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Abstract
Autism is associated with differences in the functional connectivity of whole-brain networks but results
vary across studies. One reason for this is that conventional analyses average functional connectivity
across the scan, ignoring potential group differences in dynamic (time-varying) brain fluctuations which
may be captured across an fMRI session. Another possibility is that what is different in autism is not
functional connectivity at ‘baseline’ but how responsive brain networks are to neurochemical challenges.
Here we selected the cannabis compound cannabidivarin (CBDV) as a neurochemical challenge because
of its pleiotropic action across multiple receptors rather than have a more restricted challenge. We then
compared both core network strength and dynamic features (dwell time and fractional occupancy), of
whole-brain intrinsic connectivity networks (ICNs) from resting-state functional MRI in autistic (n = 14)
and non-autistic (n = 17) male participants at baseline (placebo) and following administration of a 600
mg dose of CBDV. Autistic participants showed longer dwell time and fractional occupancy of a default-
mode-network (DMN)-occipital-auditory transient state than non-autistic controls at baseline. The effect
of CBDV on the dwell time of DMN-subcortical and DMN-occipital-auditory states differed between non-
autistic and autistic participants: within the non-autistic group, the dwell time was significantly increased
but shifts within the autistic group did not reach statistical significance. These differences in networks
responsible for introspection and sensory and salience processing may reflect atypical (i.e., ‘stickier’)
autistic brain dynamics and a pharmacologically atypical autistic brain.

Introduction
Autism is a neurodevelopmental condition characterised by differences in social communication and
interaction, restricted or repetitive behaviours and interests, and altered sensory reactivities1. Autism is

also associated with a higher likelihood of co-occurring mental (and physical) health problems2,3. Hence,
a better understanding of the neurological basis of autism is essential for developing effective
interventions to support autistic people and to improve their quality of life.

Previous studies have linked autism to altered brain intrinsic connectivity networks (ICNs)4, the common
patterns of functional connectivity also known as resting state networks (RSNs). Many studies have
reported atypical ICNs in autism, but findings have been inconsistent across the literature, with
substantial variability in the direction and extent of reported differences (for a review, see Hull et al.5).
Some studies have found underconnectivity within the default mode network (DMN), salience network,
and the language network6,7; while overconnectivity has been reported between the DMN and the rest of
the brain and between cortical and subcortical systems8. One possible reason for these discrepancies is
that previous studies largely compared groups “at rest”. However, the brain works as a dynamic system
constantly coping with external stimuli to maintain homeostasis. Emerging evidence suggests that the
responsivity of neurochemical systems is atypical in autistic individuals9–11. Differences between
autistic and non-autistic individuals may become more apparent when the brain is challenged through
external stimuli, e.g. with a neurochemical drug12. In addition, most previous reports characterising
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intrinsic connectivity networks in autism have not accounted for the dynamic nature of brain activity.
Functional activity is not static. It fluctuates over time, and this temporal variation, i.e. dynamic activity,
also embeds crucial information about behaviour13, cognition14,15, and emotional regulation16–18.
Conventional approaches using average functional connectivity may therefore mask atypical fluctuations
in brain activity and connectivity. Compared to non-autistic controls, autistic people are reported to
exhibit fewer transitions between transient brain states, altered dwell time and fractional occupancy of
transient states19–22. Those dynamic features were associated with autistic symptoms23–25, though
differential responsivity of ICN dynamics to neurochemical modulation in autistic and non-autistic
individuals has not been explored yet.

In this study, we used cannabidivarin (CBDV), a multi-target phytocannabinoid constituent of Cannabis
sativa, which has been shown to differentially modulate striatal-cortical functional connectivity in autistic
and non-autistic adults26. CBDV is a non-psychoactive phytocannabinoid and has a broad
pharmacological profile - acting across multiple targets involved in homeostatic regulation27. For
example, CBDV exhibits agonism at the CB2 receptors28,29 inhibits the activation of G protein-coupled

receptor 55 (GPR55)30, stimulates and desensitizes transient receptor potential channels (TRP
Channels)31,32, and partially activates dopamine D2-like receptors33. It has been found to potentially
benefit individuals with neurodevelopmental conditions27 and therefore, is well-suited for probing brain
homeostasis in autistic and non-autistic individuals.

