

1 **Supplementary Information for:**

2 **Mapping immune imprinting zones enables predictive**
3 **vaccination optimization**

4

5 **Supplementary Note 1: Mathematical modeling of humoral
6 immunity with DynaVac**

7 **1.1 Overview of the humoral immune response and model structure**

8 Humoral immunity to viral infection or vaccination proceeds through well-defined stages,
9 including antigen presentation, B cell activation, affinity maturation, and antibody secretion. Upon
10 initial exposure, naive B cells generated through V(D)J recombination in the bone marrow
11 circulate to secondary lymphoid tissues, where they encounter antigen for the first time¹⁻³. These
12 cells typically express low-affinity B cell receptors (BCRs), but if the BCR binds antigen with
13 sufficient affinity—such as viral surface proteins—naive B cells are activated and recruited into
14 germinal center reactions⁴.

15
16 Within germinal centers, activated B cells undergo clonal expansion and acquire somatic
17 hypermutations mediated by activation-induced cytidine deaminase (AID)⁵. The resulting BCR
18 variants exhibit a spectrum of affinities. High-affinity clones are preferentially selected through
19 interactions with follicular dendritic cells and helper T cells, which provide survival and
20 differentiation signals⁶. B cells failing to receive these cues are eliminated by apoptosis⁷. This
21 iterative Darwinian process—termed affinity maturation—progressively enriches for clones with
22 improved antigen binding⁸.

23
24 Affinity-matured B cells adopt one of two fates: differentiation into plasma cells that secrete
25 antigen-specific antibodies, or entry into the memory B cell pool⁹. Memory B cells persist in a
26 quiescent state, maintaining high-affinity BCRs and enabling rapid recall upon subsequent antigen
27 exposure. When re-exposed to antigenically similar variants, memory B cells dominate the
28 secondary response, often outcompeting naive B cells—a phenomenon known as immune
29 imprinting^{10,11}. Depending on the antigenic relationship between priming and boosting antigens,
30 imprinting can either enhance protection or suppress variant-specific responses.

31
32 To quantitatively capture these dynamics, we developed DynaVac, a mechanistic model based on
33 ordinary differential equations (ODEs) that simulates the evolution of key components of humoral
34 immunity following sequential exposures to antigenically distinct viral variants. By using mean-
35 field approximations, DynaVac represents polyclonal B cell and antibody populations as effective
36 monoclonal entities, balancing biological realism with computational tractability. The model is
37 structured in two phases: (1) the primary phase, capturing immune dynamics following the first
38 antigen exposure, and (2) the booster phase, simulating responses to subsequent homologous or
39 heterologous antigens. These components are detailed in the sections that follow.

40 **1.2 Primary phase (initial antigen exposure)**

41 This phase models the humoral immune response following the first exposure to an antigen (e.g.,
42 prototype SARS-CoV-2). It tracks five key immune variables:

43 R : mRNA level

44 Ag : Antigen level

45 N : Gross affinity of the naive B cell population

46 M : Memory B cell level

47 Ab : Antibody level

48 The temporal behavior of these variables is governed by the following ordinary differential
49 equations:

$$50 \quad \frac{dR}{dt} = -\gamma_R R \quad (1)$$

$$51 \quad \frac{dAg}{dt} = kR - \gamma_c K_a Ag Ab - \gamma_{Ag} Ag \quad (2)$$

52 $\frac{dN}{dt} = a(t)s_{ini} + a_N(t)s_N f(Ag, K)N(1 - N) - d_N N$ (3)

53 $\frac{dM}{dt} = k_{N2M}N(1 - M) - d_M M$ (4)

54 $\frac{dAb}{dt} = a_N(t)p_N N - \gamma_{Ab} Ab$ (5)

55 **Equation 1** models the degradation of mRNA following vaccine administration, with γ_R
 56 representing the decay rate.

57 **Equation 2** describes antigen kinetics. Antigen (e.g. SARS-CoV-2 Spike protein) is produced
 58 from mRNA at rate k and degraded through two processes: intrinsic decay (γ_{Ag}) and immune-
 59 mediated clearance via antigen-antibody binding. Under the quasi-steady-state assumption, the
 60 antigen-antibody complex $[Ag:Ab]$ is modeled as $K_a[Ag][Ab]$, where K_a is the binding affinity
 61 constant. The degradation rate of this complex is set as γ_c . This formulation captures the dynamic
 62 interplay between antibody availability and antigen clearance, reflecting the essential feedback
 63 between humoral responses and antigen persistence.

64 **Equation 3** models naive B cell dynamics using a mean-field approximation.

65 The variable $N \in [0,1]$ (Gross affinity of the naive B cell population) represents the **normalized**
 66 **product of two dimensions**: (1) the average antigen affinity of naive B cell receptors (BCRs) and
 67 (2) the population size of naive B cells. This combined metric captures that germinal center (GC)
 68 reactions *simultaneously* enhance affinity through somatic hypermutation and expand high-affinity
 69 clones (Victora and Nussenzweig, 2022). When $N = 1$, it indicates both maximal average
 70 affinity and population size within GC capacity constraints.

71 During the early stage of a humoral immune response, progenitor naive B cells that have
 72 undergone VDJ recombination enter lymph nodes to seed germinal centers. For simplicity, the
 73 parameter s_{ini} denotes the constant innate maturation rate of the gross affinity N during this
 74 seeding process. The time window of the above process is represented by $a(t)$, a rectangular
 75 function:

$$a(t) = \begin{cases} 1, & t_0 \leq t < t_0 + t_{ini} \\ 0, & t_0 + t_{ini} \leq t \end{cases}$$

76 where t_0 denotes the vaccination timepoint, t_{ini} is the time interval before germinal center
 77 reactions commence, during which progenitor naive B cells seed the lymph nodes.

78 Germinal center reactions subsequently occur, wherein antigen-specific naive B cells proliferate
 79 under somatic hypermutation and T cell selection, increasing the gross affinity N .

80 The affinity maturation process is driven by successful binding of naive B cell receptors (BCRs)
 81 to antigens presented on follicular dendritic cells (FDCs). This binding efficiency is modeled as
 82 the product of three interdependent factors: **antigen accessibility**, **the population size of naive B**
 83 **cells**, and their **average antigen affinity**.

84 **Antigen accessibility** is captured by the function $f(Ag, K) = \frac{Ag}{Ag+K}$, where Ag represents the
 85 antigen concentration and K is a composite parameter reflecting the FDC's maximum antigen-
 86 presenting capacity. This formulation mirrors saturation kinetics, where antigen presentation level
 87 increases linearly at low antigen levels ($Ag \ll K$) and plateaus as FDC surfaces become
 88 saturated ($Ag \gg K$). The **naive B cell population size** and their **average antigen affinity** are
 89 combined into a single variable by the integrated metric N , explicitly coupling clonal expansion
 90 (population size) and affinity maturation (improved BCR-antigen binding) during germinal center
 91 reactions.

92 To enforce biological realism, the term $(1 - N)$ imposes a saturation constraint, ensuring N
 93 asymptotically approaches 1. This constraint arises from two inseparable limits: the finite physical
 94 space within germinal centers that restricts clonal expansion, and the biophysical ceiling of BCR-
 95 antigen interactions.

96 The resultant maturation rate $s_N \frac{Ag}{Ag+K} N(1 - N)$ dynamically integrates antigen availability $\frac{Ag}{Ag+K}$,
 97 population gross antigen affinity N , and system-wide saturation $1 - N$, faithfully recapitulating
 98 the competitive and self-limiting nature of affinity maturation observed *in vivo*. Maximal
 99 maturation s_N occurs under antigen saturation ($f(Ag, K) \rightarrow 1$) and minimal population gross
 100 affinity ($N \rightarrow 0, (1 - N) \rightarrow 1$), where both affinity-driven selection and affinity maturation
 101 potential are optimized.

104 The window $a_N(t)$ delineates the naive immune response timespan:

$$105 \quad a_N(t) = \begin{cases} 1, & (t_0 + t_{ini} \leq t < t_0 + t_{ini} + t_{min}) \text{ or } [(t_0 + t_{ini} + t_{min} \leq t < t_0 + t_{ini} + t_{max}) \text{ and } (Ag > 0)] \\ 0, & \text{otherwise} \end{cases} \quad (6)$$

106 where t_{min} and t_{max} are the minimum and maximum immune response durations. Reactions
107 persist for at least t_{min} and between t_{min} and t_{max} depending on remaining antigens ($Ag > 0$).
108 Beyond t_{max} , reactions cease.

109 Additionally, naive B cells decay at rate d_N .

110
111 **Equation 4** models memory B cell formation as a function of the gross affinity of naive B cell N ,
112 as a higher N directly represents a larger affinity-matured naïve B cell pool. The formation rate
113 scales with N and is constrained by a carrying capacity term $(1 - M)$ and a decay rate d_M .

114
115 **Equation 5** tracks antibody secretion. Analogous to memory B cell differentiation, antibodies are
116 produced in proportion to the gross affinity of naive B cell (N), modulated by production rate p_N ,
117 and decay at rate γ_{Ab} . The parameter p_N aggregates the differentiation of mature naïve B cells into
118 antibody-secreting plasma cells and their subsequent antibody secretion, implicitly modeling
119 plasma cells without explicitly tracking their transient dynamics or lifespan.

120
121 These equations collectively describe how antigen exposure drives naive B cell recruitment,
122 affinity maturation, memory formation, and antibody production in the primary immune response.

123 1.3 Booster Phase (Subsequent Antigen Exposures)

124 The booster phase accounts for immune responses following additional exposures, particularly to
125 antigenically distinct variants. Recall responses are explicitly modeled through both naive and
126 memory B cell dynamics.

127 1.3.1 Modeling homologous boost

128 In secondary immune responses to homologous boosters, antibody production arises from both
129 naive and memory compartments. Although early studies proposed that memory B cells could re-
130 enter germinal centers for further maturation, recent findings suggest that secondary germinal
131 centers are predominantly (>90%) populated by naive B cells, with minimal memory B cell re-
132 entry^{12,13,14}. Thus, our model excludes memory B cell re-entry into germinal centers. Instead,
133 memory B cells are reactivated primarily outside germinal centers, within structures like
134 subcapsular proliferative foci (SPFs), where they proliferate in an affinity-dependent manner and
135 differentiate into antibody-secreting plasma cells^{15,16}.

136
137 We define two memory B cell populations: inactive memory cells (M^{off}) generated during the
138 primary phase, and activated memory cells (M^{on}), formed upon secondary exposure. For
139 simplicity, we assume M^{off} rapidly converts to M^{on} immediately following boost.

140
141 Activated memory cells proliferate in an affinity-dependent fashion, modeled analogously to naive
142 B cells as: $s_M \frac{Ag}{Ag+K} M^{on} (1 - M^{on} - M^{off})$, where s_M denotes the maximal memory proliferation
143 rate. These cells also contribute to antibody production with aggregate rate p_M . As explained
144 earlier in the primary antibody dynamics (**Equation 5**), this rate implicitly incorporates both the
145 differentiation of memory cells into plasma cells and the antibody secretion by these plasma cells.
146 Memory response are confined within a defined temporal window:

$$147 \quad a_M(t) = \begin{cases} 1, & (t_0 \leq t < t_0 + t_{ini} + t_{min}) \wedge [(t_0 + t_{ini} + t_{min} \leq t < t_0 + t_{ini} + t_{max}) \vee (Ag > 0)] \\ 0, & \text{otherwise} \end{cases}$$

148 Considering the rapid nature of memory B cell activation upon secondary vaccination, this process
149 is modeled as occurring immediately at the boost timepoint t_0 , maintaining identical duration
150 parameters as established for the naive immune response $a_N(t)$.

151 By incorporating the dynamics of M_{on} into the primary response framework, we can simulate
homologous antigen boosting in an integrated framework:

152 $\frac{dR}{dt} = -\gamma_R R$ (7)

153 $\frac{dAg}{dt} = kR - \gamma_c K_a AgAb - \gamma_{Ag} Ag$ (8)

154 $\frac{dN}{dt} = a_{in}(t)s_{in} + a_N(t)s_N \frac{Ag}{Ag+K} N(1 - N) - d_N N$ (9)

155 $\frac{dM_{off}}{dt} = k_{N2M} N(1 - M_{on} - M_{off}) - d_M M_{off}$ (10)

156 $\frac{dM_{on}}{dt} = a_M(t)s_M \frac{Ag}{Ag+K} M_{on}(1 - M_{on} - M_{off}) - d_M M_{on}$ (11)

157 $\frac{dAb}{dt} = a_N(t)p_N N + a_M(t)p_M M_{on} - \gamma_{Ab} Ab$ (12)

158 1.3.2 Modeling heterologous boost

159 To address responses to heterologous exposures—common with SARS-CoV-2 variants—we
 160 extended DynaVac to simulate variant-specific antigen dynamics. The model tracks n distinct
 161 variants, denoted by subscript i , including antigen (Ag_i), naive B cells (N_i), inactive and activated
 162 memory B cells (M_i^{off} , M_i^{on}), and antibodies (Ab_i).

163 Based on **Equations 7-12**, the extended ODE system is:

164 $\frac{dR_i}{dt} = -\gamma_R R_i$ (13)

165 $\frac{dAg_i}{dt} = kR_i - \gamma_c \sum_j^n K a_j c_{i,j} Ag_i Ab_j - \gamma_{Ag} Ag_i$ (14)

166 $\frac{dN_i}{dt} = a_N(t)s_N \frac{Ag_i}{Ag_i+K} N_i(1 - N_i) - d_N N_i$ (15)

167 $\frac{dM_i^{off}}{dt} = k_{N2M} N_i \left[1 - \sum_j^n (M_j^{off} + M_j^{on}) \right] - d_M M_i^{off}$ (16)

168 $\frac{dM_i^{on}}{dt} = a_M(t)s_M \left(\sum_k^n \frac{Ag_k}{Ag_k+K} \frac{K a_k c_{i,k} M_i^{on}}{\sum_j^n K a_k c_{j,k} M_j^{on} + m_0} \right) M_i^{on} \left[1 - \sum_j^n (M_j^{off} + M_j^{on}) \right] - d_M M_i^{on}$ (17)

169 $\frac{dAb_i}{dt} = a_N(t)p_N N_i + a_M(t) \frac{p_M c_{i,k}}{c_{i,k} + c_0} M_i^{on} - \gamma_{Ab} Ab_i$ (18)

170 The following are additional key considerations in the above equations:

171 1) Cross-neutralization: Each antigen variant Ag_i can be neutralized by different variant-
 172 specific antibodies, represented by $\gamma_c \sum_j^n K a_j c_{i,j} Ag_i Ab_j$ in **Equation 14**, where $c_{i,j}$ represents the
 173 cross-neutralization coefficient. To quantify this, we define the cross-neutralization coefficient as:

174 $c_{i,j} = K a_{i,j} / K a_j$ (19)

175 where $K a_{i,j}$ is the affinity constant of variant j -specific antibodies toward antigen variant i , and
 176 $K a_j$ is the self-affinity constant of variant j -specific antibodies. By definition, $c_{i,i} = 1$,
 177 indicating strongest affinity for matched antigens, and $c_{i,j} \in (0,1)$ for $i \neq j$. Thus, a higher $c_{i,j}$
 178 implies stronger cross-neutralization.

179 2) Memory B cell competition: Upon exposure to antigen k , memory B cells specific to various
 180 antigens compete for proliferation signals based on their affinity and population size. A
 181 population's competitive advantage depends on the antigen-binding potential ($K a_k c_{i,k} M_i^{on}$). To
 182 reflect this competition, the antigen-dependent proliferation rate for each memory cell population
 183 is normalized by the total antigen-binding potential across all memory populations $\sum_j^n K a_k c_{j,k} M_j^{on}$.
 184 Furthermore, the proliferation of a memory cell population M_i^{on} in response to a cross-reactive
 185 antigen depends on whether its antigen-binding potential surpasses a threshold m_0 . Specifically,
 186 proliferation is maximized if $K a_k c_{i,k} M_i^{on}$ greatly exceeds m_0 , significantly reduced as it
 187 approaches m_0 , and minimal if it falls far below m_0 .

188 3) Antibody attenuation: Memory B cells (e.g., M_i^{on}) activated by an antigen variant (e.g., Ag_k)
 189 different from their original specificity differentiate into plasma cells and secrete antibody (Ab_i)
 190 less efficiently, modeled by the term $\frac{c_{i,k}}{c_{i,k} + c_0}$, with c_0 as the cross-reactivity threshold below
 191 which secretion is substantially reduced.

192 This extended framework enables mechanistic simulation of sequential heterologous exposures
 193 involving multiple antigen variants and captures phenomena such as cross-neutralization, immune
 194 imprinting, and competitive memory dynamics.

198 **1.4 Key simplification of the model**

199 To balance biological realism with computational tractability, DynaVac adopts a mean-field
200 approximation, representing the naive B cells, memory B cells, and antibody responses to each
201 antigen variant with single aggregated variables. In reality, these populations are polyclonal—
202 comprising diverse B cell clones with distinct BCRs that arise through stochastic processes of
203 V(D)J recombination, somatic hypermutation, and selection. This clonal diversity leads to
204 antibodies with a range of affinities even when targeting the same antigen⁶. By modeling these
205 processes deterministically, the framework captures the overall behavior of the immune response
206 without explicitly tracking individual clones. The affinity constant Ka_i reflects the average
207 binding affinity of antibody i to antigen i across the polyclonal repertoire. The variable N
208 represents the gross affinity maturity of the entire naive B cell population, encompassing both size
209 and average antigen affinity.
210 This simplification significantly enhances computational efficiency and predictive capacity,
211 enabling rapid simulation of diverse vaccination scenarios. Similar mean-field approaches have
212 been successfully employed in prior immunological modeling studies and can effectively
213 substitute for fully stochastic models in most settings²¹.

