-linked immunosorbent assay (ELISA; Human Melatonin Sulfate Kit, Elabscience) following the manufacturer’s instructions. The assay showed no notable cross-reactivity or interference with melatonin sulfate analogs. Calibration standards prepared by serial dilution were analyzed in duplicate. Urine creatinine levels were determined with a chemistry analyzer (AU5800, Beckman Coulter) employing the compensated Jaffe method. Further details have been described elsewhere2. 
[bookmark: _Toc207488908]Nurses’ Health Study Cohorts
In the NHS1 and NHS2, urinary melatonin levels were assessed in 28 nested case-control studies (12 in NHS1 and 16 in NHS2). A total of 6,979 disease-free women (3,330 from NHS1 and 3,649 from NHS2) provided first-morning spot urine samples, which were assayed for 6-sulfatoxymelatonin (aMT6s; ng/mL) and creatinine (Cr; mg/dL). Participants self-identifying as Black, Indigenous American, Asian, Hawaiian, other, unknown, or multi-racial were excluded, leaving 6,691 subjects. To account for urine volume, melatonin levels were adjusted to creatinine, log-transformed and further standardized (z-scored) to mitigate batch effects across studies. In the study sample (N = 6,658), 3,861 participants (2,133 from NHS1 and 1,730 from NHS2) had available genetic data. These samples were genotyped on five genotyping platforms: Affymetrix, HumanCoreExome2, Illumina HumanHap, OmniExpress, and OncoArray. Genotype imputation was performed using the TopMed reference panel with minimac4, and variants with imputation quality (R² < 0.7) or minor allele frequency (MAF < 0.01) were excluded. Additionally, individuals with a kinship coefficient > 0.1 were excluded (16 from NHS1 and 11 from NHS2). Single-variant GWAS was performed with PLINK 2.03 using linear regression model adjusted for age at sample collection, study and 10 first principal components of ancestry. 
[bookmark: _Toc207488909]The Osteoporotic Fractures in Men (MrOS) Study
Between 2000 and 2002, 5,994 community-dwelling men aged 65 or older were enrolled to participate in MrOS4 study, an ancillary study of the Osteoporotic Fractures in Men Study, at six clinic sites in the United States (Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Portland, OR; San Diego, CA; and the Monongahela Valley near Pittsburgh, PA). A total of 2,883 spot urine melatonin assays were conducted at the Oregon Clinical and Translational Research Institute (OCTRI) Core Laboratory at Oregon Health and Science University (OHSU) in June 2010. The assays were performed on first-morning void urine samples collected at baseline during the MrOS Sleep Study. Melatonin concentrations were determined as the average of duplicate assay measurements and were normalized to creatinine levels obtained using the Buhlmann 6-sulphatoxymelatonin ELISA (ALPCO Diagnostics Windham, NH) performed at the Portland Oregon Veterans Administration Clinical Laboratory. Furthermore, 2,482 of European ancestry men participating in the MrOS Sleep Study were genotyped (Illumina Human Omni1 Quad v1.0) and consented to DNA use for genetic studies. Imputation was performed using the 1000 Genomes Project reference panel. After exclusion of missing values and outliers, 2,175 white men were included in GWAS analyses. Cohort specific GWAS models were run using PLINK 1.91 by applying linear regression model adjusted for age, 10 first principal components of ancestry, study site and assessment season to account for potential variation in melatonin levels due to geographic location and seasonal differences. 
[bookmark: _Toc207488910]The Multiethnic Cohort 
The Multiethnic Cohort (MEC) is an ongoing prospective study based in Hawaii and California5, established between 1993 and 1996, during which 215,000 men and women were recruited. Among these, 31,136 men provided either a first morning void or overnight urine sample collected between 1995 and 2005. Participants in Hawaii collected overnight urine samples, while those in California provided first morning void urine samples. Both types of samples are designed to capture peak melatonin production during the night.  Urinary 6-sulfatoxymelatonin levels were measured using the Melatonin-Sulfate ELISA (IBL International), while urinary creatinine levels were determined using the Creatinine Jaffe method on a Hitachi 912 analyzer (Roche Diagnostics). Genotyping was conducted using the Applied Biosystems TaqMan assay, and imputation was performed using the 1000 Genomes Project reference panel. Urine samples, along with genetic data, were available for a total of 3,335 men, representing participants from Black, Native Hawaiian, Latino, Japanese American, and White ethnic groups (Table 1). GWAS linear regression models adjusted for 10 first principal components, age, study site and collection season were run using PLINK 1.91.