Although CBDV targets extend beyond striatal-cortical pathways, little is known of autistic whole-brain
response to CBDV. Here, we applied a data-driven whole-brain approach to characterise ICNs and test
whether there are differences in ICN core network strength and dynamic activity between autistic and
non-autistic individuals at baseline and in response to CBDV.

Methods

Participants
We carried out a secondary analysis of a resting-state MRI dataset from a randomised, double-blind,
cross-over study26,34. The study recruited 17 non-autistic and 17 autistic adult men. Potential
participants with major mental disorders, genetic disorders associated with autism, intellectual disability,
and/or any contra-indication for an MRI scan were excluded. All participants in the autism group had a
clinical diagnosis of autism from a recognised assessment service. Participants attended two visits, at
least 13 days apart to allow for drug wash-out. Participants received a 600 mg oral dose of CBDV
(provided by GW Research Ltd, Cambridge, UK) at one visit and a matched placebo at the other, with the
order randomized.

MRI Data Acquisition and Preprocessing
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MRI images were acquired following a placebo or 600 mg CBDV administered using a 3T GE Excite II
MRI scanner (GE Medical Systems, Milwaukee, WI, USA). Structural MRI images were acquired with a 3D
inversion recovery prepared fast spoiled gradient recalled (IR-FSPGR) sequence (slice thickness = 1.1
mm, 124 slices, flip angle = 20°, field of view (FoV) = 280 × 280 mm, echo time (TE) = 2.820 ms, repetition
time (TR) = 6.968 ms, inversion time (TI) = 450 ms, matrix = 256 × 256). Resting-state fMRI images were
acquired using an echo-planar imaging (EPI) sequence (slice thickness = 3 mm, slice gap = 0.3 mm, 38
slices, flip angle = 75°, FOV = 240 × 240 mm, acquisition matrix = 64 × 64, TE = 30 ms, TR = 2000 ms).
During each visit, we collected one session of resting-state fMRI images for 512 s, comprising 256 time
points.

Resting-state fMRI data were preprocessed and denoised with AFNI 21.1.0735. First, the first 10 volumes
as unstable volumes and spikes were truncated in each voxel’s time series. fMRI images were then co-
registered to the corresponding structural MRI images, and both were aligned to the standard Montreal
Neurological Institute (MNI) template. Slice timing correction was applied, followed by segmentation of
the brain into white matter, grey matter, and cerebrospinal fluid (CSF). Each volume was smoothed using
a 6 mm full width at half maximum (FWHM) Gaussian kernel. Each session mean was scaled to 100.
Finally, nuisance signals—including the average time series of six motion parameters, white matter, and
CSF—were regressed out, and the data were band-pass filtered between 0.01 and 0.1 Hz. Resting-state
fMRI sessions with a high level of motion (mean framewise displacement (FD) > 0.5 mm, as in
Satterthwaite et al.36 and Power et al.37) were excluded.

Data Analysis
We decomposed the fMRI data into voxel-wise components representing spatial patterns of coherent
brain activity using group-level Independent Component Analysis (ICA)38. We extracted 30 components,
representing a pragmatic balance between robustness and interpretability39–41, from the resting-state
fMRI data across all participants under placebo condition. The spatial maps of those components were
regressed into original resting-state fMRI voxel-wise BOLD timeseries under both placebo and CBDV to
retrieve the subject-specific spatial maps of ICNs and subject-specific timeseries of ICN activity at every
timepoint via dual regression. We performed group ICA and dual regression with the MELODIC
(Multivariate Exploratory Linear Optimized Decomposition into Independent Components) 3.0 toolkit42

and the dual regression function in FSL 6.0.7.1043.