214 **1.5 Prior estimation of parameters interval**

215 All model parameters governing the full system of DynaVac (**Equations 13–18**) are listed in
216 Supplementary Table 1. To facilitate robust and biologically grounded parameter inference, we
217 established prior intervals for each parameter based on a combination of published experimental
218 data and previous modeling efforts ([Supplementary Table 1](#)). For novel parameters introduced in
219 this study—those lacking direct empirical estimates—we defined conservative bounds informed
220 by biological plausibility, ensuring both interpretability and computational stability during model
221 fitting.

222 **1.6 Model reduction**

223 We next simplified the model to reduce complexity without compromising accuracy.

224 1.6.1 Simplification of the mRNA translation process

225 The translation of mRNA into antigen, when considered in isolation, can be described by simple
226 linear ODEs:

$$\begin{aligned}\frac{dR}{dt} &= -\gamma_R R \\ \frac{dAg}{dt} &= kR\end{aligned}$$

227 Given an injected mRNA vaccine dose of m ug, the initial conditions become:

$$\begin{aligned}R(0) &= mR_0 \\ Ag(0) &= 0\end{aligned}$$

228 Solving these equations yields:

$$\begin{aligned}R(t) &= mR_0 e^{-\gamma_R t} \\ Ag(t) &= \frac{kmR_0}{\gamma_R} (1 - e^{-\gamma_R t})\end{aligned}$$

229 As $t \rightarrow \infty$, the total antigen translated from m ug of mRNA vaccine is $\frac{kmR_0}{\gamma_R}$. Define t_{99} as the
230 time required for translating 99% of this total antigen, which satisfies:

$$1 - e^{-\gamma_R t_{99}} = 0.99 \Rightarrow t_{99} = \frac{\ln 100}{\gamma_R}$$

231 According to prior estimates for γ_R ([Supplementary Table 1](#)), t_{99} is less than one day, implying
232 rapid antigen translation due to fast mRNA degradation. Considering that the initiation of antibody
233 production ($t_{ini} \in [0.5, 2]$, [Supplementary Table 1](#)) occurs around or after this period, we conclude
234 the explicit mRNA translation and degradation steps can be omitted. Instead, an equivalent initial
235 antigen concentration $Ag(t_0) = mP_r$ is introduced, where $P_r = \frac{kmR_0}{\gamma_R}$ represents the amount of

236 antigen generated per μg of mRNA. This simplification reduces model dimensionality and
 237 consolidates three parameters into one, with a prior interval approximately estimated as $P_r \approx$
 238 $[5,30] * 10^{11} \text{ M}/\mu\text{g}$.

239 **1.6.2 Simplification of antigen-antibody neutralization parameters**

240 In the original model, antigen-antibody neutralization terms appear as a product of two parameters:
 241 the antigen-antibody complex degradation rate γ_c and the affinity constant K_{a_i} (see **Equation.**
 242 **14**). For simplicity, we combine these parameters into a single variant-specific neutralization rate
 243 $\gamma_{neu_i} = \gamma_c K_{a_i}$, representing the rate of neutralization of antigen Ag_i by its specific antibody Ab_i .

244 **1.6.3 Simplification of parameter units**

245 Parameters P_s , P_v , and the newly defined P_r have units of $\text{M}/\mu\text{g}$, with magnitudes around 10^{-12} . To
 246 simplify parameter magnitudes and facilitate estimation, we rescale the units of these parameters
 247 to $10^{-12} \text{ M}/\mu\text{g}$. Correspondingly, for unit consistency, parameter K is rescaled from M to 10^{-12} M
 248 and the affinity constant Ka from M^{-1} to 10^{12} M^{-1} .

249 After implementing these simplifications, the original ODEs (**Equations 13-18**) reduces to:

$$250 \quad \frac{dAg_i}{dt} = - \sum_j^n \gamma_{neu_i} c_{i,j} Ag_i Ab_j - \gamma_{Ag} Ag_i \quad (20)$$

$$252 \quad \frac{dN_i}{dt} = a_N(t) s_N f(Ag_i, K) N_i (1 - N_i) - d_N N_i \quad (21)$$

$$253 \quad \frac{dM_i^{off}}{dt} = k_{N2M} N_i \left[1 - \sum_j^n (M_j^{off} + M_j^{on}) \right] - d_M M_i^{off} \quad (22)$$

$$254 \quad \frac{dM_i^{on}}{dt} = a_M(t) s_M \left(\sum_k^n \frac{Ag_k}{Ag_k + K} \frac{\gamma_{neu_k} c_{i,k} M_i^{on}}{\sum_j^n \gamma_{neu_k} c_{j,k} M_j^{on} + m_0} \right) M_{on_i} \left[1 - \sum_j^n (M_j^{off} + M_j^{on}) \right] - d_M M_i^{on} \quad (23)$$

$$255 \quad \frac{dAb_i}{dt} = a_N(t) p_N N_i + a_M(t) \frac{p_M M_i^{on} c_{i,k}}{c_{i,k} + c_0} - \gamma_{neu_i} \sum_j^n c_{j,i} Ag_j Ab_i - \gamma_{Ab} Ab_i \quad (24)$$

256 The parameters and their updated prior intervals for this reduced model are provided in
 257 [Supplementary Table 2](#).

258
 259

260 **Supplementary Note 2: DynaVac-based vaccination regimens**261 **simulation and parameter estimation using experimental data**262 **2.1 Estimating variant-specific self-neutralization rate and the cross-
263 neutralization matrix using homologous vaccination regimens**

264 Among the 29 vaccination regimens designed (Fig. 2a, main text), seven involved two-doses
 265 homologous vaccinations of monovalent vaccine—specifically CoronaVac or mRNA-based
 266 formulations targeting the Alpha/Beta, Delta, BA.1, BA.2/4/5, XBB.1.5, or JN.1 variants—in the
 267 absence of prior immune imprinting. These regimens elicit "pure" antibody responses induced by
 268 a single antigen, enabling direct estimation of the variant-specific self-neutralization rates, denoted
 269 as Γ_{neu} , and the cross-neutralization matrix \mathbf{C} .

270 Raw pseudovirus neutralization titers for these regimens are summarized in [Supplementary Table](#)
 271 [3](#), each reflecting the geometric mean titer (GMT) across eight replicate experiments. To construct
 272 a 7×7 cross-neutralization matrix \mathbf{C} , neutralization titers against the hypothetical Alpha/Beta and
 273 BA.2/5 fusion antigens are required. These were approximated by taking the geometric mean of
 274 the GMTs for the corresponding individual components ([Supplementary Table 4](#)).

275 Let $\mathbf{T} = (T_{i,j})_{7 \times 7}$ represent the resulting titer matrix, in which $T_{i,j}$ denotes the neutralization titer
 276 of antigen j -induced antibody against antigen i . Diagonal elements ($T_{i,i}$) represent self-
 277 neutralization titers and are provided in [Supplementary Table 5](#). Under standardized vaccine type
 278 and dosage (e.g., 30 μ g mRNA vaccines for Alpha/Beta, Delta, BA.1, BA.2/4/5, XBB.1.5), these
 279 self-neutralization titers scale with the relative magnitudes of variant-specific self-neutralization
 280 rates $\Gamma_{\text{neu}} = (\gamma_{\text{neu}_1}, \gamma_{\text{neu}_2}, \dots, \gamma_{\text{neu}_n})$.

281 To enable relative comparison across variants, we introduce the Delta-variant-specific self-
 282 neutralization rate ($\gamma_{\text{neu}}^{\text{Delta}}$) as a reference standard. We define the vector of relative self-
 283 neutralization ratios (f_i^{Delta}) as ([Supplementary Table 5](#)):

$$284 f_i^{\text{Delta}} = \frac{T_{i,i}}{T_{\text{Delta},\text{Delta}}} = \frac{\gamma_{\text{neu},i}}{\gamma_{\text{neu}}^{\text{Delta}}}$$

285 The relative self-neutralization ratio for CoronaVac (prototype-targeting inactivated vaccine
 286 administered at 5 μ g), denoted $f_{\text{CoronaVac}}^{\text{Delta}}$, cannot be directly compared using this framework and
 287 is thus estimated independently. Both $\gamma_{\text{neu}}^{\text{Delta}}$ and $f_{\text{CoronaVac}}^{\text{Delta}}$ are treated as free parameters and are
 288 jointly inferred through the model optimization procedure described in [Supplementary Note 2.3](#).

289 Having defined f_i^{Delta} and established $\gamma_{\text{neu}}^{\text{Delta}}$ as a scaling anchor, the absolute neutralization rate of
 290 each variant can be reconstructed as:

$$291 \gamma_{\text{neu},i} = f_i^{\text{Delta}} \times \gamma_{\text{neu}}^{\text{Delta}}$$

292 The cross-neutralization matrix (\mathbf{C}) is calculated by normalizing off-diagonal titers relative to their
 corresponding self-titers:

$$293 c_{i,j} = \frac{T_{i,j}}{T_{j,j}}$$

294 The resulting cross-neutralization matrix is provided in [Supplementary Table 6](#).

295 **2.2 Vaccination regimens simulation using DynaVac**296 **2.2.1 Monovalent vaccination strategy simulation**

297 Having established the variant-specific self-neutralization rates $\Gamma_{\text{neu}} = (\gamma_{\text{neu}_1}, \gamma_{\text{neu}_2}, \dots, \gamma_{\text{neu}_n})$ and
 298 the cross-neutralization matrix $\mathbf{C} = (c_{i,j})_{n \times n}$, these parameters are incorporated as essential
 299 inputs to the DynaVac simulation framework.

300 To simulate immune responses following a vaccination regimen involving n variants and m
 sequential immunizations, we represent the regimen using four vectors:

301 - $\mathbf{T} = (t_{01}, t_{02}, \dots, t_{0m})$: time points (in days) of each vaccination, with $0 \leq t_{01} < t_{02} <$
 302 $\dots < t_{0m}$.

303 - $\mathbf{V} = (v_1, v_2, \dots, v_m)$: variant index of each vaccine dose, where $v_k \in \{1, 2, \dots, n\}$.

304 - $\mathbf{D} = (d_1, d_2, \dots, d_m)$: antigen dose (μg) for each vaccination;

305 - $\mathbf{P} = (p_1, p_2, \dots, p_m)$: vaccine type (1: protein, 2: mRNA, 3: inactivated).

306 Simulations proceed by numerically solving the initial value problem defined by the system of
 307 ODEs (Equations 20–24) for each vaccination interval $[t_{0k}, t_{0k+1})$ sequentially.

308 Denote the solution for the k -th vaccination period $[t_{0k}, t_{0k+1})$ as:

$$[\mathbf{Ag}_k(t), \mathbf{N}_k(t), \mathbf{M}_{off_k}(t), \mathbf{M}_{on_k}(t), \mathbf{Ab}_k(t)]$$

309 The initial conditions for the first vaccination ($k = 1$), the initial conditions are:

$$Ag_{1,i}(t_{01}) = \begin{cases} d_1 P_s, & v_1 = i \text{ and } p_1 = 1 \\ d_1 P_r, & v_1 = i \text{ and } p_1 = 2 \\ d_1 P_v, & v_1 = i \text{ and } p_1 = 3 \\ 0, & v_1 \neq i \end{cases}$$

$$\mathbf{N}_1(t_{01}) = \mathbf{M}_{off_1}(t_{01}) = \mathbf{M}_{on_1}(t_{01}) = \mathbf{Ab}_1(t_{01}) = \mathbf{0}$$

310 For subsequent vaccinations ($1 < k \leq m$), the initial conditions are:

311 Antigen initial condition:

$$Ag_{k,i}(t_{0k}) = \begin{cases} Ag_{k-1,i}(t_{0k}) + d_k P_s, & v_k = i \text{ and } p_k = 1 \\ Ag_{k-1,i}(t_{0k}) + d_k P_r, & v_k = i \text{ and } p_k = 2 \\ Ag_{k-1,i}(t_{0k}) + d_k P_v, & v_k = i \text{ and } p_k = 3 \\ Ag_{k-1,i}(t_{0k}), & v_k \neq i \end{cases}$$

312 Memory B cells and antibodies:

$$\mathbf{M}_{off_k}(t_{0k}) = \mathbf{0}, \mathbf{M}_{on_k}(t_{0k}) = \mathbf{M}_{on_{k-1}}(t_{0k}) + \mathbf{M}_{off_{k-1}}(t_{0k})$$

$$\mathbf{N}_k(t_{0k}) = \mathbf{N}_{k-1}(t_{0k}), \mathbf{Ab}_k(t_{0k}) = \mathbf{Ab}_{k-1}(t_{0k})$$

313 (Upon each new vaccination, all inactive memory B cells (\mathbf{M}_{off}) transition immediately to the
 314 activated memory pool (\mathbf{M}_{on}) at the time t_{0k} .)

315 Concatenating solutions across all intervals yields the complete simulation trajectory:

$$[\mathbf{Ag}(t), \mathbf{N}(t), \mathbf{M}_{off}(t), \mathbf{M}_{on}(t), \mathbf{Ab}(t)], t \in [t_{01}, t_{end}]$$

316 where $t_{end} > t_{0m}$ is the end of the simulation.

317 2.2.2 Multivalent vaccine vaccination strategy simulation

318 For vaccination strategies involving multivalent vaccines, the vector \mathbf{V} is generalized to a $q \times m$
 319 matrix, representing up to q antigenic components per vaccine:

$$\mathbf{V} = (v_{j,k})_{q \times m}, v_{j,k} \in \{0, 1, \dots, n\}$$

320 where $v_{j,k}$ represents the variant of the j -th antigenic component in the vaccine used in the k -th
 321 vaccination. If the valency of the vaccine used in the k -th vaccination, denoted as q_k , is lower than
 322 the highest vaccine valency q in the strategy, the missing antigen components are filled with 0.
 323 Specifically, for the k -th column of matrix \mathbf{V} , if $q_k < j \leq q$, then $v_{j,k} = 0$.

324 Initial antigen conditions are adjusted accordingly:

325 For the first vaccination ($k = 1$):

$$Ag_{1,i}(t_{01}) = \begin{cases} d_1 P_s/q_1, & i \in \mathbf{v}_{.1} \text{ and } p_1 = 1 \\ d_1 P_r/q_1, & i \in \mathbf{v}_{.1} \text{ and } p_1 = 2 \\ d_1 P_v/q_1, & i \in \mathbf{v}_{.1} \text{ and } p_1 = 3 \\ 0, & i \notin \mathbf{v}_{.1} \end{cases}$$

326 For subsequent vaccinations ($k > 1$):

$$Ag_{k,i}(t_{0k}) = \begin{cases} Ag_{k-1,i}(t_{0k}) + d_k P_s/q_k, & i \in \mathbf{v}_{.k} \text{ and } p_k = 1 \\ Ag_{k-1,i}(t_{0k}) + d_k P_r/q_k, & i \in \mathbf{v}_{.k} \text{ and } p_k = 2 \\ Ag_{k-1,i}(t_{0k}) + d_k P_v/q_k, & i \in \mathbf{v}_{.k} \text{ and } p_k = 3 \\ Ag_{k-1,i}(t_{0k}), & i \notin \mathbf{v}_{.k} \end{cases}$$

327 Here, q_k represents the valency of the vaccine used in the k -th vaccination, and $\mathbf{v}_{.k}$ denotes the k -
 328 th column of matrix \mathbf{V} .

329 Initial conditions for memory B cells and antibodies follow the same rules as monovalent
330 vaccination. A detailed pseudo-code for implementing arbitrary vaccination regimens using
331 DynaVac is provided as follows:
332

Algorithm for Simulating Vaccination Strategy using DynaVac

Input: Vaccination times T, variant matrix V, doses D, vaccine types P, variant-specific neutralization rates Γ_{neu} , cross-neutralization matrix C, simulation end time t_end.

Output: Dynamics of antigen levels Ag, naive B cell levels N, inactivated memory B cell levels M_off, activated memory B cell levels M_on, antibody levels Ab.

```
1: n = length( $\Gamma_{\text{neu}}$ ); // Number of variants
2: m = length(T); // Number of vaccinations
3: [Ag, N, M_off, M_on, Ab] = InitializeStates(n);
4: for k = 1 to m do
5:   if (k == 1) then
6:     Ag = SetAntigenLevels(V[:, 1], D[1], P[1], Ag, T[1]);
7:   else
8:     Ag = UpdateAntigenLevels(V[:, k], D[k], P[k], Ag, T[k]);
9:     M_off[:, T[k]] = 0;
10:    M_on[:, T[k]] = M_on[:, T[k]] + M_off[:, T[k]];
11:    N[:, T[k]] = N[:, T[k-1]];
12:    Ab[:, T[k]] = Ab[:, T[k-1]];
13:   end if
14:   [Ag, N, M_off, M_on, Ab] = SolveODEs(Ag, N, M_off, M_on, Ab,  $\Gamma_{\text{neu}}$ , C, T[k],
15: T[k+1]);
15: end for
16: return [Ag, N, M_off, M_on, Ab];
```

```
function InitializeStates(n)
```

```
1: Ag = zeros(n,1);
2: N = zeros(n,1);
3: M_off = zeros(n,1);
4: M_on = zeros(n,1);
5: Ab = zeros(n,1);
6: return [Ag, N, M_off, M_on, Ab];
```

```
function SetAntigenLevels(v, d, p, Ag, t)
```

```
// Set initial antigen levels according to vaccine type and variant
```

```
function UpdateAntigenLevels(v, d, p, Ag, t)
```

```
// Update antigen levels by adding new dose to existing levels
```

```
function SolveODEs(Ag, N, M_off, M_on, Ab,  $\Gamma_{\text{neu}}$ , C, t_start, t_end)
```

```
// Numerically solve the ODEs for the given time interval
```

334 **2.3 Estimation of remaining parameters using 29 vaccination regimens in this**
 335 **study**

336 Let $\bar{\mathbf{T}} = (\bar{T}_{i,j})_{11 \times 7}$ denote the matrix of GMTs for 7 homologous vaccination regimens against the
 337 11 pseudoviruses (Supplementary Table 7). Each element $\bar{T}_{i,j}$ represents the neutralization titer of
 338 variant j -specific antibody against pseudovirus i .

