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Supplementary Note 1: Mathematical modeling of humoral5

immunity with DynaVac6

1.1 Overview of the humoral immune response and model structure7

Humoral immunity to viral infection or vaccination proceeds through well-defined stages,8
including antigen presentation, B cell activation, affinity maturation, and antibody secretion. Upon9
initial exposure, naive B cells generated through V(D)J recombination in the bone marrow10
circulate to secondary lymphoid tissues, where they encounter antigen for the first time1-3. These11
cells typically express low-affinity B cell receptors (BCRs), but if the BCR binds antigen with12
sufficient affinity—such as viral surface proteins—naive B cells are activated and recruited into13
germinal center reactions4.14

15
Within germinal centers, activated B cells undergo clonal expansion and acquire somatic16
hypermutations mediated by activation-induced cytidine deaminase (AID)5. The resulting BCR17
variants exhibit a spectrum of affinities. High-affinity clones are preferentially selected through18
interactions with follicular dendritic cells and helper T cells, which provide survival and19
differentiation signals6. B cells failing to receive these cues are eliminated by apoptosis7. This20
iterative Darwinian process—termed affinity maturation—progressively enriches for clones with21
improved antigen binding8.22

23
Affinity-matured B cells adopt one of two fates: differentiation into plasma cells that secrete24
antigen-specific antibodies, or entry into the memory B cell pool9. Memory B cells persist in a25
quiescent state, maintaining high-affinity BCRs and enabling rapid recall upon subsequent antigen26
exposure. When re-exposed to antigenically similar variants, memory B cells dominate the27
secondary response, often outcompeting naive B cells—a phenomenon known as immune28
imprinting10,11. Depending on the antigenic relationship between priming and boosting antigens,29
imprinting can either enhance protection or suppress variant-specific responses.30

31
To quantitatively capture these dynamics, we developed DynaVac, a mechanistic model based on32
ordinary differential equations (ODEs) that simulates the evolution of key components of humoral33
immunity following sequential exposures to antigenically distinct viral variants. By using mean-34
field approximations, DynaVac represents polyclonal B cell and antibody populations as effective35
monoclonal entities, balancing biological realism with computational tractability. The model is36
structured in two phases: (1) the primary phase, capturing immune dynamics following the first37
antigen exposure, and (2) the booster phase, simulating responses to subsequent homologous or38
heterologous antigens. These components are detailed in the sections that follow.39

1.2 Primary phase (initial antigen exposure)40

This phase models the humoral immune response following the first exposure to an antigen (e.g.,41
prototype SARS-CoV-2). It tracks five key immune variables:42
�: mRNA level43
��: Antigen level44
�: Gross affinity of the naive B cell population45
�: Memory B cell level46
��: Antibody level47
The temporal behavior of these variables is governed by the following ordinary differential48
equations:49
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Equation 1 models the degradation of mRNA following vaccine administration, with ��55
representing the decay rate.56

57
Equation 2 describes antigen kinetics. Antigen (e.g. SARS-CoV-2 Spike protein) is produced58
from mRNA at rate k and degraded through two processes: intrinsic decay (��� ) and immune-59
mediated clearance via antigen-antibody binding. Under the quasi-steady-state assumption, the60
antigen-antibody complex ��: �� is modeled as �� �� �� , where �� is the binding affinity61
constant. The degradation rate of this complex is set as ��. This formulation captures the dynamic62
interplay between antibody availability and antigen clearance, reflecting the essential feedback63
between humoral responses and antigen persistence.64