The core network strength39 of each ICN was computed to measure the total connectivity strength of
ICNs, i.e., the average activation level of an ICN across voxels of each participant during the whole
scanning period. We obtained binary thresholded ICN masks by including voxels of Z > 3 in the Z-
transformed ICN spatial maps39,44. Subsequently, the core network strength was calculated as a mean
beta value across voxels of a subject-specific spatial map within the binary ICN map with FSL 6.0.7.10.

To examine ICN dynamics, we employed k-medoid clustering to define transient brain states, i.e., the
recurrent patterns of ICN dynamic activity. K-medoid clustering is a partitioning method to identify
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clusters with minimal sums of dissimilarities between points in the data45. A medoid is an actual data
point with the smallest total distances to other points in a cluster. We applied k-medoid clustering to the
ICN activity matrix of 246 timepoints × 20 ICNs × 52 resting-state fMRI sessions (including placebo and
CBDV conditions) including all participants. We used the Manhattan distance to compute the
dissimilarity matrices for clustering. To determine the number of clusters, we used the Davies–Bouldin
index and the Calinski–Harabasz index to select k = [6, 8, 10, 12] as potentially the optimal number of
partitions (Supplementary Fig. 1). We then inspected the medoids at different k, and selected k = 10 as it
clearly differentiated brain states of various ICN coactivation patterns.

The dynamics of ICN activity were then characterised by fractional occupancy and dwell time of
identified brain states. Fractional occupancy is the probability of a brain state occurring during an fMRI
session. It was calculated as the percentage of time points clustered into a certain brain state among all
time points. Dwell time is the average duration of a certain brain state during an fMRI session. It was
calculated as the average number of continuous time points clustered into a certain brain state for each
session. Scripts of R codes available in the stateR package46 were used to extract these features.

Statistical Analysis
We first performed multiple linear regressions to examine the baseline (placebo condition) differences in
core network strength, fractional occupancy, and dwell time between autistic and non-autistic
participants. We then compared the effects of CBDV on core network strength, fractional occupancy, and
dwell time between non-autistic and autistic participants using linear mixed-effects models with group
(autistic and non-autistic) × drug (placebo and CBDV conditions) interaction as a fixed effect and
participant ID as a random effect. Where significant interaction effects were found (p < 0.05), we
performed a stratification analysis with linear mixed-effects models in autistic and non-autistic
participants separately to further examine the different effects of CBDV in the two groups.

We controlled in our analyses for age, IQ and mean FD. All continuous variables were standardised
before being entered into equations. R 4.4.1 was used to perform k-medoid clustering, multiple linear
regressions, and linear mixed models as well as computing fractional occupancy and dwell time. Given
the exploratory nature of our analysis, we reported results with both uncorrected and corrected p-values
for multiple comparisons of core network strength of 20 ICNs, and of fractional occupancy and dwell
time of 10 brain states using the Benjamini-Hochberg false discovery rate (FDR)47. p-values of
stratification analyses were corrected for two groups (autistic and non-autistic).

Results
Following the exclusion of sessions with excessive head motion (8 sessions), the final dataset
comprised 52 sessions (31 placebo and 21 CBDV) from 31 participants (autistic: n = 14) (Table 1). All
participants were scanned under placebo; and 21 (autistic: n = 8) were also scanned under CBDV.
Demographic information for the participants is presented in Table 1. Paired t-tests indicated that there
are no statistically significant differences in age and IQ between autistic and non-autistic participants.



Page 7/21

Table 1
Demographic information of the Participants.

Characteristics Mean (SD) t-test

Non-autistic Autistic t (95% CI) p

Placebo N = 17 N = 14    

Age (years) 28.06 (6.37) 31.14 (10.19) -0.99 (-9.59–3.42) 0.34

IQ 124.59 (12.71) 112.14 (20.22) 2.00 (-0.49–25.38) 0.06

CBDV N = 13 N = 8    

Age (years) 28.08 (6.32) 31.13 (11.73) -0.68 (-13.14–7.05) 0.51

IQ 127.00 (12.18) 111.25 (18.85) 2.11 (-0.76–32.26) 0.06

Notes. SD: Standard deviation. CI: Confidence interval.