339 The antibody-pseudovirus cross-neutralization coefficients $\bar{c}_{i,j}$ are defined as:

$$\bar{c}_{i,j} = \frac{\bar{T}_{i,j}}{\bar{T}_{j,j}}$$

340 where $\bar{T}_{j,j}$ is the self-neutralization titer of variant j -specific antibody (Supplementary Table 5).

341 Using this definition, we obtain the antibody-pseudovirus cross-neutralization matrix $\bar{\mathbf{C}} =$
 342 $(\bar{c}_{i,j})_{11 \times 7}$ (Supplementary Table 8).

343 We define the parameter vector $\boldsymbol{\theta}$, which contains the 28 unknown parameters listed in
 344 Supplementary Table 2.

345 For each vaccination regimen indexed by l , immune response trajectories are simulated using
 346 DynaVac based on its encoded vectors $\mathbf{T}_l, \mathbf{V}_l, \mathbf{D}_l, \mathbf{P}_l$ as described in Supplementary Notes 2.1.
 347 Given a parameter set $\boldsymbol{\theta}$, the simulated variant-specific antibody concentrations at any time t are
 348 denoted as:

$$\mathbf{Ab}_l(t, \mathbf{T}_l, \mathbf{V}_l, \mathbf{D}_l, \mathbf{P}_l, \boldsymbol{\theta})$$

349 The simulated antibody concentrations at the measurement time point t_{lm} (14 days after the last
 350 dose) are denoted as:

$$\mathbf{Ab}_{lm}(\boldsymbol{\theta}) = \mathbf{Ab}_l(t_{lm}; \mathbf{T}_l, \mathbf{V}_l, \mathbf{D}_l, \mathbf{P}_l, \boldsymbol{\theta})$$

351 Based on equilibrium assumptions, the neutralization titer of a mixed antibody population against
 352 pseudovirus k (NT_k) is proportional to the weighted sum of antibody levels multiplied by their
 353 neutralization rates and cross-neutralization coefficients (See the Appendix for a detailed proof):

$$NT_k \propto \sum_{j=1}^n \gamma_{neu_j} \bar{c}_{k,j} Ab_j = \bar{\mathbf{c}}_k \cdot (\boldsymbol{\Gamma}_{neu} \circ \mathbf{Ab}) \quad (25)$$

355 Here, $\bar{\mathbf{c}}_k$ represents the k -th row of the antibody-pseudovirus cross-neutralization matrix $\bar{\mathbf{C}}$, and
 356 $\boldsymbol{\Gamma}_{neu} = (\gamma_{neu_1}, \gamma_{neu_2}, \dots, \gamma_{neu_n})^T$ is the vector of variant-specific neutralization rates, and \circ denotes
 357 the Hadamard product.

358 Thus, given a parameter set $\boldsymbol{\theta}$, DynaVac predicts neutralization titers against 11 pseudoviruses for
 359 regimen l as:

$$\widehat{NT}_l(\boldsymbol{\theta}) = \bar{\mathbf{C}}(\boldsymbol{\Gamma}_{neu} \circ \mathbf{Ab}_{lm}(\boldsymbol{\theta}))$$

360 where $\widehat{NT}_l(\boldsymbol{\theta}) = (\widehat{NT}_{1,l}(\boldsymbol{\theta}), \widehat{NT}_{2,l}(\boldsymbol{\theta}), \dots, \widehat{NT}_{11,l}(\boldsymbol{\theta}))^T$.

361 For all 29 vaccination regimens, let $\widehat{\mathbf{T}}(\boldsymbol{\theta}) = (\widehat{T}_{i,l}(\boldsymbol{\theta}))_{11 \times 29}$ be the 11×29 matrix of model-
 362 predicted neutralization titers, and let $\mathbf{Ab}_m(\boldsymbol{\theta}) = (\mathbf{Ab}_{1m}(\boldsymbol{\theta}), \mathbf{Ab}_{2m}(\boldsymbol{\theta}), \dots, \mathbf{Ab}_{29m}(\boldsymbol{\theta}))$ be the
 363 corresponding matrix of model-predicted antibody levels at the time of measurement.

364 Then:

$$\widehat{NT}(\boldsymbol{\theta}) = \bar{\mathbf{C}}[\boldsymbol{\Gamma}_{neu} \mathbf{J}_{29} \circ \mathbf{Ab}_m(\boldsymbol{\theta})]$$

365 where $\mathbf{J}_{29} = (\mathbf{1}, \mathbf{1}, \dots, \mathbf{1})_{1 \times 29}$ is a row vector of ones.

366 Let $NT = (NT_{i,l})_{11 \times 29}$ be the matrix of experimentally measured neutralization titers.

367 Define the log2 fold change matrices:

$$\widehat{rNT}(\boldsymbol{\theta}) = \log_2 \left(\frac{\widehat{NT}(\boldsymbol{\theta})}{\widehat{NT}_{1,1}(\boldsymbol{\theta})} \right), \quad rNT = \log_2 \left(\frac{NT}{NT_{1,1}} \right)$$

368 The objective function L for parameter estimation is the squared Frobenius norm of the difference
 369 between the predicted and measured log2 fold change matrices:

$$L(\boldsymbol{\theta}) = \| \widehat{rNT}(\boldsymbol{\theta}) - rNT \|_F^2 \quad (26)$$

371 The optimization problem is:

$$\boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta}} \| \widehat{rNT}(\boldsymbol{\theta}) - rNT \|_F^2, \quad \text{subject to } \mathbf{lb} \leq \boldsymbol{\theta} \leq \mathbf{ub}$$

372 where \mathbf{lb} and \mathbf{ub} are the lower and upper bounds of the prior intervals for each parameter
 373 (Supplementary Table 2). The solution $\boldsymbol{\theta}^*$ is the optimal parameter set for the model.

374 To solve this optimization problem, we employ a genetic algorithm (GA), a heuristic optimization
 375 method inspired by natural selection processes. GA iteratively explores the parameter space by
 376 encoding parameters as chromosomes, selecting those with better fitness (lower objective function
 377 values), and performing genetic operations (mutation, crossover, and selection) to improve
 378 solutions²². Specifically, the genetic algorithm is implemented using MATLAB's Global
 379 Optimization Toolbox function 'ga'. Default settings provided by MATLAB's function were used.
 380 The estimated parameter values resulting from optimization based on neutralization titration data
 381 from 29 vaccination regimens are provided in [Supplementary Table 2](#).

382 **Appendix for Supplementary Note 2.3: Proof of Theorem**

383 **Theorem:**

384 Let $\mathbf{Ab} = (Ab_1, Ab_2, \dots, Ab_n)^T$ be a mixture of antibodies, and let NT_k be the antibody
 385 neutralization titer of this mixture against pseudovirus k . Then:

$$386 NT_k \propto \sum_{j=1}^n \gamma_{neu_j} \bar{c}_{k,j} Ab_j = \bar{\mathbf{c}}_k \cdot (\boldsymbol{\Gamma}_{neu} \circ \mathbf{Ab})$$

386 where $\bar{\mathbf{c}}_k$ represents the k -th row of the matrix $\bar{\mathbf{C}}$, and $\boldsymbol{\Gamma}_{neu} = (\gamma_{neu_1}, \gamma_{neu_2}, \dots, \gamma_{neu_n})^T$ is the
 387 vector of variant-specific neutralization rates.

388 **Proof:**

389 Let $Ka_{i,j}$ be the affinity constant of antibody j (Ab_j) for antigen i (Ag_i). At equilibrium:

$$Ka_{i,j} = \frac{[Ag_i: Ab_j]}{[Ag_i][Ab_j]}$$

390 where $[Ag_i: Ab_j]$ is the concentration of the antibody-antigen complex.

391 The NT50 titer NT_k is defined as the serum dilution that produces a 50% reduction in the
 392 biological effect (pseudovirus infection). For simplicity, we assume that at this dilution, half of the
 393 pseudovirus is neutralized:

$$[Ag_k] = \sum_{j=1}^n [Ag_k: Ab_j]$$

394 and the antibody concentrations are $1/NT_k$ of their initial values.

395 Equilibrium conditions:

$$\begin{aligned} \forall j \in \{1, 2, \dots, n\}, Ka_{k,j} &= \frac{[Ag_k: Ab_j]NT_k}{[Ag_k][Ab_j]} \\ NT_k \sum_{j=1}^n [Ag_k: Ab_j] &= [Ag_k] \sum_{j=1}^n Ka_{k,j} [Ab_j] \end{aligned}$$

396 Solving for T_k :

$$NT_k = \sum_{j=1}^n Ka_{k,j} [Ab_j]$$

397 Expressing $Ka_{k,j}$ in terms of cross-neutralization coefficients and variant-specific neutralization
 398 rates according to [Eq.12](#):

$$Ka_{k,j} = \bar{c}_{k,j} Ka_j = \frac{\bar{c}_{k,j} \gamma_{neu_j}}{\gamma_c}$$

399 where γ_c is a constant.

400 Substituting:

$$NT_k = \frac{1}{\gamma_c} \sum_{j=1}^n \bar{c}_{k,j} \gamma_{neu_j} [Ab_j] \propto \sum_{j=1}^n \gamma_{neu_j} \bar{c}_{k,j} Ab_j = \bar{\mathbf{c}}_k \cdot (\boldsymbol{\Gamma}_{neu} \circ \mathbf{Ab})$$

401 This provides a basis for training the model using experimentally measured antibody
 402 neutralization titers.

403

404 **Supplementary Note 3: Model validation using dataset from an**
405 **independent study**

406 **3.1 Parameterization using dataset from an independent study**

407 We collected titration data from another study comprising 37 vaccination regimens in mice
408 involving 4 SARS-CoV-2 strains (Prototype, BA.5, BQ.1.1, and XBB.1.5)¹⁷. [Supplementary](#)
409 [Table 18](#) summarizes the vaccine variant, vaccination time, vaccine type, vaccine amount, serum
410 collection time point, and the geometric mean neutralization titers (GMT) of serum antibodies
411 against the 4 pseudoviruses for each vaccination regimen.

412 Similarly, we first selected data from the 5 two-dose homologous vaccination regimens
413 ([Supplementary Table 9](#)) to estimate the relative proportions of variant-specific neutralization
414 rates γ_{neu_i} ([Supplementary Table 10](#)) and the cross-neutralization matrix (\mathbf{C}) ([Supplementary](#)
415 [Table 11](#)).

416 Using the BA.5-specific neutralization rate γ_{neu}^{BA5} as a reference, define the relative ratios $f_i^{BA5} =$
417 $\frac{T_{i,i}}{T_{BA5,BA5}} = \frac{\gamma_{neu,i}}{\gamma_{neu}^{BA5}}$. For the protein vaccines (BA.5, BQ.1.1, XBB.1.5) administered at 10 μg , the
418 relative ratio can be calculated directly. The ratio for CoronaVac ($f_{CoronaVac}^{BA5}$) and wild type
419 mRNA vaccine (f_{mRNA}^{BA5}) cannot be directly inferred because the vaccine types and doses differ.
420 Therefore, $f_{CoronaVac}^{BA5}$ and f_{mRNA}^{BA5} are set as unknown parameters in the Yisimayi, et al. dataset.
421 The estimated parameter values obtained by training on the titration data of the 37 vaccination
422 regimens in Yisimayi, et.al. dataset using genetic algorithm following the same procedure in
423 [Supplementary Note 2.3](#) are shown in [Supplementary Table 2](#).

424 **3.2 Cross-dataset validation**

425 We used the genetic algorithm to jointly train a complete set of model parameters on both our
426 dataset and the Yisimayi, et al. dataset, as shown in [Supplementary Table 2](#). The loss function
427 used for training was the sum of the loss functions defined by **Equation. 26** for the two datasets.
428 When performing cross-dataset predictions, for the primary parameters shared between the two
429 datasets, we directly applied the values trained on the parameterization dataset to the validation
430 dataset. For parameters unique to either dataset (those marked with superscripts a or b in
431 [Supplementary Table 2](#)), we utilized the values trained on the combined dataset.
432

433 **Supplementary Note 4: Variance contributions calculation**

434 To quantify the relative importance of different antigenic distances ($d_{0,2}$ and $d_{1,2}$) in determining
435 neutralization responses, we employed variance-based sensitivity analysis using the Sobol method.
436 For each parameter, the first-order Sobol index (variance contribution rate, S_i) was calculated as:
437

$$S_i = \frac{V_{x_i}[E_{x_{-i}}(y|x_i)]}{V(y)}$$

438 where $V(y)$ represents the total variance of the neutralization output across all parameter
439 combinations, $E_{x_{-i}}(y|x_i)$ denotes the expected value of neutralization when parameter x_i is fixed,
440 and $V_{x_i}[\cdot]$ is the variance of this conditional expectation across different values of x_i .
441

442 Computationally, we calculated the total variance ($V(y)$) of all neutralization values, then for each
443 parameter (e.g., $d_{0,2}$), computed mean neutralization responses along each fixed value while
444 varying the other parameter (e.g., $d_{1,2}$). The variance of these conditional means was then
445 normalized by the total variance to obtain the variance contribution rate. The remaining variance
446 ($1 - S_1 - S_2$) was attributed to the interaction term S_{12}
447

448

449 **Supplementary Note 5: Simulation Framework for DynaVac-Guided**
450 **Vaccination Strategy Optimization Against Antigenically Evolving**
451 **Pathogens**

452 **5.1 Antigenic Drift Simulation**

453 To simulate the evolutionary dynamics of a mutable virus (“Pathogen X”), we modeled antigenic
454 drift as a stochastic Poisson process in a one-dimensional antigenic space. Drift events occur as
455 discrete one-unit shifts in antigenic coordinates at exponentially distributed time intervals:

456
$$\Delta t_i \sim \text{Exponential}(\lambda), \quad t_k = \sum_{i=1}^k \Delta t_i \quad (27)$$

457 Where $\lambda \in \{0.1, 0.3, 0.5\}$ (antigenic distance units/month) denotes the average rate of antigenic
458 drift, corresponding to slow, moderate, or fast mutational dynamics, respectively. The cumulative
459 number of drift events up to time t defines the position in antigenic space:

460
$$A(t) = \max \{ k | t_k \leq t \} \quad (28)$$

461 which we refer to as the antigenic coordinate of the circulating strain at time t . The antigenic
462 distance between circulating strain at any two timepoints t_i and t_j is then given by the Euclidean
463 distance in this space:

464
$$D_{i,j} = |A(t_i) - A(t_j)| \quad (29)$$

465 This setup enables stochastic yet biologically interpretable simulation of pathogen evolution over
466 a continuous timeline. For each simulation (100 runs per λ), we tracked monthly antigenic
467 positions over a 75-month horizon.

468 **5.2 Vaccination Strategies Simulation**

469 For each simulated antigenic drift, we evaluated four empirical strategies (with updates every 6,
470 12, 18, or 24 months) and one model-guided strategy (DynaVac), in which vaccine updates were
471 triggered upon entry into the immune-imprinting breakthrough zone, defined based on the
472 antigenic distance–interval phase-plane (Fig. 7b, main text). Each update consisted of two 30 μg
473 mRNA doses spaced one month apart, using the circulating antigenic variant at the time of update
474 as the vaccine strain.

475 Immune responses were simulated using the DynaVac model (**Equations 20–24**, [Supplementary](#)
476 [Note 2.2](#)) with the human-data-trained parameter set ([Supplementary Table 2](#)), tracking the time
477 evolution of antigen levels, naive and memory B cell populations, and antibody levels specific to
478 each antigenic variant.

479 **5.3 Protection Metric**

480 To evaluate protective immunity, we first defined the neutralization efficacy against the
481 circulating strain $A(t)$ at time t as:

482
$$T(t) = \sum_{i=1}^n Ab_i(t) \cdot 2^{-D_{i,A(t)}} \quad (30)$$

483 which accounts for both homologous and cross-reactive antibody contributions; $Ab_i(t)$ is the
484 variant i specific antibody level at time t , and $D_{i,A(t)}$ is the antigenic distance between that variant
485 i and the circulating strain at time t .

486 The overall protection (OP) of a given strategy was computed as the time-averaged log10-
487 neutralization from month 1 to 75:

488
$$OP = \frac{1}{T-t_0} \int_{t_0}^T \log_{10} T(t) dt \quad \text{with } t_0 = 1, T = 75 \quad (31)$$

489 To enable comparison across strategies with differing update frequencies, we also computed:

$$OP_{\text{per update}} = \frac{OP}{n_{\text{updates}}}$$

490 where n_{updates} is the number of vaccine updates, each consisting of two doses.

491

493 1 Miller, F. J. Immunobiology: The Immune System in Health and Disease. Charles A. Janeway,
494 Jr. , Paul Travers , Mark Walport , J. Donald Capra. *The Quarterly Review of Biology* **75**, 224-
495 225 (2000).

496 2 Roth, D. B. & Craig, N. L. VDJ recombination: a transposase goes to work. *Cell* **94**, 411-414,
497 doi:10.1016/s0092-8674(00)81580-9 (1998).

498 3 Tonegawa, S. Somatic generation of antibody diversity. *Nature* **302**, 575-581,
499 doi:10.1038/302575a0 (1983).

500 4 Victora, G. D. & Nussenzweig, M. C. Germinal centers. *Annu Rev Immunol* **30**, 429-457,
501 doi:10.1146/annurev-immunol-020711-075032 (2012).

502 5 Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation.
503 *Annu Rev Biochem* **76**, 1-22, doi:10.1146/annurev.biochem.76.061705.090740 (2007).

504 6 Victora, G. D. & Mesin, L. Clonal and cellular dynamics in germinal centers. *Curr Opin
505 Immunol* **28**, 90-96, doi:10.1016/j.coi.2014.02.010 (2014).

506 7 Cohen, J. J., Duke, R. C., Fadok, V. A. & Sellins, K. S. Apoptosis and Programmed Cell
507 Death in Immunity. *Annual Review of Immunology* **10**, 267-293,
508 doi:10.1146/annurev.iy.10.040192.001411 (1992).