65
Equation 3 models naive B cell dynamics using a mean-field approximation.66
The variable � ∈ 0,1 (Gross affinity of the naive B cell population) represents the normalized67
product of two dimensions: (1) the average antigen affinity of naive B cell receptors (BCRs) and68
(2) the population size of naive B cells. This combined metric captures that germinal center (GC)69
reactions simultaneously enhance affinity through somatic hypermutation and expand high-affinity70
clones (Victora and Nussenzweig, 2022). When � = 1 , it indicates both maximal average71
affinity and population size within GC capacity constraints.72
During the early stage of a humoral immune response, progenitor naive B cells that have73
undergone VDJ recombination enter lymph nodes to seed germinal centers. For simplicity, the74
parameter ���� denotes the constant innate maturation rate of the gross affinity � during this75
seeding process. The time window of the above process is represented by � � , a rectangular76
function:77

� � =
1, �0 ≤ � < �0 + ����
0, �0 + ���� ≤ �

where t0 denotes the vaccination timepoint, ���� is the time interval before germinal center78
reactions commence, during which progenitor naive B cells seed the lymph nodes.79
Germinal center reactions subsequently occur, wherein antigen-specific naive B cells proliferate80
under somatic hypermutation and T cell selection, increasing the gross affinity �.81
The affinity maturation process is driven by successful binding of naive B cell receptors (BCRs)82
to antigens presented on follicular dendritic cells (FDCs). This binding efficiency is modeled as83
the product of three interdependent factors: antigen accessibility, the population size of naive B84
cells, and their average antigen affinity.85
Antigen accessibility is captured by the function � ��, � = ��

��+�
, where �� represents the86

antigen concentration and � is a composite parameter reflecting the FDC’s maximum antigen-87
presenting capacity. This formulation mirrors saturation kinetics, where antigen presentation level88
increases linearly at low antigen levels ( Ag  ≪  K ) and plateaus as FDC surfaces become89
saturated ( �� ≫ � ). The naive B cell population size and their average antigen affinity are90
combined into a single variable by the integrated metric � , explicitly coupling clonal expansion91
(population size) and affinity maturation (improved BCR-antigen binding) during germinal center92
reactions.93
To enforce biological realism, the term 1 − � imposes a saturation constraint, ensuring �94
asymptotically approaches 1. This constraint arises from two inseparable limits: the finite physical95
space within germinal centers that restricts clonal expansion, and the biophysical ceiling of BCR-96
antigen interactions.97
The resultant maturation rate ��

��
��+�

� 1 − � dynamically integrates antigen availability ��
��+�

,98
population gross antigen affinity � , and system-wide saturation 1 − � , faithfully recapitulating99
the competitive and self-limiting nature of affinity maturation observed in vivo. Maximal100
maturation �� occurs under antigen saturation ( � ��, � → 1 ) and minimal population gross101
affinity ( � → 0, 1 − � → 1 ), where both affinity-driven selection and affinity maturation102
potential are optimized.103



The window �� � delineates the naive immune response timespan:104

�� � = 1, �0 + ���� ≤ � < �0 + ���� + ���� �� �0 + ���� + ���� ≤ � < �0 + ���� + ���� ��� �� > 0
0, ��ℎ������ (6)105

where ���� and ���� are the minimum and maximum immune response durations. Reactions106
persist for at least ���� and between ���� and ���� depending on remaining antigens (�� > 0 ).107
Beyond ����, reactions cease.108
Additionally, naive B cells decay at rate ��.109

110
Equation 4 models memory B cell formation as a function of the gross affinity of naive B cell �,111
as a higher � directly represents a larger affinity-matured naïve B cell pool. The formation rate112
scales with � and is constrained by a carrying capacity term (1 − �) and a decay rate ��.113

114
Equation 5 tracks antibody secretion. Analogous to memory B cell differentiation, antibodies are115
produced in proportion to the gross affinity of naive B cell (�), modulated by production rate �� ,116
and decay at rate ���. The parameter �� aggregates the differentiation of mature naïve B cells into117
antibody-secreting plasma cells and their subsequent antibody secretion, implicitly modeling118
plasma cells without explicitly tracking their transient dynamics or lifespan.119

120
These equations collectively describe how antigen exposure drives naive B cell recruitment,121
affinity maturation, memory formation, and antibody production in the primary immune response.122