Core Network Strength
We identified 20 ICNs, including the anterior and the posterior DMN, the executive control network, the
praecuneus-posterior-cingulate-cortex (praecuneus-PCC) network, the primary visual network, and the
auditory network (Fig. 1).

At baseline, the core network strength of the executive control network was stronger in autistic than in
non-autistic participants, but this effect was not statistically significant after adjustment for multiple
comparisons (β = 0.962, p = 0.022, pFDR = 0.442, Supplementary Table 1, Fig. 2). There was no significant

group × drug interaction effect.

Dynamic Activity of ICNs
To examine the effects of CBDV on brain dynamics, ICN activity (Fig. 1) at each timepoint (i.e. betas from
dual regression stage 1) was clustered into 10 main brain states (Fig. 3). The 10 medoids are shown in
Fig. 3B to present the typical ICN activity patterns of the 10 brain states identified. The ICN activity
patterns of each transient brain states are described in Supplementary Table 2.

To examine the baseline differences in the dynamic features of ICNs, we compared the fractional
occupancy and well time under the placebo condition between autistic and non-autistic participants. The
fractional occupancy (Fig. 4A) and dwell time (Fig. 4B) of State 10 (active anterior DMN, cingulo-
opercular network, executive control network, occipital pole, sensorimotor network, lateral sensorimotor
network, auditory network) were higher in autistic adults compared to non-autistic controls at baseline
(Fractional occupancy: β = 1.083, p = 0.005, pFDR = 0.046. Dwell time: β = 1.340, p = 0.005, pFDR = 0.045)
(Supplementary Table 3).
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Significant group × drug interaction effects on the dwell time of State 6 (active anterior and posterior
DMNs, praecuneus-PCC network, vm PFC, auditory network, basal ganglia, thalamus) and State 10
(active anterior DMN, cingulo-opercular network, executive control network, occipital pole, sensorimotor
network, lateral sensorimotor network, auditory network) were found, though not surviving multiple
comparisons correction (State 6: β = -1.367, p = 0.015, pFDR = 0.077; State 10: β = -1.430, p = 0.014, pFDR =
0.077; Supplementary Table 4). Within groups, CBDV increased the dwell time of State 6 (β = 0.601, p = 
0.039, pFDR = 0.078)(Fig. 5A) and State 10 (β = 0.774, p = 0.004, pFDR = 0.008)(Fig. 5B) in non-autistic
participants while the effect elicited by CBDV in autistic participants did not reach statistical significance
(State 6: β = -0.897, p = 0.126. State 10: β = -0.716, p = 0.253).

Discussion
In this study we first compared the baseline core network strength and dynamic features of ICNs
between autistic and non-autistic men. At baseline, we showed differences in ICN core network strength
and in brain dynamic features (dwell time and fractional occupancy) of transient brain states, though
only differences in dynamic features survived multiple comparison correction. We also explored whether
CBDV “shifted” ICN core network strength and dynamic features in the two groups. CBDV did not have a
significant effect on core network strength in either autistic or non-autistic groups but altered the
dynamic features (dwell time) of State 6 (high activity in the anterior and posterior DMNs, thalamus,
basal ganglia, praecuneus-PCC network, ventromedial prefrontal cortex, and auditory network) and state
10 (primarily active anterior DMN, occipital pole, auditory network, executive control network, cingulo-
opercular network, and sensorimotor networks) differentially in the autistic and non-autistic group (group
× drug interaction). Overall, our findings provide new insights into patterns of whole-brain ICN dynamics
at baseline and following CBDV modulation in autistic and non-autistic adults, suggesting potential
atypical neurochemical regulation of autistic individuals.

Baseline differences in core network strength and dynamic
ICN features
At baseline (placebo), we found higher core network strength of the executive control network in the
autistic group compared to the control, though with limited effect size not surviving correction for
multiple comparisons. The executive control network is part of the salience network identifying salient
stimuli and guiding attention and cognitive processes48,49. Our finding is in line with previous studies
suggesting alterations in the salience network in autism. Green et al.50 and Uddin et al.51 have shown
hyperconnectivity within the salience network in autistic children, especially between the anterior insular
and anterior cingulate cortex. We extend these findings to adults, suggesting a consistent pattern of
atypical functional connectivity related to processing salient information in autism across the lifespan.