509 8 Eisen, H. N. & Siskind, G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING
510 THE IMMUNE RESPONSE. *Biochemistry* **3**, 996-1008, doi:10.1021/bi00895a027 (1964).

511 9 Suan, D., Sundling, C. & Brink, R. Plasma cell and memory B cell differentiation from the
512 germinal center. *Curr Opin Immunol* **45**, 97-102, doi:10.1016/j.coi.2017.03.006 (2017).

513 10 Kurosaki, T., Kometani, K. & Ise, W. Memory B cells. *Nat Rev Immunol* **15**, 149-159,
514 doi:10.1038/nri3802 (2015).

515 11 Inoue, T. & Kurosaki, T. Memory B cells. *Nature Reviews Immunology* **24**, 5-17,
516 doi:10.1038/s41577-023-00897-3 (2024).

517 12 Dogan, I. *et al.* Multiple layers of B cell memory with different effector functions. *Nature
518 Immunology* **10**, 1292-1299, doi:10.1038/ni.1814 (2009).

519 13 Pape, K. A. & Jenkins, M. K. Do Memory B Cells Form Secondary Germinal Centers? It
520 Depends. *Cold Spring Harbor perspectives in biology* **10**, doi:10.1101/cshperspect.a029116
521 (2018).

522 14 Mesin, L. *et al.* Restricted Clonality and Limited Germinal Center Reentry Characterize
523 Memory B Cell Reactivation by Boosting. *Cell* **180**, 92-106.e111,
524 doi:10.1016/j.cell.2019.11.032 (2020).

525 15 Moran, I., Grootveld, A. K., Nguyen, A. & Phan, T. G. Subcapsular Sinus Macrophages: The
526 Seat of Innate and Adaptive Memory in Murine Lymph Nodes. *Trends in Immunology* **40**, 35-
527 48, doi:<https://doi.org/10.1016/j.it.2018.11.004> (2019).

528 16 Moran, I. *et al.* Memory B cells are reactivated in subcapsular proliferative foci of lymph
529 nodes. *Nature communications* **9**, 3372, doi:10.1038/s41467-018-05772-7 (2018).

530 17 Yisimayi, A. *et al.* Repeated Omicron exposures override ancestral SARS-CoV-2 immune
531 imprinting. *Nature* **625**, 148-156, doi:10.1038/s41586-023-06753-7 (2024).

532 18 Koutsakos, M. & Ellebedy, A. H. Immunological imprinting: Understanding COVID-19.
533 *Immunity* **56**, 909-913, doi:10.1016/j.immuni.2023.04.012 (2023).

534 19 Hu, Y. F. *et al.* Rational design of a booster vaccine against COVID-19 based on antigenic
535 distance. *Cell host & microbe* **31**, 1301-1316.e1308, doi:10.1016/j.chom.2023.07.004 (2023).

536 20 Rössler, A., Knabl, L., von Laer, D. & Kimpel, J. Neutralization Profile after Recovery from
537 SARS-CoV-2 Omicron Infection. *The New England journal of medicine* **386**, 1764-1766,
538 doi:10.1056/NEJMc2201607 (2022).

539 21 Pan, K. Understanding original antigenic sin in influenza with a dynamical system. *PLoS one* **6**,
540 e23910, doi:10.1371/journal.pone.0023910 (2011).

541 22 Mitchell, M.

542 23 Whitley, D. A genetic algorithm tutorial. *Statistics and Computing* **4**, 65-85,
543 doi:10.1007/BF00175354 (1994).

544 24 Olofsson, S. O. *et al.* Structure and biosynthesis of apolipoprotein B. *Am Heart J* **113**, 446-
545 452, doi:10.1016/0002-8703(87)90612-0 (1987).

546 25 Schwalb, B. *et al.* TT-seq maps the human transient transcriptome. *Science* **352**, 1225-1228,
547 doi:10.1126/science.aad9841 (2016).

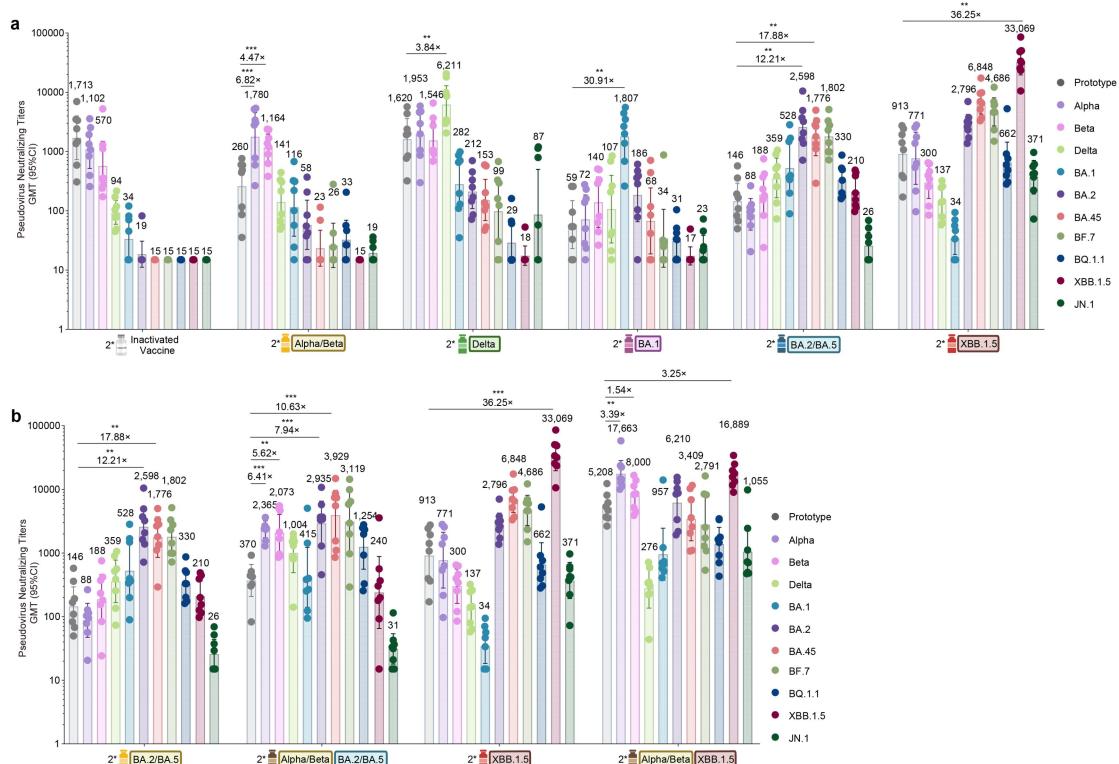
548 26 Padovan-Merhar, O. *et al.* Single mammalian cells compensate for differences in cellular
549 volume and DNA copy number through independent global transcriptional mechanisms. *Mol*
550 *Cell* **58**, 339-352, doi:10.1016/j.molcel.2015.03.005 (2015).

551 27 Lee, H. Y. *et al.* Simulation and prediction of the adaptive immune response to influenza A
552 virus infection. *J Virol* **83**, 7151-7165, doi:10.1128/jvi.00098-09 (2009).

553 28 Hogan, A. B. *et al.* Estimating long-term vaccine effectiveness against SARS-CoV-2 variants:
554 a model-based approach. *Nature Communications* **14**, 4325, doi:10.1038/s41467-023-39736-3
555 (2023).

556 29 Ndifon, W. A simple mechanistic explanation for original antigenic sin and its alleviation by
557 adjuvants. *J R Soc Interface* **12**, doi:10.1098/rsif.2015.0627 (2015).

558 30 Bocharov, G. A. & Romanyukha, A. A. Mathematical model of antiviral immune response. III.
559 Influenza A virus infection. *J Theor Biol* **167**, 323-360, doi:10.1006/jtbi.1994.1074 (1994).


560 31 Raman, C. S., Jemmerson, R., Nall, B. T. & Allen, M. J. Diffusion-limited rates for
561 monoclonal antibody binding to cytochrome c. *Biochemistry* **31**, 10370-10379,
562 doi:10.1021/bi00157a027 (1992).

563 32 Hancioglu, B., Swigon, D. & Clermont, G. A dynamical model of human immune response to
564 influenza A virus infection. *J Theor Biol* **246**, 70-86, doi:10.1016/j.jtbi.2006.12.015 (2007).

565

566

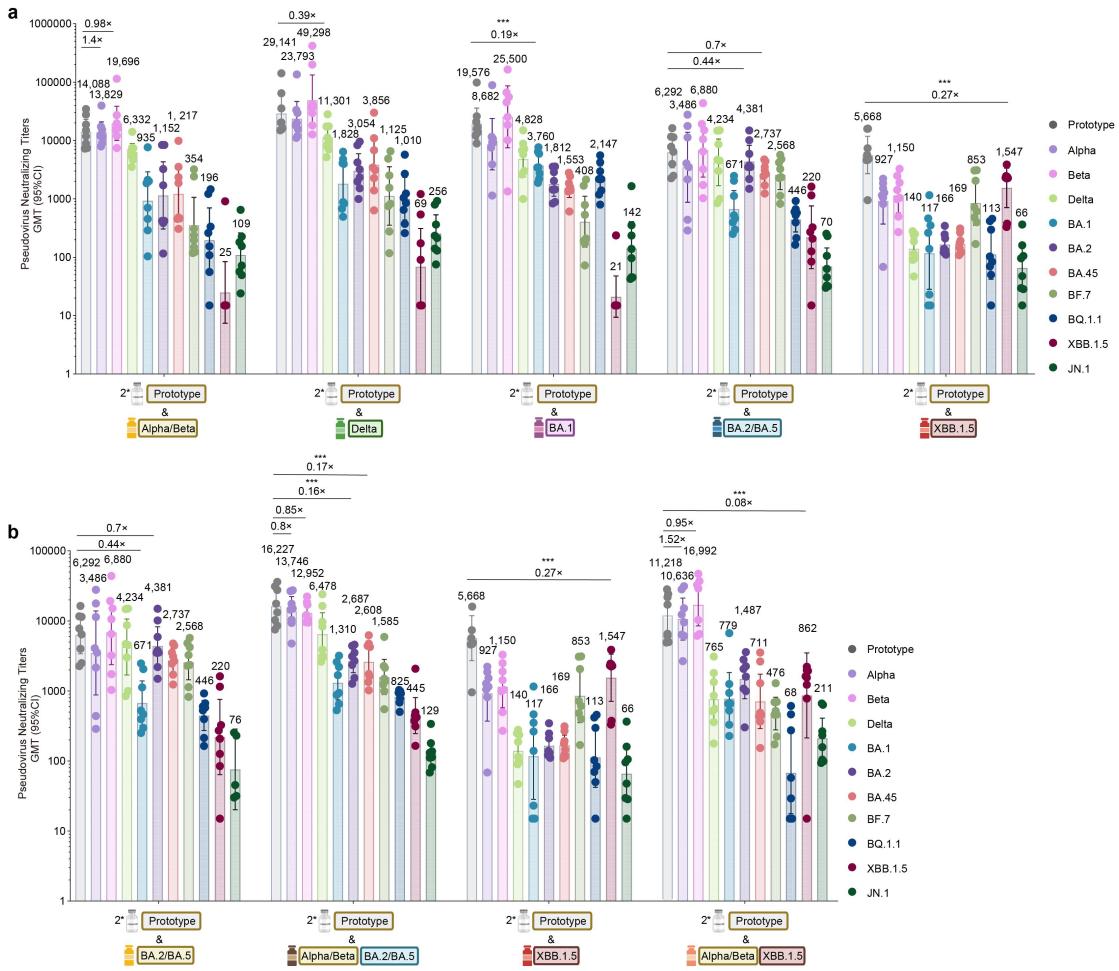
Extended Data Figures

568

569

Extended Data Fig. 1 Pseudovirus assay of mice sera that received two-dose variant vaccination

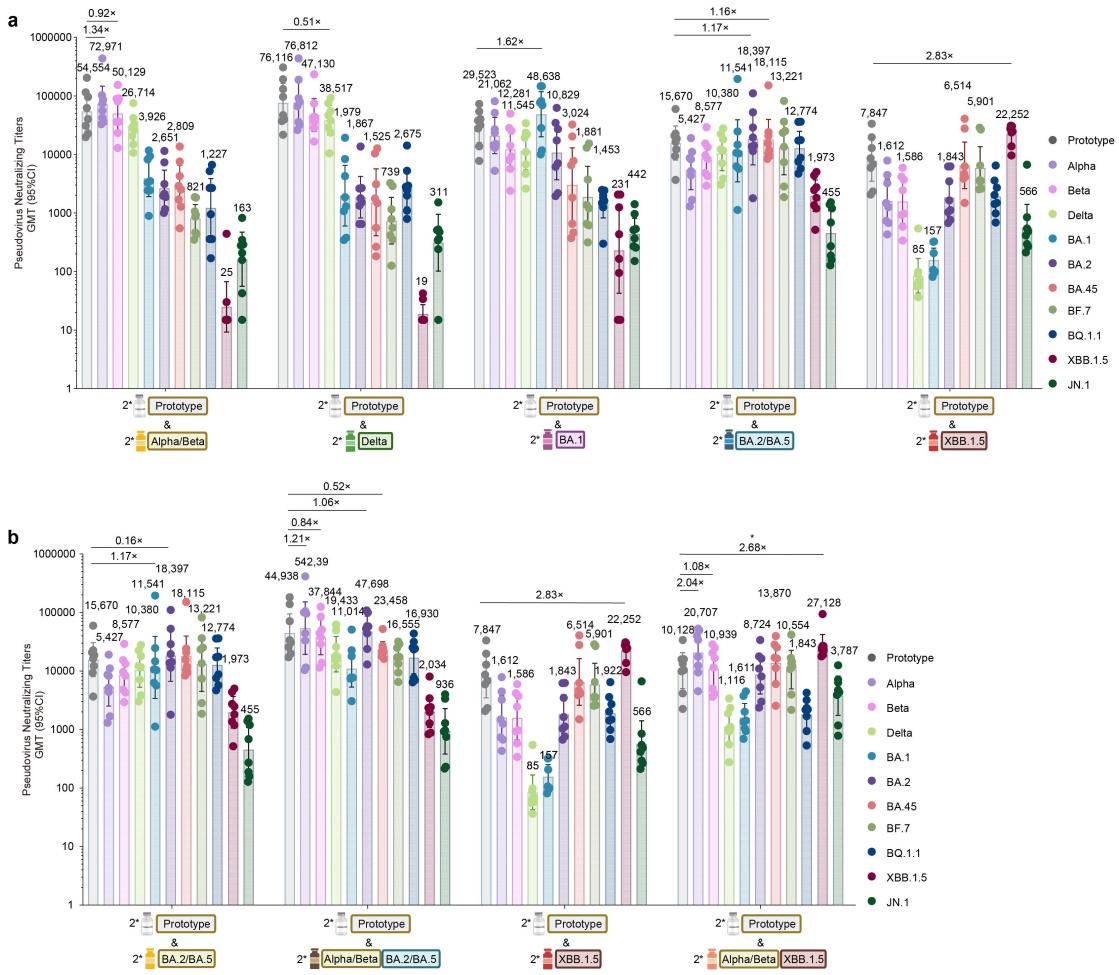
570


571

a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received two-dose variant mRNA vaccine. The antigen components of different groups of vaccines are directly marked below. All the experimental mice were divided into 8 groups according to the type of booster vaccination, each group contains 8 mice. The neutralization titers were expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on top of bars. Each dot represents the result of one mouse serum sample, geometric mean ratio (GMR) and *P* values were marked above corresponding bars. Data are presented as the geometric mean titers with 95% confidence intervals. Specific details were shown in [Supplementary Table 14](#).

572

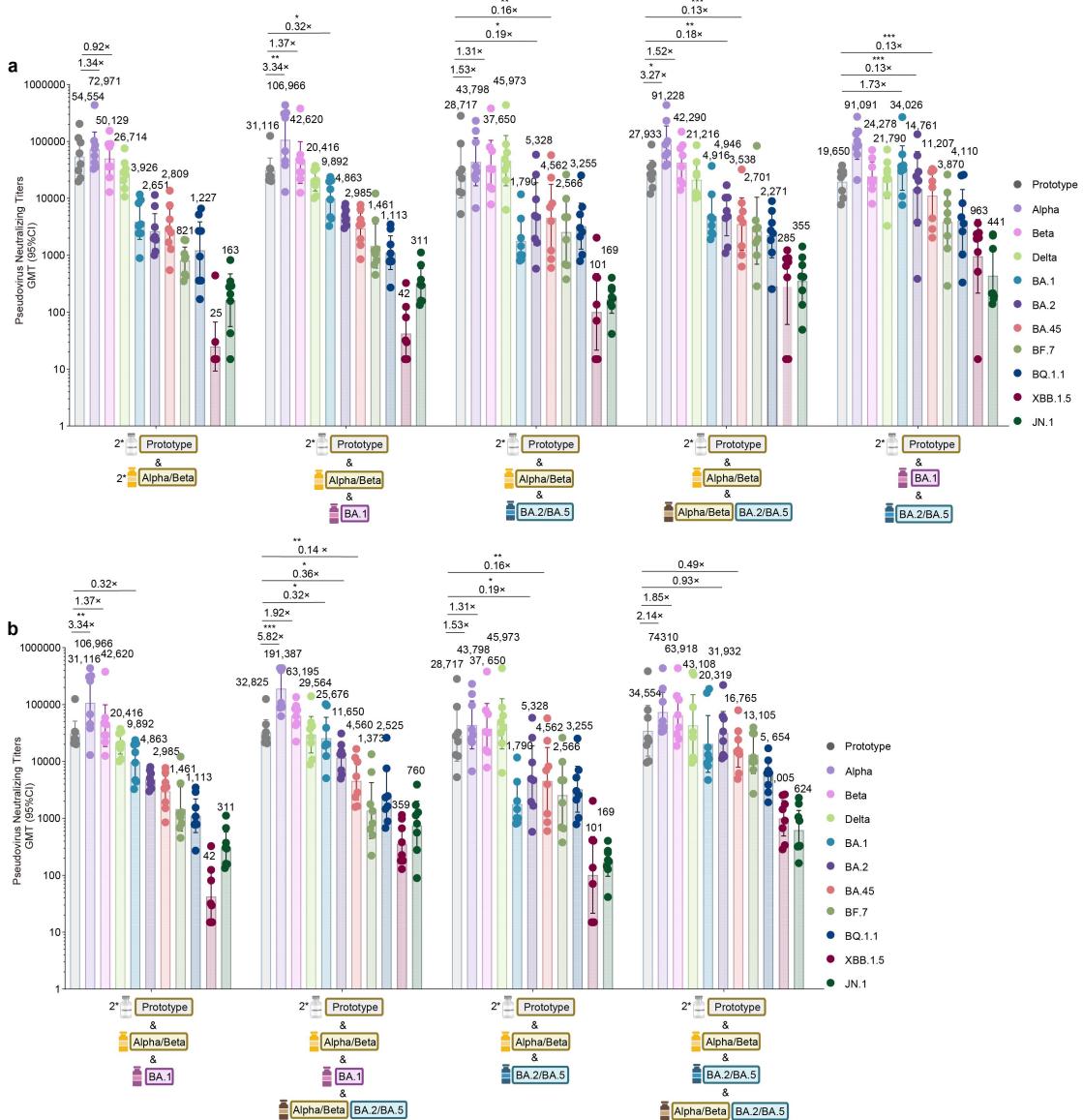
573


P* < 0.01; *P* < 0.001 (two-tailed student's *t*-test in (a-b))

580
581 **Extended Data Fig. 2 Pseudovirus assay of mice sera that received one-dose booster based on**
582 **two-dose inactivated vaccines**

583 **a, b**, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received
584 one-dose variant booster based on two-dose inactivated vaccines. The antigen components of
585 vaccines are directly marked below. All the experimental mice were divided into 7 groups
586 according to the type of variant booster, each group contains 8 mice. The neutralization titers were
587 expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on
588 top of bars. Each dot represents the result of one mouse serum sample, geometric mean ratio
589 (GMR) and *P* values were marked above corresponding bars. Data are presented as the geometric
590 mean titers with 95% confidence intervals. Specific details were shown in [Supplementary Table](#)
591 [15](#).