1.3 Booster Phase (Subsequent Antigen Exposures)123

The booster phase accounts for immune responses following additional exposures, particularly to124
antigenically distinct variants. Recall responses are explicitly modeled through both naive and125
memory B cell dynamics.126

1.3.1 Modeling homologous boost127

In secondary immune responses to homologous boosters, antibody production arises from both128
naive and memory compartments. Although early studies proposed that memory B cells could re-129
enter germinal centers for further maturation, recent findings suggest that secondary germinal130
centers are predominantly (>90%) populated by naive B cells, with minimal memory B cell re-131
entry 12,1314. Thus, our model excludes memory B cell re-entry into germinal centers. Instead,132
memory B cells are reactivated primarily outside germinal centers, within structures like133
subcapsular proliferative foci (SPFs), where they proliferate in an affinity-dependent manner and134
differentiate into antibody-secreting plasma cells15,16.135

136
We define two memory B cell populations: inactive memory cells (����) generated during the137
primary phase, and activated memory cells (���), formed upon secondary exposure. For138
simplicity, we assume ����rapidly converts to ��� immediately following boost.139

140
Activated memory cells proliferate in an affinity-dependent fashion, modeled analogously to naive141
B cells as: ��

��
��+�

��� 1 − ��� − ���� , where �� denotes the maximal memory proliferation142
rate. These cells also contribute to antibody production with aggregate rate ��. As explained143
earlier in the primary antibody dynamics (Equation 5), this rate implicitly incorporates both the144
differentiation of memory cells into plasma cells and the antibody secretion by these plasma cells.145
Memory response are confined within a defined temporal window:146

�� � = 1, �0 ≤ � < �0 + ���� + ���� ∧ �0 + ���� + ���� ≤ � < �0 + ���� + ���� ∨ �� > 0
0, ��ℎ������

Considering the rapid nature of memory B cell activation upon secondary vaccination, this process147
is modeled as occurring immediately at the boost timepoint �0 , maintaining identical duration148
parameters as established for the naive immune response �� � .149
By incorporating the dynamics of ��� into the primary response framework, we can simulate150
homologous antigen boosting in an integrated framework:151
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= ��2�� 1 − ��� − ���� − ������ (10)155
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��

��+�
��� 1 − ��� − ���� − ����� (11)156

���
��

= �� � ��� + �� � ����� − ����� (12)157

1.3.2 Modeling heterologous boost158

To address responses to heterologous exposures—common with SARS-CoV-2 variants—we159
extended DynaVac to simulate variant-specific antigen dynamics. The model tracks n distinct160
variants, denoted by subscript i, including antigen (���), naive B cells (��), inactive and activated161
memory B cells (��

���, ��
��), and antibodies (���).162

Based on Equations 7-12, the extended ODE system is:163
���
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=− ���� (13)164
����
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���

���+�
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= �� � ���� + �� � ����,�

��,�+�0
��

�� − ������ (18)169

The following are additional key considerations in the above equations:170
1) Cross-neutralization: Each antigen variant ��� ​ can be neutralized by different variant-171
specific antibodies , represented by �� �

� �����,�� ������ in Equation 14, where ��,� represents the172
cross-neutralization coefficient. To quantify this, we define the cross-neutralization coefficient as:173

��,� = ���,�/��� (19)174
where ���,� is the affinity constant of variant j-specific antibodies toward antigen variant � , and175
��� ​ is the self-affinity constant of variant � -specific antibodies. By definition, ��,� = 1 ,176
indicating strongest affinity for matched antigens, and ��,� ∈ 0,1 for � ≠ � . Thus, a higher ��,�177
implies stronger cross-neutralization.178

179
2) Memory B cell competition: Upon exposure to antigen k, memory B cells specific to various180
antigens compete for proliferation signals based on their affinity and population size. A181
population's competitive advantage depends on the antigen-binding potential (�����,���

��). To182
reflect this competition, the antigen-dependent proliferation rate for each memory cell population183
is normalized by the total antigen-binding potential across all memory populations �

� �����,���
��� .184

Furthermore, the proliferation of a memory cell population ��
�� in response to a cross-reactive185

antigen depends on whether its antigen-binding potential surpasses a threshold �0 . Specifically,186
proliferation is maximized if �����,���

�� ​ greatly exceeds �0 , significantly reduced as it187
approaches �0 ​ , and minimal if it falls far below �0 ​ .188

189
3) Antibody attenuation: Memory B cells (e.g., ��

�� ) activated by an antigen variant (e.g., ��� )190
different from their original specificity differentiate into plasma cells and secrete antibody (��� )191
less efficiently , modeled by the term ��,�

��,�+�0
​ ​ , with �0 as the cross-reactivity threshold below192

which secretion is substantially reduced.193
194

This extended framework enables mechanistic simulation of sequential heterologous exposures195
involving multiple antigen variants and captures phenomena such as cross-neutralization, immune196
imprinting, and competitive memory dynamics.197



1.4 Key simplification of the model198

To balance biological realism with computational tractability, DynaVac adopts a mean-field199
approximation, representing the naive B cells, memory B cells, and antibody responses to each200
antigen variant with single aggregated variables. In reality, these populations are polyclonal—201
comprising diverse B cell clones with distinct BCRs that arise through stochastic processes of202
V(D)J recombination, somatic hypermutation, and selection. This clonal diversity leads to203
antibodies with a range of affinities even when targeting the same antigen6. By modeling these204
processes deterministically, the framework captures the overall behavior of the immune response205
without explicitly tracking individual clones. The affinity constant ��� ​ reflects the average206
binding affinity of antibody � to antigen � across the polyclonal repertoire. The variable �207
represents the gross affinity maturity of the entire naive B cell population, encompassing both size208
and average antigen affinity.209
This simplification significantly enhances computational efficiency and predictive capacity,210
enabling rapid simulation of diverse vaccination scenarios. Similar mean-field approaches have211
been successfully employed in prior immunological modeling studies and can effectively212
substitute for fully stochastic models in most settings 21.213

1.5 Prior estimation of parameters interval214

All model parameters governing the full system of DynaVac (Equations 13–18) are listed in215
Supplementary Table 1. To facilitate robust and biologically grounded parameter inference, we216
established prior intervals for each parameter based on a combination of published experimental217
data and previous modeling efforts (Supplementary Table 1). For novel parameters introduced in218
this study—those lacking direct empirical estimates—we defined conservative bounds informed219
by biological plausibility, ensuring both interpretability and computational stability during model220
fitting.221

1.6 Model reduction222

We next simplified the model to reduce complexity without compromising accuracy.223
1.6.1 Simplification of the mRNA translation process224
The translation of mRNA into antigen, when considered in isolation, can be described by simple225
linear ODEs:226

��
��

=− ���
���
��

= ��
Given an injected mRNA vaccine dose of � ug, the initial conditions become:227

� 0 = ��0
�� 0 = 0

Solving these equations yields:228
� � = ��0�−���

�� � =
���0

��
1 − �−���

As � → ∞ , the total antigen translated from � ug of mRNA vaccine is ���0

��
. Define �99 ​ as the229

time required for translating 99% of this total antigen, which satisfies:230

1 − �−���99 = 0.99 ⇒ �99 =
��100

��
According to prior estimates for �� (Supplementary Table 1), �99 is less than one day, implying231
rapid antigen translation due to fast mRNA degradation. Considering that the initiation of antibody232
production (���� ∈ 0.5,2 , Supplementary Table 1) occurs around or after this period, we conclude233
the explicit mRNA translation and degradation steps can be omitted. Instead, an equivalent initial234
antigen concentration �� �0 = ��� ​ is introduced, where �� = ��0