At baseline, we also found that autistic (compared to non-autistic) adults entered more frequently, and
dwelled longer in, State 10 (displaying primarily active anterior DMN, occipital pole, auditory network,
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executive control network, cingulo-opercular network, and sensorimotor networks). This result aligns
with previous reports that autistic young people were more likely to enter a transient brain state —
showing coactivated DMN, executive control network, auditory network, and visual network — and
showed overconnectivity of DMN with the sensorimotor network and visual network in that state52. More
frequent coactivation of those networks might imply increased functional integration across these
systems, i.e. increased higher-order multisensory integration53 and increased functional integration
between the DMN and networks involved in sensory and salience processing and attention regulation in
autism54,55. The longer dwell time suggests less transition out of this state and is potentially related to
reduced reconfiguration flexibility in autism56. The altered higher-order multisensory and DMN
integration and cognitive flexibility might underpin atypical social communication and restricted and
repetitive behaviours in autistic individuals54 and their differences in cognitive functions57.

Differences in responsivity of dynamic ICN features to
CBDV
Despite no effects of CBDV on ICN core network strengths, we have shown that the effect of CBDV on
the dwell time of State 10 differed between non-autistic and autistic participants, though the group ×
drug interaction effect did not survive correction for multiple comparisons. After taking CBDV, non-
autistic participants stayed longer in State 10, but this effect contrasts with autistic individuals, who
already “stick” to this state more (increased fractional occupancy and dwell time of State 10) at baseline.
The result might suggest that CBDV has increased functional integration across DMN, sensorimotor
network, salience network, cingulo-opercular network, and visual network in non-autistic participants. We
have previously found that the functional connectivity of DMN with visual network, salience network, and
somatomotor network was increased in non-autistic, but decreased in autistic participants by µ-opioid,
GABAA, and GABAB receptor activation58. Our findings add to the growing evidence that neurochemical
systems regulate functional connectivity differentially between autistic and non-autistic individuals,
particularly between the DMN and networks responsible for sensory and salience processing and
attention regulation.

We also found that CBDV distinctively modulated dwell time of State 6 (characterised by high activity in
the anterior and posterior DMNs, thalamus, basal ganglia, praecuneus-PCC network, ventromedial
prefrontal cortex, and auditory network) in autistic and non-autistic participants, though the group × drug
interaction effect did not survive correction for multiple comparisons. After taking CBDV, non-autistic
participants stayed longer in State 6 whilst autistic individuals tended to stay shorter in this state. The
anterior DMN, posterior DMN, praecuneus-PCC network, and ventromedial prefrontal cortex are highly
correlated with each other as a broader DMN59. The differential effects of CBDV on this state might
indicate different response mechanisms of subcortical-cortical functional connectivity in non-autistic
and autistic individuals. Our previous study has also demonstrated that CBDV differentially modulated
the connectivity between the subcortical structure, striatum and cortical regions in autistic and non-
autistic men26. CBDV targets—such as CB2, TRP channels, and GPR55—are abundant in subcortical
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structures60–63. Together, these findings suggest that the differential modulation of CBDV might stem
atypical subcortical neurochemical response mechanism in autism64,65.

Post-hoc analysis of group × drug interaction showed increased dwell time of State 6 and 10 in the non-
autistic group after CBDV, but a non-significant drug effect in autistic participants. These non-significant
results may be partially explained by a small sample size and a relatively low dosage of CBDV
administered. A low dose may have constrained the drug’s efficacy, particularly given that our previous
research has identified differential effects between low and high doses of other pharmacological
challenges58. The considerable variability in CBDV-induced changes among autistic participants (Fig. 5)
suggests heterogeneous responses in dynamic brain activity responding to neurochemical modulation.
This variability underscores the importance of considering individual neurobiological profiles, rather than
assuming uniform effects across the autistic population, in future development of pharmacological
interventions.