592 ****P* < 0.001 (two-tailed student's *t*-test in **(a-b)**)

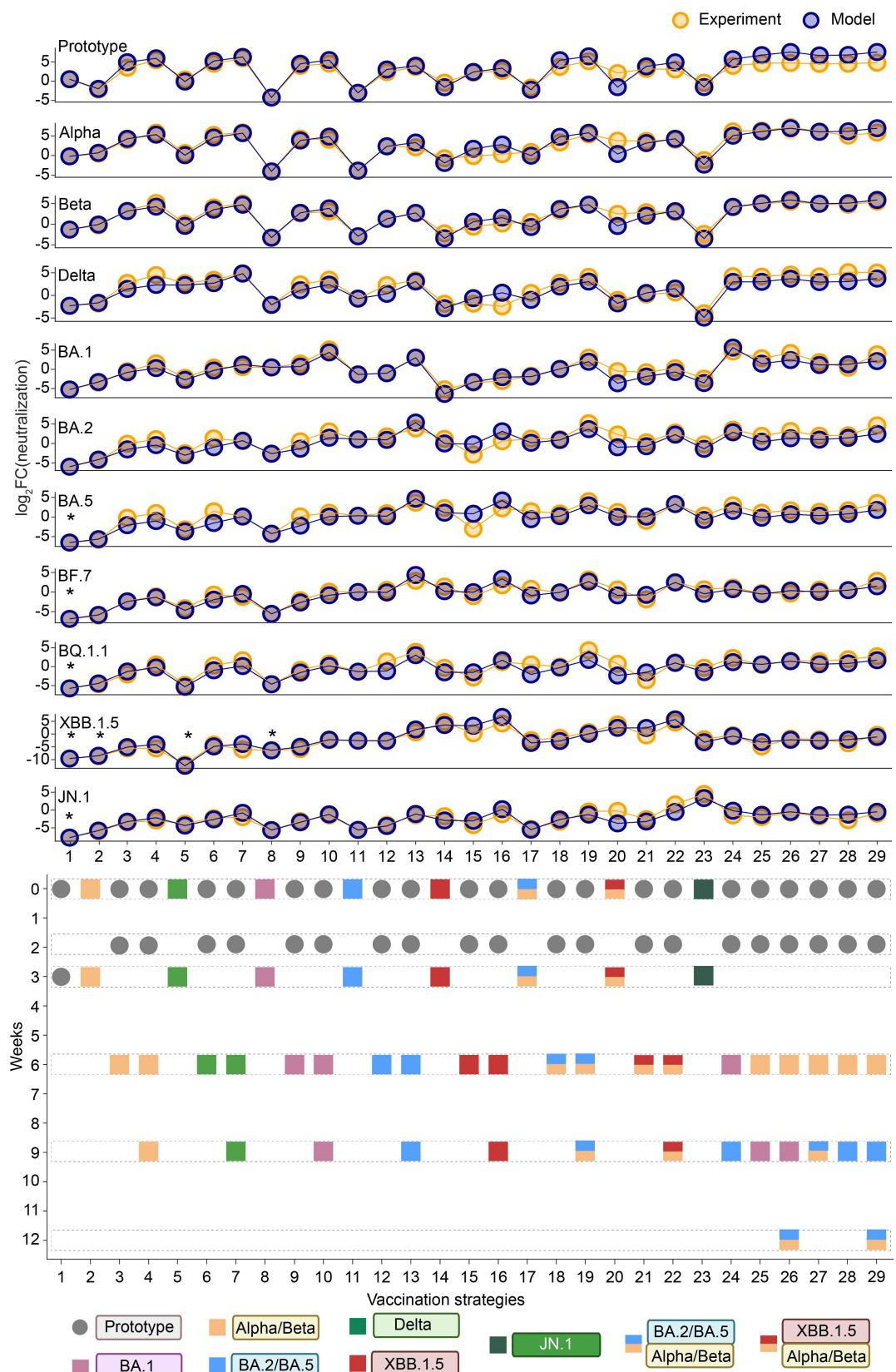

593

594

595 Extended Data Fig. 3 Pseudovirus assay of mice sera that received two-dose boosters based 596 on two-dose inactivated vaccines

597 **a, b**, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received
598 two-dose variant boosters based on two-dose inactivated vaccines. The antigen components of
599 vaccines are directly marked below. All the experimental mice were divided into 7 groups
600 according to the type of variant booster, each group contains 8 mice. The neutralization titers were
601 expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on
602 top of bars. Each dot represents the result of one mouse serum sample, geometric mean ratio
603 (GMR) and *P* values were marked above corresponding bars. Data are presented as the geometric
604 mean titers with 95% confidence intervals. Specific details were shown in [Supplementary Table](#)
605 **16**.

**P* < 0.05 (two-tailed student's *t*-test in (a-b))


606

607

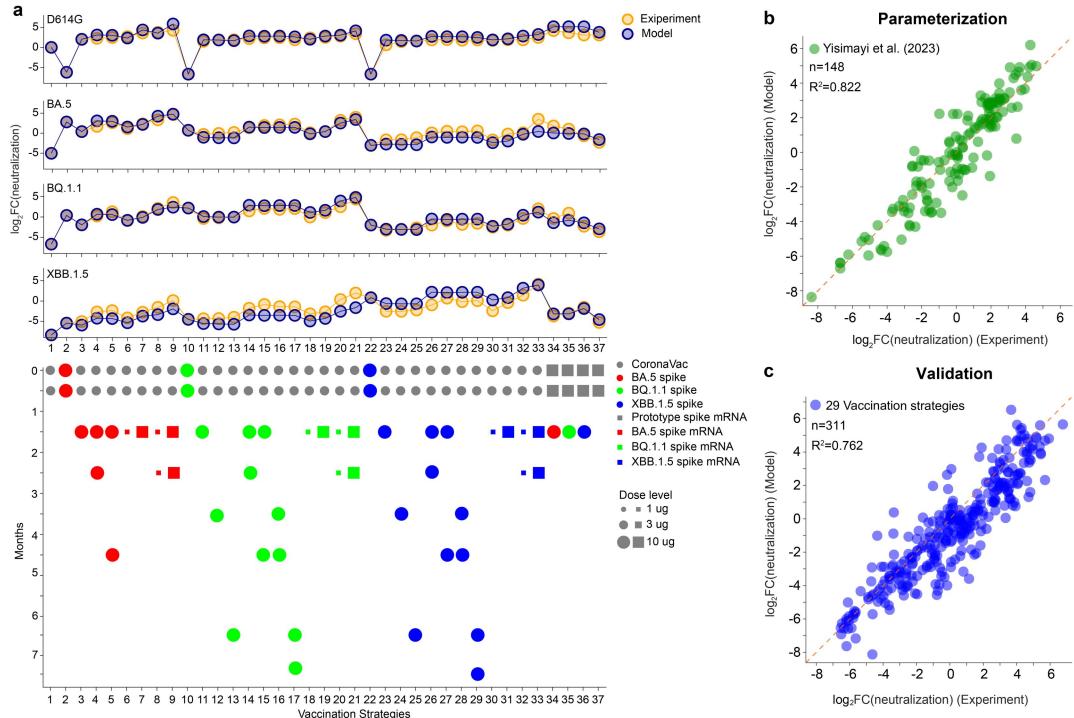
Extended Data Fig. 4 Pseudovirus assay of mice sera that received different one or two-dose variant boosters based on two-dose inactivated vaccines and one-dose Alpha/Beta vaccine

609 a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received
610 two-dose inactivated vaccines followed by progressively sequential variant booster regimens. The
611 antigen components of vaccines are directly marked below. All the experimental mice were
612 divided into 7 groups according to the type of variant booster, each group contains 8 mice. The
613 neutralization titers were expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT)
614 values were marked on top of bars. Each dot represents the result of one mouse serum sample,
615 geometric mean ratio (GMR) and *P* values were marked above corresponding bars. Data are
616 presented as the geometric mean titers with 95% confidence intervals. Specific details were shown
617 in [Supplementary Table 17](#).

618 **P* < 0.05; ***P* < 0.01; ****P* < 0.001 (two-tailed student's *t*-test in (a-b))

619

620


621

622

623

624

625 model parameterization, and model-predicted values are shown in purple. Asterisks indicate data
626 points corrected by the model due to experimental assay detection limits. Bottom panel depicts
627 detailed vaccination schedules (gray circles: inactivated vaccines; colored squares: monovalent
628 mRNA vaccines; mixed-color squares: bivalent vaccines).

629

630

631

Extended Data Fig. 6 Parameterization of the DynaVac model using Yisimayi et al. (2023) mouse data and cross-dataset validation

632

633

634

635

636

637

638

a, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization titers after parameterization using the Yisimayi et al. (2023) dataset. Scatter plot shows \log_2 fold changes of neutralization titers for 37 vaccination regimens (columns) against 4 SARS-CoV-2 variants (rows), relative to neutralization titer against the D614G strain after two doses of inactivated vaccines. Bottom panel shows detailed vaccination schedules (gray circles: inactivated vaccines; gray squares: prototype spike mRNA vaccines; colored dots/squares: spike or mRNA vaccines; size of dots/squares indicates dose level).

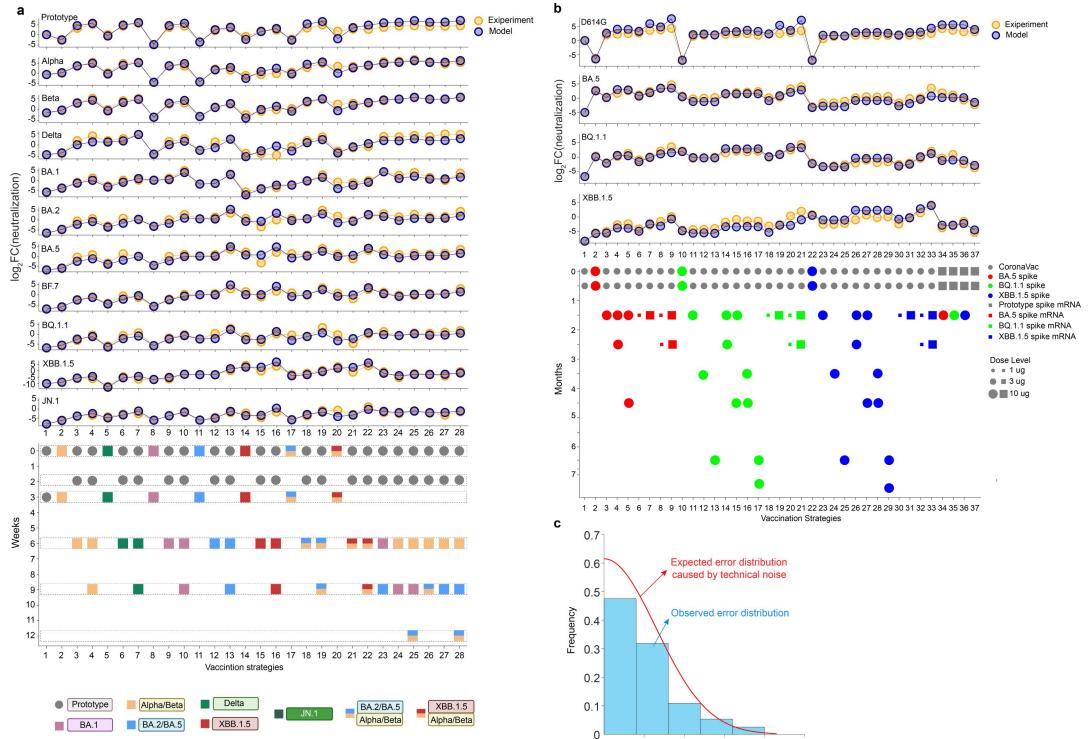
639

640

641

642

b, Performance of the DynaVac model parameterized on the Yisimayi et al. (2023) dataset. Scatter plot shows predicted versus observed \log_2 neutralization titer fold changes for the parameterization dataset. R^2 value represents the proportion of variability in the observed data accounted for by model predictions.


643

644

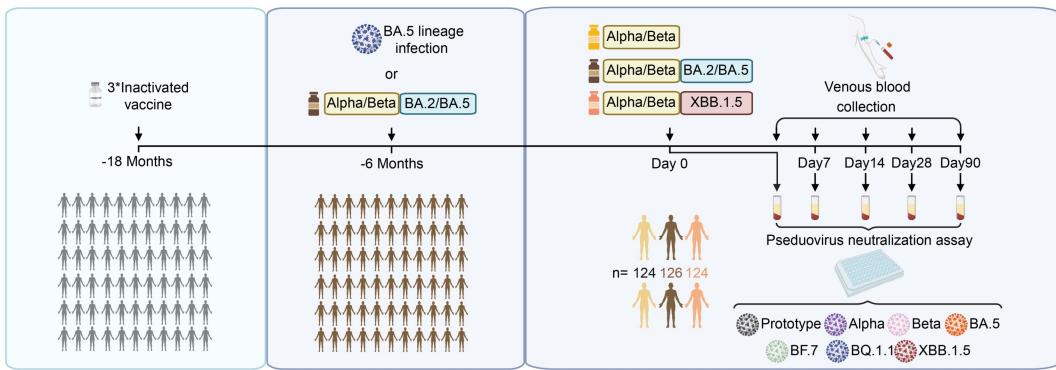
645

646

c, Cross-dataset validation of the DynaVac model parameterized on the Yisimayi et al. (2023) dataset and validated using our mouse study dataset. Scatter plot shows predicted versus observed \log_2 neutralization titer fold changes. R^2 value represents the proportion of variability in the observed data accounted for by model predictions.

647

648


649 **Extended Data Fig. 7 Comparison of experimentally measured and DynaVac-fitted**

650 **neutralization titers after parameterization using the combined mouse dataset**

651 **a**, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization
 652 titers for our mouse study after parameterization using the combined dataset. Scatter plot shows
 653 \log_2 fold changes of neutralization titers for 28 vaccination regimens (columns) against 11 SARS-
 654 CoV-2 variants (rows), relative to neutralization titer against the prototype strain after two doses
 655 of inactivated vaccines. Bottom panel depicts detailed vaccination schedules (gray circles:
 656 inactivated vaccines; colored squares: monovalent mRNA vaccines; mixed-color squares: bivalent
 657 vaccines).

658 **b**, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization
 659 titers for the Yisimayi et al. (2023) dataset after parameterization using the combined dataset.
 660 Scatter plot shows \log_2 fold changes of neutralization titers for 37 vaccination regimens (columns)
 661 against 4 SARS-CoV-2 variants (rows), relative to neutralization titer against the D614G strain
 662 after two doses of inactivated vaccines. Bottom panel shows detailed vaccination schedules (gray
 663 circles: inactivated vaccines; gray squares: prototype spike mRNA vaccines; colored dots/squares:
 664 Omicron sub-variant spike or mRNA vaccines; size of dots/squares indicates dose level).

665 **c**, Error distribution of the DynaVac model parameterized on the combined mouse dataset.
 666 Histogram shows the distribution of absolute errors in \log_2 neutralization titer fold change
 667 predictions. Red line represents a half-normal distribution with $\sigma = 1.3$ fitted to the error
 distribution.

668

Extended Data Fig. 8 Schematic representation of the human clinical trial

669

670 Pseudovirus neutralization assay of human sera from 3 vaccination regimens (376 volunteers).
 671 Volunteers who accepted three-dose inactivated vaccines and one-dose BA.2/BA.5+Alpha/Beta
 672 vaccine (or infected with BA.5.2/BF.7 variant) were randomly divided into three groups. Each
 673 group accepted one of mRNA variant boosters (Alpha/Beta vaccine, BA.2/BA.5+Alpha/Beta
 674 vaccine, or XBB.1.5+Alpha/Beta vaccine). Pseudovirus neutralization titers of volunteer serum
 675 samples were tested against 7 SARS-CoV-2 variants.