��
represents the amount of235



antigen generated per µg of mRNA. This simplification reduces model dimensionality and236
consolidates three parameters into one, with a prior interval approximately estimated as �� ≈237
5,30 ∗ 1011 M/ug.238

1.6.2 Simplification of antigen-antibody neutralization parameters239

In the original model, antigen-antibody neutralization terms appear as a product of two parameters:240
the antigen-antibody complex degradation rate �� ​ and the affinity constant ��� ​ (see Equation.241
14). For simplicity, we combine these parameters into a single variant-specific neutralization rate242
����� = ����� ​ , representing the rate of neutralization of antigen ��� by its specific antibody ���.243

1.6.3 Simplification of parameter units244

Parameters ��, ��, and the newly defined �� have units of M/ug, with magnitudes around 10-12. To245
simplify parameter magnitudes and facilitate estimation, we rescale the units of these parameters246
to 10-12 M/ug. Correspondingly, for unit consistency, parameter � is rescaled from M to 10-12 M247
and the affinity constant �� from M-1 to 1012M-1.248

249
After implementing these simplifications, the original ODEs (Equations 13-18) reduces to:250
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�
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��
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����,�

��,�+�0
− ����� �

� ��,�� ������ − ������ (24)255

The parameters and their updated prior intervals for this reduced model are provided in256
Supplementary Table 2.257

258
259



Supplementary Note 2: DynaVac-based vaccination regimens260

simulation and parameter estimation using experimental data261

2.1 Estimating variant-specific self-neutralization rate and the cross-262
neutralization matrix using homologous vaccination regimens263

Among the 29 vaccination regimens designed (Fig. 2a, main text), seven involved two-doses264
homologous vaccinations of monovalent vaccine—specifically CoronaVac or mRNA-based265
formulations targeting the Alpha/Beta, Delta, BA.1, BA.2/4/5, XBB.1.5, or JN.1 variants—in the266
absence of prior immune imprinting. These regimens elicit "pure" antibody responses induced by267
a single antigen, enabling direct estimation of the variant-specific self-neutralization rates, denoted268
as ���� , and the cross-neutralization matrix �.269
Raw pseudovirus neutralization titers for these regimens are summarized in Supplementary Table270
3, each reflecting the geometric mean titer (GMT) across eight replicate experiments. To construct271
a 7×7 cross-neutralization matrix � , neutralization titers against the hypothetical Alpha/Beta and272
BA.2/5 fusion antigens are required. F These were approximated by taking the geometric mean of273
the GMTs for the corresponding individual components (Supplementary Table 4).274
Let � = ��,� 7×7

represent the resulting titer matrix, in which ��,� denotes the neutralization titer275
of antigen � -induced antibody against antigen � . Diagonal elements ( ��,� ) represent self-276
neutralization titers and are provided in Supplementary Table 5. Under standardized vaccine type277
and dosage (e.g., 30 µg mRNA vaccines for Alpha/Beta, Delta, BA.1, BA.2/4/5, XBB.1.5), these278
self-neutralization titers scale with the relative magnitudes of variant-specific self-neutralization279
rates ���� = ����1, ����2 , …, ����� .280
To enable relative comparison across variants, we introduce the Delta-variant-specific self-281
neutralization rate ( ����

����� ) as a reference standard. We define the vector of relative self-282
neutralization ratios (��

�����) as (Supplementary Table 5):283
��

����� = ��,�

������,�����
= ����,�

����
�����284

The relative self-neutralization ratio for CoronaVac (prototype-targeting inactivated vaccine285
administered at 5 µg), denoted ����������

Delta , cannot be directly compared using this framework and286
is thus estimated independently. Both ����

����� and ����������
Delta are treated as free parameters and are287

jointly inferred through the model optimization procedure described in Supplementary Note 2.3.288
Having defined ��

����� and established ����
����� as a scaling anchor, the absolute neutralization rate of289

each variant can be reconstructed as:290
����,� = ��

����� × ����
�����

The cross-neutralization matrix (�) is calculated by normalizing off-diagonal titers relative to their291
corresponding self-titers:292

��,� =
��,�

��,�
The resulting cross-neutralization matrix is provided in Supplementary Table 6.293

2.2 Vaccination regimens simulation using DynaVac294

2.2.1 Monovalent vaccination strategy simulation295

Having established the variant-specific self-neutralization rates ���� = ����1, ����2, …, ����� and296
the cross-neutralization matrix � = ��,� �×�

​ , these parameters are incorporated as essential297
inputs to the DynaVac simulation framework.298
To simulate immune responses following a vaccination regimen involving � variants and �299
sequential immunizations, we represent the regimen using four vectors:300



- �  =   �01,  �02,  …,  �0� : time points (in days) of each vaccination, with  0  ≤  �01  <  �02  <301
 …  <  �0�.302
-� = �1, �2, …, �� : variant index of each vaccine dose, wℎ��� �� ∈ {1,2,…, �}.303
-� = �1, �2, …, �� : antigen dose (µg) for each vaccination;304
-� = �1, �2, …, �� : vaccine type (1: protein, 2: mRNA, 3: inactivated).305
Simulations proceed by numerically solving the initial value problem defined by the system of306
ODEs (Equations 20–24) for each vaccination interval �0�, �0�+1 sequentially.307
Denote the solution for the k-th vaccination period �0�, �0�+1 as:308

��� � , �� � , ����� � , ���� � , ��� �
The initial conditions for the first vaccination (� = 1), the initial conditions are:309

��1,� �01 =

�1��, �1 = � ��� �1 = 1
�1��, �1 = � ��� �1 = 2

�1��, �1 = � ��� �1 = 3
0, �1 ≠ �

�� �01 = ����� �01 = ���� �01 = ��� �01 = �
For subsequent vaccinations (1 < � ≤ �), the initial conditions are:310
Antigen initial condition:311

���,� �0� =

���−1,� �0� + ����, �� = � ��� �� = 1
���−1,� �0� + ����, �� = � ��� �� = 2
���−1,� �0� + ����, �� = � ��� �� = 3
���−1,� �0� , �� ≠ �

Memory B cells and antibodies:312
����� �0� = �, ���� �0� = ����−� �0� + �����−� �0�

�� �0� = ��−� �0� , ��� �0� = ���−� �0�
(Upon each new vaccination, all inactive memory B cells (���� ) transition immediately to the313
activated memory pool (���) at the time �0�.)314
Concatenating solutions across all intervals yields the complete simulation trajectory:315

�� � , � � , ���� � , ��� � , �� � , � ∈ �01, ����
where ���� > �0� is the end of the simulation.316

2.2.2 Multivalent vaccine vaccination strategy simulation317

For vaccination strategies involving multivalent vaccines, the vector � is generalized to a � × �318
matrix, representing up to � antigenic components per vaccine:319

� = ��,� �×�
, ��,� ∈ {0,1,…, �}

where ��,� represents the variant of the �-th antigenic component in the vaccine used in the �-th320
vaccination. If the valency of the vaccine used in the �-th vaccination, denoted as ��, is lower than321
the highest vaccine valency q in the strategy, the missing antigen components are filled with 0.322
Specifically, for the k-th column of matrix �, if �� < � ≤ �, then ��,� = 0.323
Initial antigen conditions are adjusted accordingly:324
For the first vaccination (� = 1):325

��1,� �01 =

�1��/�1, � ∈ �.� ��� �1 = 1
�1��/�1, � ∈ �.� ��� �1 = 2
�1��/�1, � ∈ �.� ��� �1 = 3
0, � ∉ �.�

For subsequent vaccinations (� > 1):326

���,� �0� =

���−1,� �0� + ����/��, � ∈ �.� ��� �� = 1
���−1,� �0� + ����/��, � ∈ �.� ��� �� = 2