Limitations
Several constraints should be considered when generalising our findings. First, as this is an early trial of
the effect of CBDV in humans, our sample size is small and consists only of males, which limits the
generalisability of our findings to broader population (e.g., females). Second, we acknowledge that some
of the effect sizes of our results did not survive the p-value adjustment for multiple comparisons and
should be interpreted with caution. We employed an exploratory method to examine potential group
differences without strong a priori regional hypotheses; uncorrected results reported might inform future
hypothesis-driven work. Third, our analysis only examined the temporal variability of ICN activity without
comparing pairwise connectivity between ICNs as well as connectivity within each ICN; considering the
sample size of our study, there is likely insufficient statistical power to examine pairwise coactivation
between 20 ICNs, but based on activity fluctuation we have clustered into 10 well-separated brain states
featuring key coactivation patterns of different ICNs.

Conclusions
Our study interrogates the differential response of ICN dynamic features to CBDV modulation in autistic
and non-autistic individuals. Examining ICN dynamics might provide valuable insights into the impacts of
pharmacological probes on brain functions beyond just characterising average functional connectivity.
The heterogeneity observed in autistic response to CBDV underscores the potential of developing
individualised intervention based on diverse neurochemical regulation in autism. Future research will
likely explore the relationship between changes in functional connectivity and autistic profiles as well as
the effects of CBDV on cognition and behaviours to understand the cascading effects of changes in
brain organisation.

Overall, we have shown atypical brain dynamic features (fractional occupancy and dwell time) of a brain
state featuring coactivation of the DMN and networks involved in salience and sensory processing and
attention directing in autism. The impact of CBDV on ICN dynamics differed between autistic and non-
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autistic participants, and our findings imply atypical integration of those networks in autism. The
differential response of ICN dynamics to CBDV underscores the distinct neurochemical regulation of
network integration in autistic and non-autistic males, highlighting the importance of accounting for
individual neurobiological profiles in personalized interventions.
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Figure 1

Intrinsic Connectivity Networks (ICNs) obtained with concatenated ICA from resting-state fMRI data
under placebo condition including both autistic and non-autistic participants. z-statistics were
thresholded at z > 3. L: left. R: right. P: posterior. A: anterior.
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Figure 2

Baseline difference in the core network strength of the executive control network. The asterisk indicates
that significant difference was found between the non-autistic and autistic groups (puncorrected < 0.05).

The box bounds the interquartile range. Solid lines in the box indicate medians.
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Figure 3

A) The ICNs activity at each timepoint was clustered into 10 transient brain states with K-medoid
clustering. Uniform Manifold Approximation and Projection (UMAP) was used to reduce data
dimensionality and project the data to a 3D space for visualisation purposes. B) The Medoids of the 10
Brain States. The medoid of each cluster represents the major spatial activity pattern of the brain state,
being calculated as the weighted sum of ICN spatial maps (βICN 1, State n ICN 1 spatial map + … + βICN 20,
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State n ICN 20 spatial map ). The red-yellow colour bar indicates brain regions with increased activity,
while the blue-green colour bar indicates brain regions with decreased activity in that state. L: left. R:
right. P: posterior. A: anterior.

Figure 4

A) The fractional occupancy of State 10 (Active anterior DMN, cingulo-opercular network, executive
control network, occipital pole, sensorimotor network, lateral sensorimotor network, auditory network) at
baseline. B) The dwell time of State 10 at baseline. We plotted the residuals of fractional occupancy and
dwell time after adjusting for age, IQ, and mean FD in multiple linear regression models. + indicates
significant differences between the non-autistic and autistic groups (p < 0.05, FDR corrected). The box
bounds the interquartile range. Solid lines in the box indicate medians.
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Figure 5

A) The dwell time of State 6 Under Placebo and CBDV conditions. B) The dwell time of State 10 under
placebo and CBDV conditions. Residuals of dwell time were adjusted for age, IQ, and mean FD in a
multiple linear regression model. * indicates significant group × drug interaction effect (puncorrected <
0.05). The box bounds the interquartile range. Solid lines in the box indicate medians.
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