676

677

678

Extended Data Fig. 9 Log-transformed immunodynamic parameter comparisons across datasets and species.

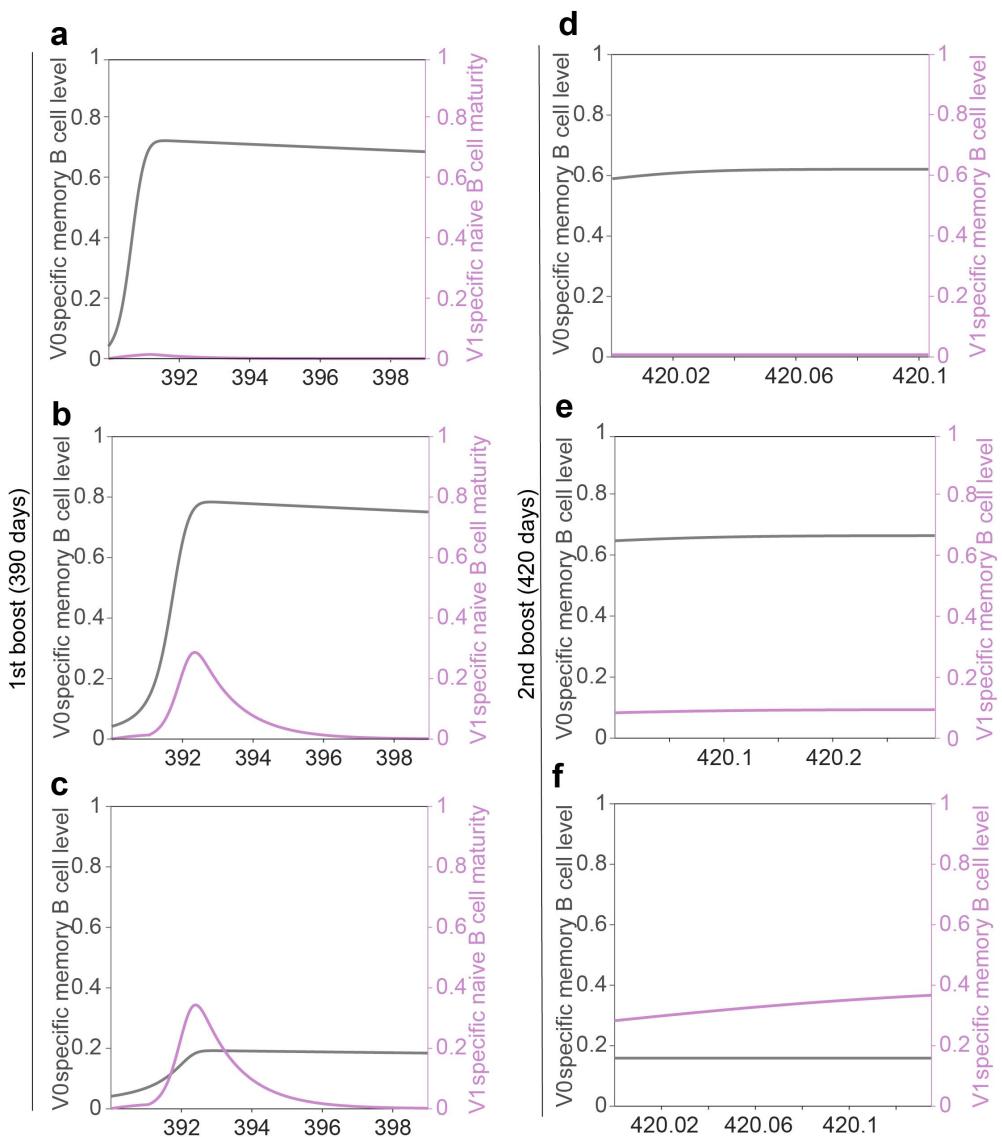
679

680

681

682

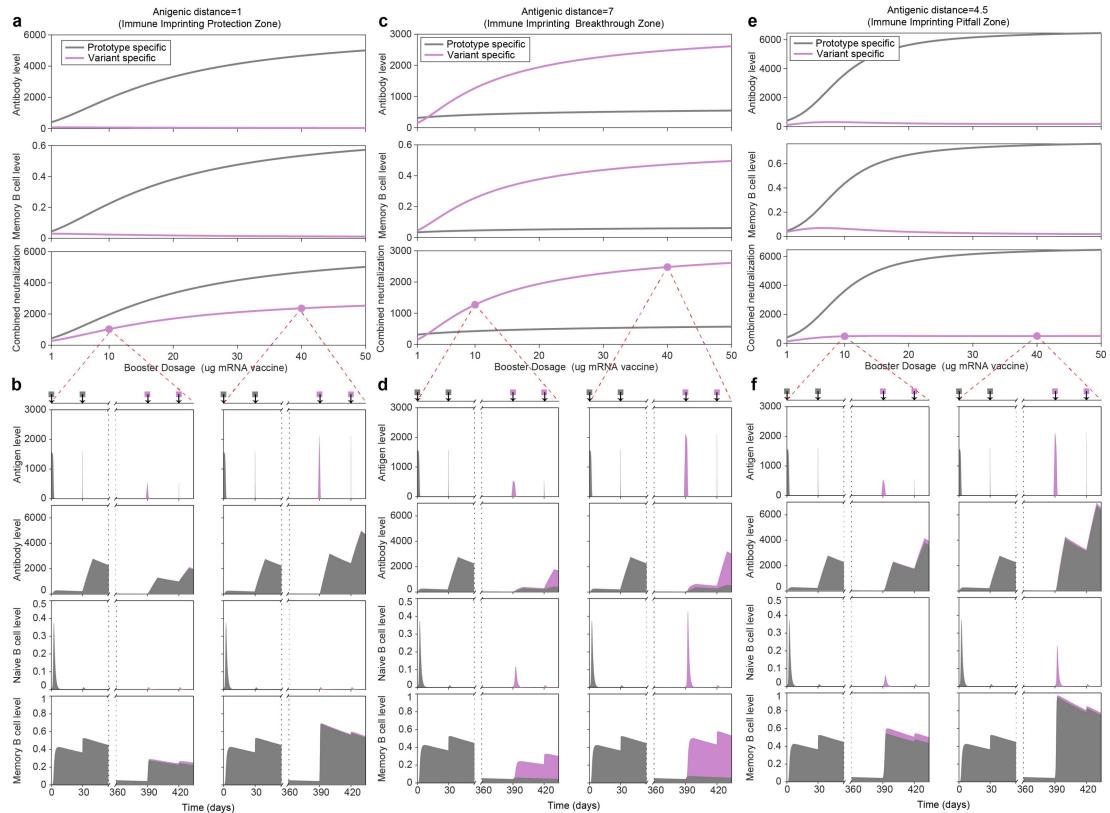
a, Comparison of log-transformed parameter values inferred from our mouse dataset (x-axis) and those from Yisimayi et al. dataset (y-axis). Each dot represents a fitted immunological parameter with symbol definitions detailed in [Supplementary Table 2](#). The dashed line denotes the identity line ($x = y$).


683

684

685

686


b, Comparison of parameter values inferred from the combined mouse dataset (x-axis) and the human dataset (y-axis). Each dot corresponds to a model parameter with symbol definitions detailed in [Supplementary Table 2](#). The dashed line denotes the identity line. Spearman correlation coefficients (ρ) and associated P values are shown in each panel.

687
688 **Extended Data Fig. 10 Dynamics of prototype-specific and variant-specific B cell responses**
689 **over time following booster vaccinations**

690 **a-c**, Comparison of prototype-specific memory B cells (V_0 , gray) and variant-specific naive B
691 cells maturity (V_1 , purple) after the first vaccination administered at day 390 for prime-boost
692 antigenic distance of 1.6 (**a**, immune-imprinting-protection zone), 5.0 (**b**, immune-imprinting-
693 pitfall zone), and 5.6 (**c**, immune-imprinting-breakthrough zone).

694 **d-f**, Comparison of prototype-specific memory B cells (V_0 , gray) and variant-specific memory B
695 cells (V_1 , purple) after the second booster vaccination administered at day 420 for prime-boost
696 antigenic distance of 1.6 (**d**, immune-imprinting-protection zone), 5.0 (**e**, immune-imprinting-
697 pitfall zone), and 5.6 (**f**, immune-imprinting-breakthrough zone).

698

699

700

701

702

703

704

705

706

707

708

709

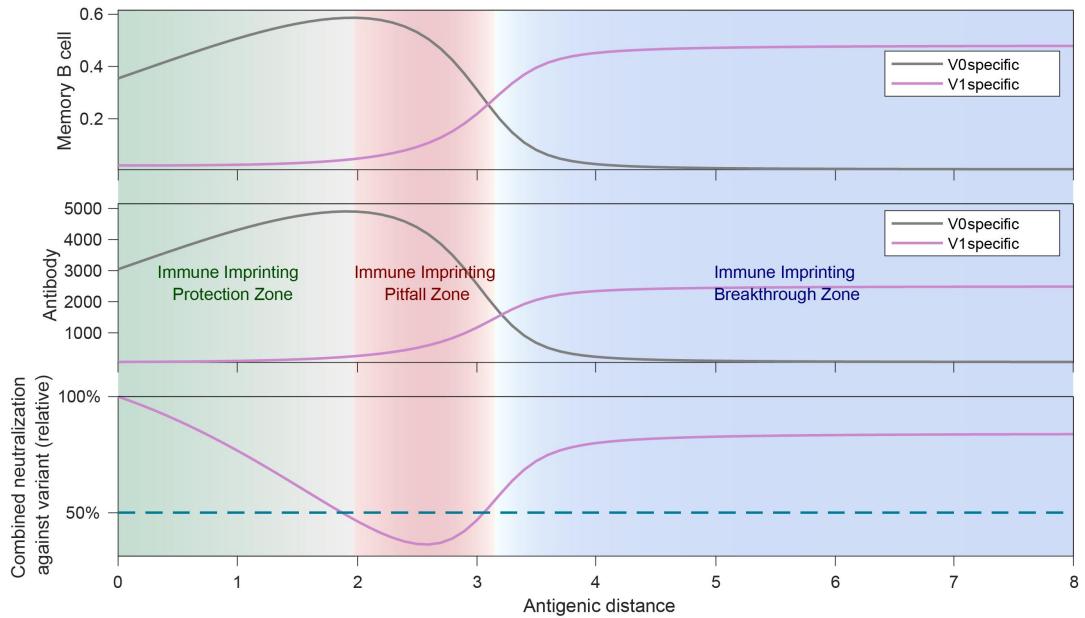
710

711

712

713

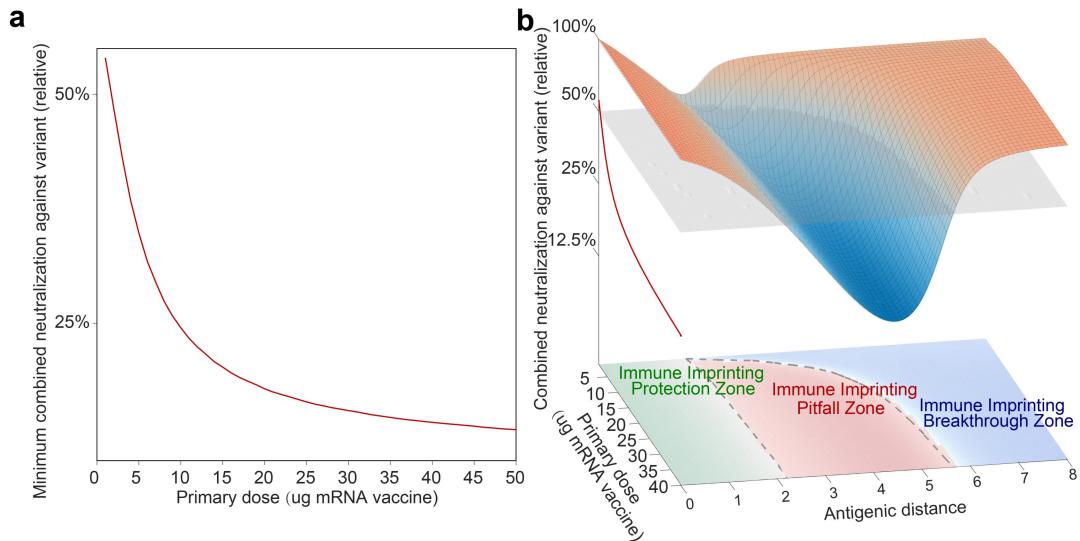
714


715

716

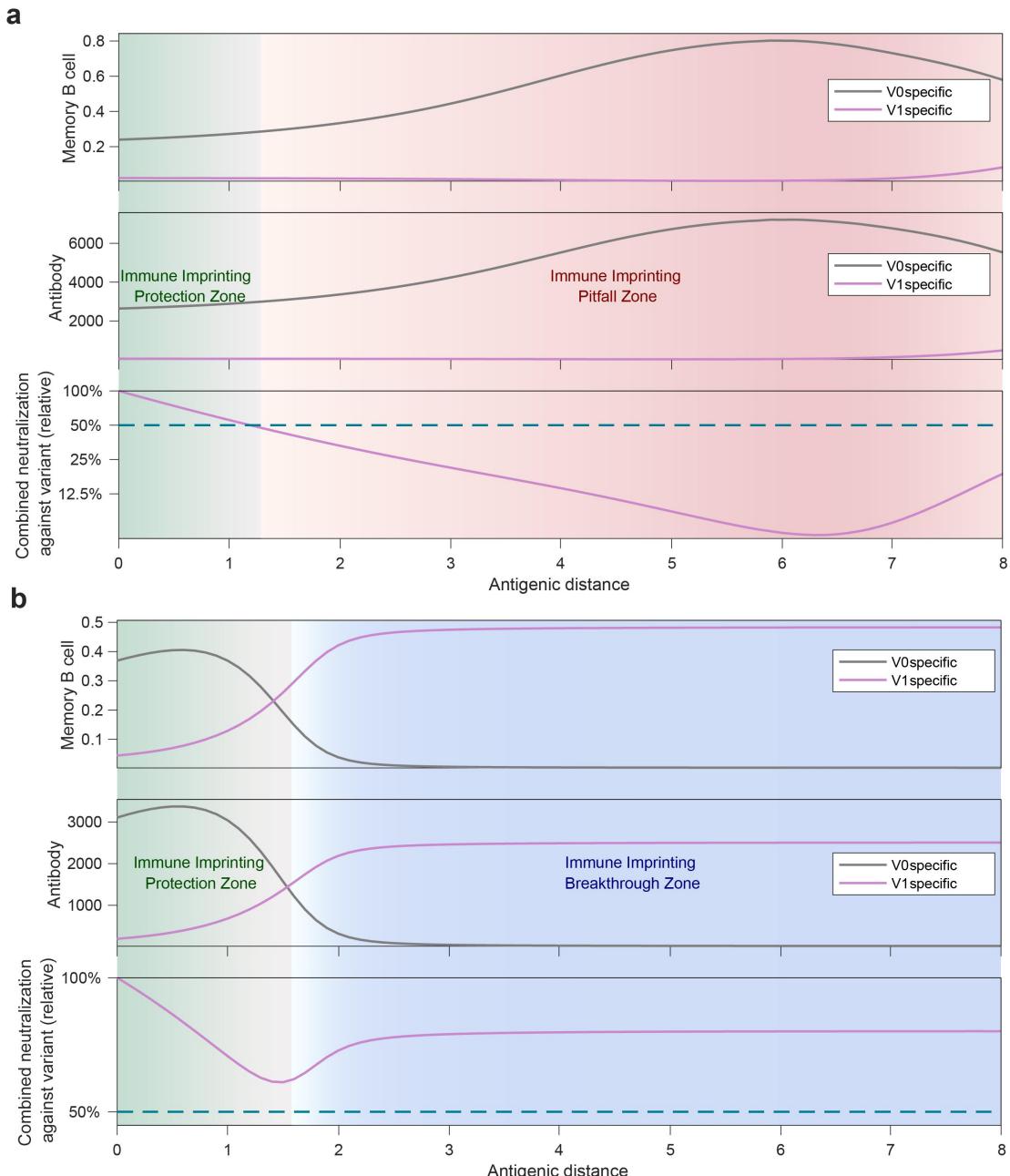
Extended Data Fig. 11 The effect of booster dose on the dynamics of humoral immune response and immune imprinting at different antigenic distances

a, c, e, Continuous relationship between immune imprinting effect and booster dose for prime-boost antigenic distance of 1.0 (**a**, immune-imprinting-protection zone), 7.0 (**c**, immune-imprinting-breakthrough zone), and 4.5 (**e**, immune-imprinting-pitfall zone). The top panel shows the antibody levels specific to prototype (gray line) and variant (purple line) on day 434 (2 weeks after the second booster dose) as a function of booster dose. The middle panel shows the corresponding memory B cell levels as a function of booster dose. The bottom panel displays the combined neutralization against the variant, which is composed of cross-neutralization attributed to prototype-specific antibodies and direct-neutralization from variant-specific antibodies.


b, d, f, Dynamics of key humoral immunity components during the evolution of immunogenicity in varying booster dose scenarios for prime-boost antigenic distance of 1.0 (**b**, immune-imprinting-protection zone), 7.0 (**d**, immune-imprinting-breakthrough zone), and 4.5 (**f**, immune-imprinting-pitfall zone). Each row shows the dynamics of antigen level, naive B cell gross affinity (maturity), memory B cell level, and antibody level over time. The gray areas represent prototype-specific quantities while the purple areas represent variant-specific quantities. The left column represents scenarios with a booster dose of 10 µg, while the right column represents scenarios with a booster dose of 40 µg.