[bookmark: _Toc207488911]Cohort-specific heritabilities and genetic correlation analysis 
Since our meta-analysis included studies with different ethnic backgrounds, we calculated cohort-specific heritability estimates from corresponding GWAS summary statistics using Linkage Disequilibrium Score Regression (LDSC)6. To ensure only well-imputed, common SNPs, summary statistics were filtered to include only high-quality SNPs from the HapMap 3 reference panel (https://ibg.colorado.edu/cdrom2021/Day06-nivard/GenomicSEM_practical/eur_w_ld_chr/ ). The European LD score panel (https://zenodo.org/records/8182036 ) from the 1000 Genomes Project was used to calculate heritability in the NHS and MrOS, and the corresponding East Asian ancestry specific LD panel (https://drive.google.com/file/d/1BtpWx02ON33KfjyCFSdmoWYlMZWImh2f/view ) was used to calculate heritability in the TBB cohort.
To investigate genetic correlations between European (EUR) and East Asian (EAS) populations for urinary 6-sulfatoxymelatonin levels, we used precomputed genetic scores for EUR and EAS populations from the 1000 Genomes Project7, together with summary statistics derived from our GWAS results. We used the Python package Popcorn8, which utilizes GWAS summary statistics from different populations applying a Bayesian approach. Popcorn provides cross population genetic-effect-correlation, being a correlation coefficient of per-allele SNP effect sizes, as well as genetic-impact correlation, which is a correlation between per-allele SNP effect sizes weighted by allele specific frequency. Genetic correlations were also calculated using linkage disequilibrium score regression (LDSC)9. 
[bookmark: _Toc207488912]Functional mapping and pathway analysis
In FUMA, independent significant SNPs are identified by grouping all significant variants with LD r2≥0.6. A locus is defined by merging LD blocks of independent significant SNPs that are located within 250 kilobases of one another. The boundaries of the locus are determined by locating SNPs in LD (r2≥0.6) with the independent significant SNPs and establishing a region that includes all such SNPs within the locus. Additionally, lead SNPs within the locus are identified through successive clumping of all independent significant SNPs in the genomic region using an LD threshold of r2≥0.1. To check for enrichment in gene ontology and gene expression data from tissues in GTEx v810 we used MAGMA11 v1.08.  The gene expression dataset provided by FUMA was utilized to conduct tissue enrichment analysis. Pathway analyses of genes mapped by FUMA's SNP2GENE tool were carried out via FUMA GENE2FUNC with default parameters.
[bookmark: _Toc207488913]MR-MEGA
MR-MEGA conducts a meta-regression analysis by creating axes of genetic variation specific to each cohort, which are next used as covariates in the meta-analysis to adjust for possible differences in population structure. This approach allows distinguishing between ancestral and residual sources of heterogeneity. Although MR-MEGA shows an increased power to detect SNPs associations under both fixed and random effects meta-analysis settings17, for variants with homogenous effects across populations its power is reduced19.  To account for these aspects and potentially detect genetic variants with both homogeneous and heterogeneous effects across study cohorts, we applied both METAL and MR-MEGA methods.

[bookmark: _Toc207488914]Polygenic Risk score and PheWAS analysis 
Polygenic Risk Scores for the urinary aMT6s were constructed by using PRS-CSx12 (https://github.com/getian107/PRScsx) which integrates GWAS summary statistics from multiple populations and uses continuous shrinkage (CS) priors across populations. We applied PRS-CSx to cohort specific summary statistics and performed inverse-variance-weighted meta-analysis (option ‘--meta’). This approach provides all posterior samples of the SNPs effect sizes (after excluding burn-in samples and accounting for thinning) enabling calculation of posterior means, variances, individual PRSs, and confidence intervals. We obtained posterior effect size estimates for East Asian and European populations, as well as posterior effect sizes estimates from meta-analysis of all participating cohorts. Studies participating in the meta-analysis (TBB, NHS, MrOS and MEC) were used as discovery cohorts. The threshold for selecting SNPs was set to a p-value of 0.05. Obtained posterior effect size estimates were then used to calculate ancestry specific (EAS and EUR) and overall (META-PRS) polygenic risk scores using UK Biobank13 as a validation cohort. 
Within the UK Biobank, we used the DeepPheWAS pipeline:
https://richard-packer.github.io/DeepPheWAS_site/docs/Data.html
This analysis included 1,510 phenotypes defined by ICD-9 and ICD-10 codes.
Phenotypes were created as described here https://richard-packer.github.io/DeepPheWAS_site/docs/Running%20a%20PheWAS/phenotype_prep.html 
using  ./01_phenotype_preparation.R script with default parameters (i.e. 50 and 100 as arguments --quantitative_Case_N  and --binary_Case_N,  respectively) and excluding related individuals. Phenotypes with fewer than 500 cases were excluded from the study. This selection process resulted in a final set of 1,090 phenotypes.
Further details and results can be found in “Supplement_D_PRS_and_PheWAS_methods_and_results.docx”. 
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