717

718 **Extended Data Fig. 12 Continuous relationship between immune imprinting effect and**
 719 **antigenic distance under weak primary immunization (3 μ g)**


720 The top panel shows the antibody levels specific to the prototype (gray line) and the variant
 721 (purple line) on day 434 (2 weeks after the second booster dose). The middle panel shows the
 722 corresponding memory B cell levels. The bottom panel displays the relative combined
 723 neutralization against the variant, which combines cross-neutralization from prototype-specific
 724 antibodies and direct-neutralization from variant-specific antibodies, relative to the neutralization
 725 at an antigenic distance of 0 (i.e., no antigenic drift). The cyan dashed line indicates the 50%
 726 threshold, which divides the antigenic distance into three zones: the immune-imprinting-protection
 727 zone (green background, relative neutralization $\geq 50\%$ on the left side of the nadir); the immune-
 728 imprinting-pitfall zone (red background, relative neutralization $< 50\%$); and the immune-
 729 imprinting-breakthrough zone (blue background, relative neutralization $\geq 50\%$ on the right side of
 730 the nadir).

731

732 **Extended Data Fig. 13 Impact of primary immunization strength on the depth of immune-**
 733 **imprinting-pitfall zone**

734 a, The relationship between primary dose and the lowest combined neutralization against variant
 735 (relative) within the immune-imprinting-pitfall zone.
 736 b, The 3D surface showing the interplay between primary dose, prime-boost antigenic distance
 737 and their synthetic effect on the combined neutralization against variant. The surface is divided
 738 into three immune-imprinting zones defined by the antigenic distance. The red curve represents
 739 the projection of the lowest combined neutralization against variant (relative) within the immune-
 740 imprinting-pitfall zone for each primary dose onto the primary dose-combined neutralization plane.
 741 This projection corresponds to the same scenario illustrated in (a).

742

743

Extended Data Fig. 14 Continuous relationship between immune imprinting effect and antigenic distance under shortened and lengthened prime-boost intervals

744

745

746

747

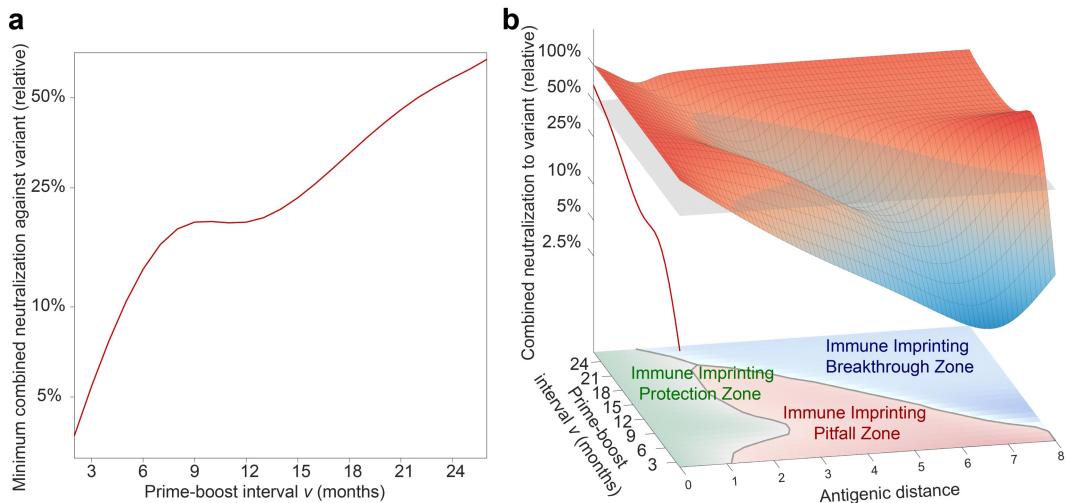
748

749

750

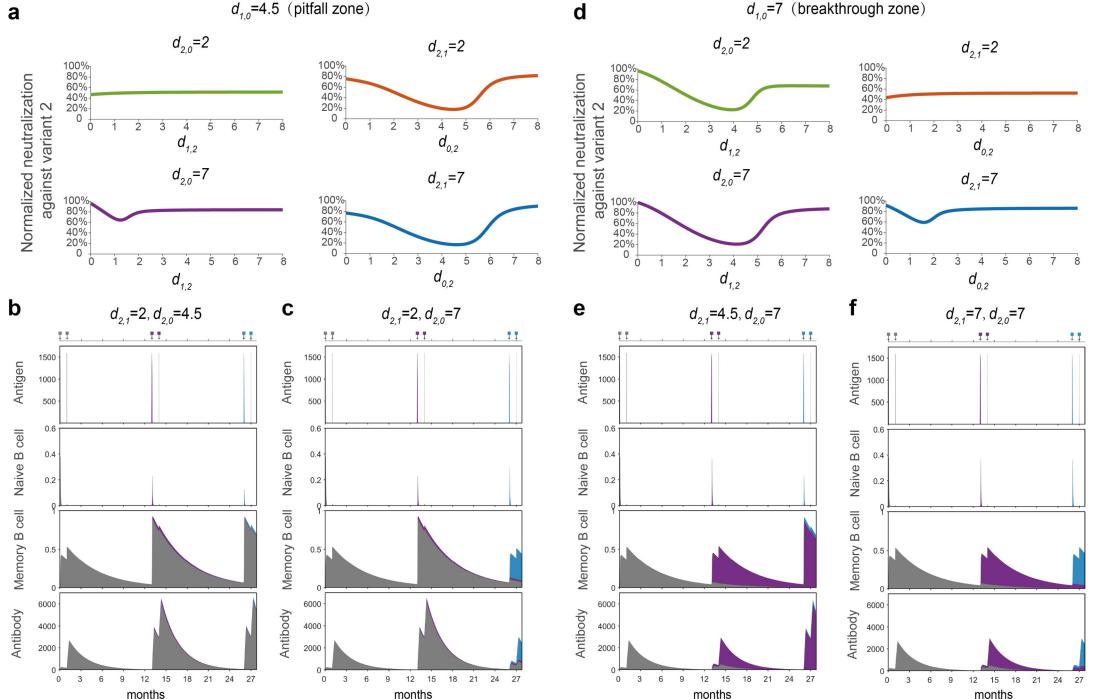
751

752


753

754

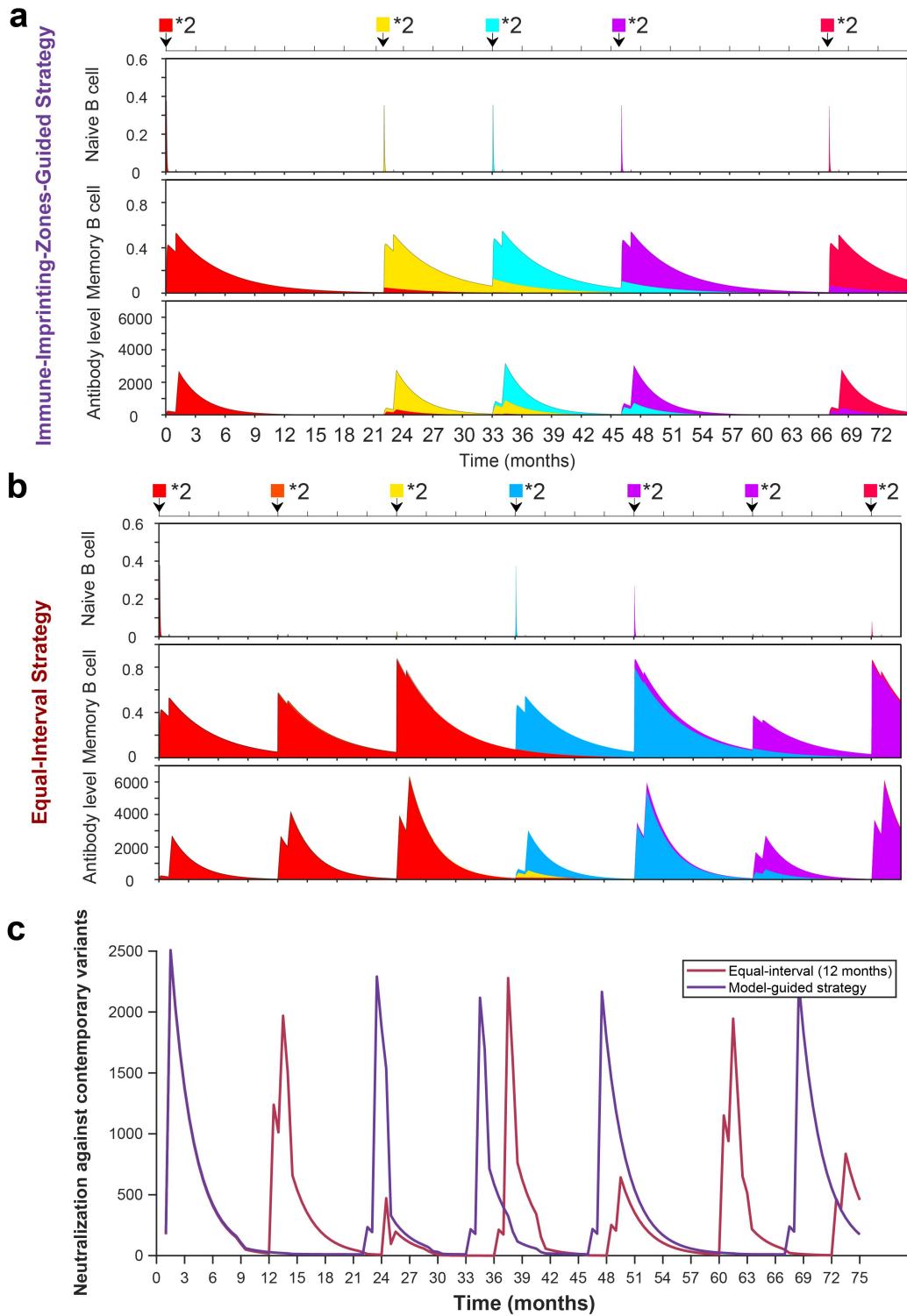
755


756

a, b, The prime-booster intervals were set as 3 months (a) and 24 months (b), respectively. The top panel shows the antibody levels specific to the prototype (gray line) and the variant (purple line) on day 434 (2 weeks after the second booster dose). The middle panel shows the corresponding memory B cell levels. The bottom panel displays the relative combined neutralization against the variant, which combines cross-neutralization from prototype-specific antibodies and direct-neutralization from variant-specific antibodies, relative to the neutralization at an antigenic distance of 0 (i.e., no antigenic drift). The cyan dashed line indicates the 50% threshold, which divides the antigenic distance into three zones: the immune-imprinting-protection zone (green background, relative neutralization $\geq 50\%$ on the left side of the nadir); the immune-imprinting-pitfall zone (red background, relative neutralization $< 50\%$); and the immune-imprinting-breakthrough zone (blue background, relative neutralization $\geq 50\%$ on the right side of the nadir).

757
758 **Extended Data Fig. 15 Impact of prime-boost interval on the depth of immune-imprinting-
759 pitfall zone**

760 a, The relationship between prime-boost interval and the minimum combined neutralization
761 against variant (relative) within the immune-imprinting-pitfall zone.
762 b, The 3D surface showing the interplay between prime-booster interval, prime-boost antigenic
763 distance and their synthetic effect on the combined neutralization against variant. The surface is
764 divided into three immune-imprinting zones defined by the antigenic distance. The red curve
765 represents the projection of the lowest combined neutralization against variant (relative) within the
766 immune-imprinting-pitfall zone for each prime-boost interval onto the prime-boost interval -
767 combined neutralization plane. This projection corresponds to the same scenario illustrated in (a).



768

769 Extended Data Fig. 16 Neutralization profiles and immune dynamics in sequential variant 770 boosting.

771 a, d, Two-dimensional projections of normalized neutralization against variant 2 (day 824) at
772 different antigenic distances, representing cross-sections of the 3D surfaces in Fig. 6b, c. Panel a
773 shows projections when $d_{1,0} = 4.5$ (pitfall zone, Fig. 6b), while panel d shows projections when
774 $d_{1,0} = 7$ (breakthrough zone, Fig. 6c). In both panels, the first column displays neutralization
775 profiles at fixed $d_{2,0}$ values (2 and 7) while varying $d_{2,1}$; the second column displays
776 neutralization profiles at fixed $d_{2,1}$ values (2 and 7) while varying $d_{2,0}$.

777 b, c, e, f, DynaVac simulation of immune dynamics for different combinations of antigenic
778 distances over the extended vaccination sequence. Each panel contains four rows showing: antigen
779 levels (top), naive B cell gross affinity (second row), memory B cell levels (third row), and
780 antibody levels (bottom). Color coding indicates strain specificity: gray (prototype), purple
781 (variant 1), and blue (variant 2). Arrows at the top mark vaccination timepoints. Panel b shows
782 dynamics for $d_{1,0} = 4.5$, $d_{2,1} = 2$, $d_{2,0} = 4.5$; panel c for $d_{1,0} = 4.5$, $d_{2,1} = 2$, $d_{2,0} = 7$; panel e for
783 $d_{1,0} = 7$, $d_{2,1} = 4.5$, $d_{2,0} = 7$; and panel f for $d_{1,0} = 7$, $d_{2,1} = 7$, $d_{2,0} = 7$.

784

785

Extended Data Fig. 17 Immune dynamics and neutralization efficacy of model-guided versus empirical vaccination strategies.

786

787

a, b, DynaVac simulation of immune dynamics under different vaccination strategies. Time course of key immune components simulated by DynaVac under the model-guided (**a**) and equal-interval (**b**) vaccination strategies shown in Fig. 7c. Top row shows gross affinity of naive B cells, middle row shows memory B cell levels, and bottom row shows antibody levels over time. Colored regions represent variant-specific immune components, with colors matching the corresponding vaccine variants. Arrows marked “ $\times 2$ ” at the top of each panel indicate vaccination timepoints with two consecutive boosts administered one month apart.

794 **c**, Neutralization against contemporary variants. Time course of neutralization against
795 contemporary circulating variants for model-guided strategy (red line) and equal-interval strategy
796 (purple line). Neutralization was calculated by projecting the variant-specific antibody profiles
797 (shown in bottom panels of **a,b**) onto the dominant circulating variant at each timepoint using
798 cross-neutralization coefficients (Eq.30, [Supplementary notes 4](#)). These coefficients were derived
799 from the antigenic distances between variants in the one-dimensional antigenic space, as
800 illustrated in [Fig. 7a](#).

801

802 **Supplementary Tables**

803 **Supplementary Table 1 Original model parameters and estimation of their priori intervals**

Symbol	Definition	Units	Priori interval	Reference
P_s	Effective antibody amount per ug spike vaccine	M/ug	[5,30]*10 ⁻¹²	
P_v	Effective antibody amount per ug inactive vaccine	M/ug	[5,30]*10 ⁻¹²	
R_0	mRNA amount per ug mRNA vaccine	M/ug	[0.5,2]*10 ⁻¹²	
k	mRNA translation rate	protein/mRNA/day	[50,500]	24
γ_R	mRNA degradation rate	day ⁻¹	[5,10]	25,26
γ_{Ag}	Antigen degradation rate	day ⁻¹	[0.001,0.1]	27
γ_{Ab}	Antibody degradation rate	day ⁻¹	[0.0001,0.1]	27,28
K	Antigen amount required to occupy half of the maximum load of antigen-presenting cells	M	[1.5, 10] ₉ *10 ⁻¹²	29
s_N	Maximum rate of naive B cell affinity maturation	day ⁻¹	[5,100]	
p_N	Maximum naive antibody production rate	day ⁻¹	[5,400]	
d_N	Naive B cell decay rate	day ⁻¹	[0.02,2]	1,21
k_{N2M}	Maximum rate of differentiation of naive B cells into memory B cells	day ⁻¹	[0.001,1]	
s_M	Maximum rate of memory B cell proliferation	day ⁻¹	[0.05,15]	
p_M	Maximum memory antibody production rate	day ⁻¹	[30,1000]	
d_M	memory B cell decay rate	day ⁻¹	[0.001,0.01]	1
Ka	Antibody-antigen affinity constant	M ⁻¹	[10 ⁸ ,10 ¹⁰]	30,31
γ_c	Antibody-antigen complex degradation rate	day ⁻¹	[10,1000]	30
c_0	Affinity thresholds for cross-reactive differentiation of memory B cells into antibody-secreting plasma cells		[0,0.05]	
m_0	Affinity thresholds for cross-reactive memory B cell proliferation		[0,0.05]	
s_{ini}	Affinity maturation rate during progenitor naive B cells seed the germinal centers	day ⁻¹	[0.0005,0.1]	
t_{ini}	Interval between vaccination and onset of antibody production	day	[0.5,2]	1,21
t_{min}	Minimum humoral immune response duration	day	[5,20]	1,21,32
t_{max}	Maximum humoral immune response duration	day	[20,60]	1,21,32

Supplementary Table 2 Reduced model parameters and estimates after parameterized on different datasets

Symbol	Definition	Units	Priori interval	Trained by dataset from this study (mice)	Trained by Yisimayi, et.al. dataset (mice)	Trained by combined dataset (mice)	Trained by clinical trial (human)
P_s^b	Effective antigen amount per ug spike vaccine	$10^{-12}M/\mu g$	[5,30]		7.436	14.52	
P_v	Effective antigen amount per ug inactive vaccine (CoronaVac)	$10^{-12}M/\mu g$	[5,30]	9.203	5.671	7.395	22.75
P_r^a	Equivalent antigen amount per ug mRNA vaccine in this study	$10^{-12}M/\mu g$	[50,300]	75.21		150.0	52.94
P_r^b	Equivalent antigen amount per ug mRNA vaccine in Yisimayi, et.al. dataset	$10^{-12}M/\mu g$	[50,300]		290.1	277.4	
γ_{Ag}	Antigen degradation rate	day ⁻¹	[0.001,0.1]	0.01152	0.01404	0.01939	0.03543
γ_{Ab}	Antibody degradation rate	day ⁻¹	[0.0001,0.1]	0.001033	0.0004281	0.0007187	0.013417
K	Antigen amount required to occupy half of the maximum load of antigen-presenting cells	$10^{-12}M$	[100,1000]	525.6	750.8	527.7	547.1
s_N	Maximum rate of naive B cell affinity maturation	day ⁻¹	[5,100]	32.88	67.90	38.93	6.351
p_N	Maximum naive antibody production rate	day ⁻¹	[100,500]	211.2	177.5	154.3	352.9
d_N	Naive B cell decay rate	day ⁻¹	[0.02,2]	2.071	2.462	1.724	0.8879
k_{N2M}	Maximum rate of differentiation of naive B cells into memory B cells	day ⁻¹	[0.001,1]	0.0793	0.1491	0.1116	0.8188
s_M	Maximum rate of memory B cell proliferation	day ⁻¹	[1,20]	15.93	6.869	11.92	7.148
p_M	Maximum memory antibody production rate	day ⁻¹	[100,2000]	1646	1076	1167	540.5
d_M	memory B cell decay rate	day ⁻¹	[0.001,0.01]	0.002611	0.001428	0.001762	0.007101
$\gamma_{neu}^{Delta^a}$	Delta specific Antibody-antigen neutralization rate	$10^{12}M^{-1}day^{-1}$	[0.001,1]	0.05503		0.05144	0.07493
$\gamma_{neu}^{BA5^b}$	BA.5 specific Antibody-antigen neutralization rate	$10^{12}M^{-1}day^{-1}$	[0.001,1]		0.03370	0.05144	

Symbol	Definition	Units	Priori interval	Trained by dataset from this study	Trained by Yisimayi, et.al. dataset	Trained by combined dataset	Trained by human clinical trial
c_0	Affinity threshold for cross-reactive differentiation of memory B cells into antibody-secreting plasma cells		[0,0.05]	$1.353*10^{-5}$	$1.553*10^{-5}$	$1.046*10^{-5}$	$3.421*10^{-5}$
m_0	Affinity threshold for cross-reactive memory B cell proliferation		[0,0.05]	$6.422*10^{-4}$	$5.285*10^{-4}$	$8.451*10^{-4}$	$7.144*10^{-3}$
s_{ini}	Affinity maturation rate during progenitor naive B cells seed the germinal centers	day ⁻¹	[0.0005,0.1]	0.08157	0.06778	0.05527	0.01924
t_{ini}	Interval between vaccination and onset of antibody production	day	[0.5,2]	0.7955	1.001	1.05	1.062
t_{min}	Minimum humoral immune response duration	day	[5,20]	14.02	13.42	16.10	9.769
t_{max}	Maximum humoral immune response duration	day	[20,60]	51.64	46.04	35.97	21.15
$C_{7,1}^a$	Corrected titer of CoronaVac against BA.5		[0,15]	11.93		11.93	11.93
$C_{8,1}^a$	Corrected titer of CoronaVac against BF.7		[0,15]	14.49		14.49	14.49
$C_{9,1}^a$	Corrected titer of CoronaVac against BQ.1.1		[0,15]	14.68		14.68	14.68
$C_{10,1}^a$	Corrected titer of CoronaVac against XBB.1.5		[0,15]	15.00		15.00	15.00
$C_{11,1}^a$	Corrected titer of CoronaVac against JN.1		[0,15]	1.585		1.585	1.585
$C_{10,2}^a$	Corrected titer of Alpha/beta against XBB.1.5		[0,15]	5.631		5.631	5.631
$C_{10,3}^a$	Corrected titer of Delta against XBB.1.5		[0,15]	2.963		2.963	2.963
$C_{10,4}^a$	Corrected titer of BA.1 against XBB.1.5		[0,15]	0.2758		0.2758	0.2758
$f_{CoronaVac}^{Delta}^a$	Relative self-neutralization ratio between Prototype and Delta in this study		[0.1,2]	0.1962		0.2816	0.3235
$f_{CoronaVac}^{BA5}^b$	Relative self-neutralization ratio between wild type inactive vaccine and Delta spike vaccine in Yisimayi, et.al. dataset.		[0.1,2]		0.6526	0.9976	
$f_{mRNA}^{BA5}^b$	Relative self-neutralization ratio between wild type mRNA vaccine and Delta spike vaccine in Yisimayi, et.al. dataset.		[0.1,2]		0.1073	0.2131	

807
808

^a Parameters exclusive to the dataset from this study

^b Parameters exclusive to the Yisimayi, et al. dataset

809 Supplementary Table 3 Raw pseudovirus titers for homologous vaccinations regimens

		Vaccine (antibody)						
		CoronaVac	alpha/beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Pseudovirus (antigen)	Prototype	1713.0	260.3	1620.3	58.6	145.6	912.9	910.2
	alpha	1102.0	1780.1	1953.1	71.9	87.6	771.2	558.3
	beta	570.0	1163.8	1545.8	140	187.7	300.5	274.5
	delta	94.3	141.3	6210.7	107.2	358.8	136.6	23.6
	BA.1	33.6	115.5	281.5	1807.8	527.9	34.5	242.3
	BA.2	18.6	58.2	212.4	185.9	2598.4	2795.7	1028.7
	BA.5	$C_{7,1}(15.0)$	23.4	153	67.7	1775.9	6848.5	1811.7
	XBB.1.5	$C_{10,1}(15.0)$	$C_{10,2}(15.0)$	$C_{10,3}(17.6)$	$C_{10,4}(17.4)$	209.6	33068.8	298.1
	JN.1	$C_{11,1}(15.0)$	19.5	86.6	23.4	25.8	370.5	29148.9

810 Note: Due to technical limitations, the lowest measurable titer is 15. For those data with a titer close to
811 15, the titers are set as unknown parameters greater than 0 and less than 15.

812

813 Supplementary Table 4 Antigen-antibody titer matrix

		Antibody						
		CoronaVac	alpha/beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Antigen	Prototype	1713.0	260.3	1620.3	58.6	145.6	912.9	910.2
	alpha/beta	792.6	1439.3	1737.6	100.3	128.2	481.4	391.5
	delta	94.3	141.3	6210.7	107.2	358.8	136.6	23.6
	BA.1	33.6	115.5	281.5	1807.8	527.9	34.5	242.4
	BA.2/5	$\sqrt{18.6 * C_{7,1}}$	23.4	153	67.7	1775.9	6848.5	1365.2
	XBB.1.5	$C_{10,1}$	$C_{10,2}$	$C_{10,3}$	$C_{10,4}$	209.6	33068.8	298.1
	JN.1	$C_{11,1}(15.0)$	19.5	86.6	23.4	25.8	370.5	29148.9

814

815 Supplementary Table 5 Self-neutralization titers and relative self-neutralization ratio

Antigen	CoronaVac	alpha/beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Self-neutralization titers	1713.0	1439.3	6210.7	1807.8	2148.1	33068.8	29148.9
relative self-neutralization ratio	$f_{CoronaVac}^{\Delta}$	0.231	1	0.291	0.346	5.32	4.70

816

817

818 Supplementary Table 6 Cross-neutralization matrix

		Antibody						
		CoronaVac	alpha/ beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Antigen	Prototype	1.0000	0.1808	0.2609	0.0324	0.0678	0.0112	0.0312
	alpha/beta	0.4627	1.0000	0.2798	0.0555	0.0597	0.0146	0.0134
	delta	0.0551	0.0982	1.0000	0.0593	0.1670	0.0041	0.0008
	BA.1	0.0196	0.0802	0.0453	1.0000	0.2457	0.0010	0.0083
	BA.2/5	$\frac{\sqrt{18.6 * C_{7,1}}}{1713}$	0.0256	0.0290	0.0621	1.0000	0.1323	0.0468
	XBB.1.5	$\frac{C_{10,1}}{1713}$	$\frac{C_{10,2}}{1440}$	$\frac{C_{10,3}}{6211}$	$\frac{C_{10,4}}{1808}$	0.0084	1.0000	0.0102
	JN.1	$\frac{C_{11,1}}{1713}$	0.0135	0.0139	0.0129	0.0120	0.0112	1.0000

819

820

821

822 Supplementary Table 7 Raw titration data from the homologous vaccination regimens against the 11
823 pseudoviruses

		Vaccine (antibody)						
		CoronaVac	alpha/beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Pseudovirus	Prototype	1713.0	260.3	1620.3	58.6	145.6	912.9	910.2
	alpha	1102.0	1780.1	1953.1	71.9	87.6	771.2	558.3
	beta	570.0	1163.8	1545.8	140	187.7	300.5	274.5
	delta	94.3	141.3	6210.7	107.2	358.8	136.6	23.6
	BA.1	33.6	115.5	281.5	1807.8	527.9	34.5	242.4
	BA.2	18.6	58.2	212.4	185.9	2598.4	2795.7	1028.7
	BA.5	$C_{7,1}(15.0)$	23.4	153	67.7	1775.9	6848.5	1811.7
	BF.7	$C_{8,1}(15.0)$	26.2	98.7	34.5	1801.6	4685.9	2854.6
	BQ.1.1	$C_{9,1}(15.0)$	32.7	29.0	30.9	329.9	662.1	667.6
	XBB.1.5	$C_{10,1}(15.0)$	$C_{10,2}(15.0)$	$C_{10,3}(17.6)$	$C_{10,4}(17.4)$	209.6	33068.8	298.1
	JN.1	$C_{11,1}(15.0)$	19.5	86.6	23.4	25.8	370.5	29148.9

824 Note: Due to detection limitations, titers around the detection limit (15) were considered as unknown
825 parameters bounded between 0 and 15.

826

827 Supplementary Table 8 Antibody-pseudovirus cross-neutralization matrix

		Vaccine (antibody)						
		CoronaVac	alpha/beta	delta	BA.1	BA.2/5	XBB.1.5	JN.1
Pseudovirus	Prototype	1.0000	0.1808	0.2609	0.0324	0.0678	0.0276	0.0312
	alpha	0.6433	1.2368	0.3145	0.0398	0.0408	0.0233	0.0192
	beta	0.3328	0.8086	0.2489	0.0774	0.0874	0.0091	0.0094
	delta	0.0551	0.0982	1.0000	0.0593	0.1670	0.0041	0.0008
	BA.1	0.0196	0.0802	0.0453	1.0000	0.2457	0.0010	0.0083
	BA.2	0.0108	0.0404	0.0342	0.1028	1.2096	0.0845	0.0353
	BA.5	$C_{7,1}/1713$	0.0163	0.0246	0.0374	0.8267	0.2071	0.0622
	BF.7	$C_{8,1}/1713$	0.0182	0.0159	0.0191	0.8387	0.1417	0.0979
	BQ.1.1	$C_{9,1}/1713$	0.0227	0.0047	0.0171	0.1536	0.0200	0.0229
	XBB.1.5	$C_{10,1}/1713$	$C_{10,2}/1440$	$C_{10,3}/6211$	$C_{10,4}/1808$	0.0976	1.0000	0.0102
	JN.1	$C_{11,1}/1713$	0.0135	0.0139	0.0129	0.0120	0.0112	1.0000

828 Note: Due to detection limitations, titers around the detection limit (15) were considered as unknown
 829 parameters bounded between 0 and 15.
 830

831 Supplementary Table 9 Raw pseudovirus titer data for homologous vaccination regimens in Yisimayi,
 832 et.al. dataset

		Vaccines (antibody)				
		Prototype (CoronaVac)	Prototype (mRNA)	BA.5 (spike)	BQ.1.1 (spike)	XBB.1.5 (spike)
pseudovirus (antigen)	Prototype	3236	27330	43	31	31
	BA.5	97	648	21949	5213	383
	BQ.1.1	31	257	4100	14357	795
	XBB.1.5	30	83	73	139	5561

833
 834 Supplementary Table 10 Self-neutralization titers and relative self-neutralization ratios in Yisimayi,
 835 et.al. dataset

Antigen	Prototype (CoronaVac)	Prototype (mRNA)	BA.5 (spike)	BQ.1.1 (spike)	XBB.1.5 (spike)
Self-neutralization titers	3236	27330	21949	14357	5561
relative self-neutralization ratio	$f_{CoronaVac}^{BA5}$	f_{mRNA}^{BA5}	1.0000	0.6541	0.2534

836
 837 Supplementary Table 11 Cross-neutralization matrix in Yisimayi, et.al. dataset

		Vaccines (antibody)				
		Prototype (CoronaVac)	Prototype (mRNA)	BA.5 (spike)	BQ.1.1 (spike)	XBB.1.5 (spike)
pseudovirus (antigen)	Prototype	1.0000	1.0000	0.0020	0.0022	0.0056
	BA.5	0.0300	0.0237	1.0000	0.3631	0.0689
	BQ.1.1	0.0096	0.0094	0.1868	1.0000	0.1430
	XBB.1.5	0.0030 ^a	0.0030	0.0033	0.0097	1.0000

838 ^a Due to technical limitations, the neutralization titer of CoronaVac against XBB.1.5 reached the lower
 839 detection limit. Therefore, when calculating the cross-neutralization coefficient of CoronaVac against
 840 XBB.1.5, the cross-neutralization coefficient of the prototype mRNA vaccine against XBB.1.5 was
 841 used as a substitute.

842

843

844

Supplementary Table 12 The mutation sites of the SARS-CoV-2 variant mRNA vaccines compare to prototype Spike protein

Vaccine	Company	Information	Cat#	Mutation sites	Number of mutations
CoronaVac	Sinovac Biotech	Prototype		-	/
RQ3013	Walvax Biotechnology Co	Alpha/Beta	RQ3013	DelH69-V70、DelY144、K417N、E484K、N501Y、A570D、D614G、P681H、R682G、R683S、R685S、A701V、T716I、S982A、D1118H	16
RQ3014	Walvax Biotechnology Co	Delta	RQ3014	T19R、G142D、DelF157-R158、L452R、T478K、D614G、P681R、R682G、R683S、R685S、D950N、K986P、V987P	14
RQ3021	Walvax Biotechnology Co	Omicron BA.1	RQ3021	A67V、DelH69-V70、T95I、G142D、DelVYY143/145、N211I、DelL212、ins214EPE、G339D、S371L、S373P、S375F、K417N、N440K、G446S、S477N、T478K、E484A、Q493R、G496S、Q498R、N501Y、Y505H、T547K、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、N764K、D796Y、N856K、Q954H、N969K、L981F、K986P、V987P	44
RQ3019	Walvax Biotechnology Co	Omicron BA.2/4/5	RQ3019	T19I、LPPA24S、G142D、V213G、G339D、S371F、S373P、S375F、T376A、D405N、R408S、K417N、N440K、L452R、S477N、T478K、E484A、F486V、Q493R、Q498R、N501Y、Y505H、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、N764K、D796Y、Q954H、N969K	36
RQ3033	Walvax Biotechnology Co	XBB.1.5	RQ3033	T19I、LPPA24S、V83A、G142D、DelY144、H146Q、Q183E、V213E、G252V、G339H、R346T、L368I、S371F、S373P、S375F、T376A、D405N、R408S、K417N、N440K、V445P、G446S、N460K、S477N、T478K、E484A、F486P、F490S、Q498R、N501Y、Y505H、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、N764K、D796Y、Q954H、N969K	45
RQ3064	Walvax Biotechnology Co	JN.1	RQ3064	T19I、L21R、LPPA24S、S50L、DelH69、DelV70、V127F、G124D、DelY144、DelN211、L212I、V213G、L216F、H245N、A264D、G339H、K356T、S371F、S373P、S375F、T376A、R403K、D405N、R408S、K417N、N440K、V445H、G446S、N450D、L452W、L455S、N460K、S477N、T478K、N481K、DelV483、E484K、F486P、Q498R、N501Y、Y505H、E554K、A570V、D614G、P621S、H655Y、P681R、P682G、R683S、R685S、N764K、D796Y、S939F、Q954H、N969K	58
RQ3025	Walvax Biotechnology Co	Alpha/Beta+Omicron BA.2/4/5	RQ3025	T19I、LPPA24S、DelH69、DelV70、G142D、DelY144、V213G、G339D、S371F、S373P、S375F、T376A、D405N、R408S、K417N、N440K、L452R、S477N、T478K、E484K、E484A、F486V、Q493R、Q498R、N501Y、Y505H、A570D、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、A701V、T716I、N764K、D796Y、Q954H、N969K、S982A、D1118H	45
RQ3027	Walvax Biotechnology Co	Alpha/Beta+XBB.1.5	RQ3027	T19I、LPPA24S、DelH69-V70、V83A、G142D、DelY144、H146Q、Q183E、V213E、G252V、G339H、R346T、L368I、S371F、S373P、S375F、T376A、D405N、R408S、K417N、N440K、V445P、G446S、N460K、S477N、T478K、E484A、E484K、F486P、F490S、Q498R、N501Y、Y505H、A570D、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、A701V、T716I、N764K、D796Y、Q954H、N969K、S982A、D1118H	53

Supplementary Table 13 The mutations of SARS-CoV-2 pseudovirus on Spike protein

SARS-CoV-2 sublineages	Mutations	Number of mutations
Prototype	/	/
Alpha (B.1.1.7)	DEL69/70, DEL144/144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H	10
Beta (B.1.351)	D80A, D215G, DEL241/243, K417N, E484K, N501Y, D614G, A701V	10
Delta (B.1.617.2)	T19R, E156G, DEL157/158, L452R, T478K, D614G, P681R, D950N	9
BA.1	A67V, DEL69-70, T95I, G142D, DEL143-145, N211I, DEL212/212, INS214EPE, G339D, S371L, S373P, S375F, K417N, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F	37
BA.2	T19I, L24S, DEL25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K	31
BA.4/5	T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K	34
BF.7	T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K	35
BQ.1.1	T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K	37
XBB.1.5	T19I, L24S, DEL25-27, V83A, G142D, DEL144 H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K	42
JN.1	T19I, L24S, DEL25-27, S50L, DEL69-70, V127F, G142D, DEL144, F153S, R158G, N211I, DEL212, V213G, L216F, H245N, A264D, I332V, G339H, K356T, S371F, S373P, S375F, T376A, R403K, D405N, R408S, K417N, N440K, V445H, G446S, N450D, L452W, L455S, N460K, S477N, T478K, N481K, E484K, F486P, Q498R, N501Y, Y505H, E554K, A570V, D614G, P621S, H655Y, N679K, P681R, N764K, D796Y, S939F, Q954H, N969K, P1143L	58

846 Supplementary Tables 14 to 18 are provided as an Excel file, available in the supplementary materials.