���−1,� �0� + ����/��, � ∈ �.� ��� �� = 3
���−1,� �0� , � ∉ �.�

Here, �� represents the valency of the vaccine used in the �-th vaccination, and �.� denotes the �-327
th column of matrix �.328



Initial conditions for memory B cells and antibodies follow the same rules as monovalent329
vaccination. A detailed pseudo-code for implementing arbitrary vaccination regimens using330
DynaVac is provided as follows:331

332
Algorithm for Simulating Vaccination Strategy using DynaVac

Input: Vaccination times T, variant matrix V, doses D, vaccine types P, variant-specific
neutralization rates Γ_neu, cross-neutralization matrix C, simulation end time t_end.
Output: Dynamics of antigen levels Ag, naive B cell levels N, inactivated memory B cell
levels M_off, activated memory B cell levels M_on, antibody levels Ab.

1: n = length(Γ_neu); // Number of variants
2: m = length(T); // Number of vaccinations
3: [Ag, N, M_off, M_on, Ab] = InitializeStates(n);
4: for k = 1 to m do
5: if (k == 1) then
6: Ag = SetAntigenLevels(V[:, 1], D[1], P[1], Ag, T[1]);
7: else
8: Ag = UpdateAntigenLevels(V[:, k], D[k], P[k], Ag, T[k]);
9: M_off[:, T[k]] = 0;
10: M_on[:, T[k]] = M_on[:, T[k]] + M_off[:, T[k]];
11: N[:, T[k]] = N[:, T[k-1]];
12: Ab[:, T[k]] = Ab[:, T[k-1]];
13: end if
14: [Ag, N, M_off, M_on, Ab] = SolveODEs(Ag, N, M_off, M_on, Ab, Γ_neu, C, T[k],
T[k+1]);
15: end for
16: return [Ag, N, M_off, M_on, Ab];

function InitializeStates(n)
1: Ag = zeros(n,1);
2: N = zeros(n,1);
3: M_off = zeros(n,1);
4: M_on = zeros(n,1);
5: Ab = zeros(n,1);
6: return [Ag, N, M_off, M_on, Ab];
function SetAntigenLevels(v, d, p, Ag, t)
// Set initial antigen levels according to vaccine type and variant
function UpdateAntigenLevels(v, d, p, Ag, t)
// Update antigen levels by adding new dose to existing levels
function SolveODEs(Ag, N, M_off, M_on, Ab, Γ_neu, C, t_start, t_end)
// Numerically solve the ODEs for the given time interval

333



2.3 Estimation of remaining parameters using 29 vaccination regimens in this334
study335

Let � = ��,� 11×7 denote the matrix of GMTs for 7 homologous vaccination regimens against the336
11 pseudoviruses (Supplementary Table 7). Each element ��,� represents the neutralization titer of337
variant �-specific antibody against pseudovirus �.338
The antibody-pseudovirus cross-neutralization coefficients ��,� are defined as:339

��,� =
��,�

��,�
where ��,� is the self-neutralization titer of variant j-specific antibody (Supplementary Table 5).340
Using this definition, we obtain the antibody-pseudovirus cross-neutralization matrix � =341
��,� 11×7 (Supplementary Table 8).342
We define the parameter vector � , which contains the 28 unknown parameters listed in343
Supplementary Table 2.344
For each vaccination regimen indexed by � , immune response trajectories are simulated using345
DynaVac based on its encoded vectors ��, ��, ��, �� as described in Supplementary Notes 2.1.346
Given a parameter set �, the simulated variant-specific antibody concentrations at any time � are347
denoted as:348

��� �, ��, ��, ��, ��, �
The simulated antibody concentrations at the measurement time point ��� (14 days after the last349
dose) are denoted as:350

���� � = ��� ���; ��, ��, ��, ��, �
Based on equilibrium assumptions, the neutralization titer of a mixed antibody population against351
pseudovirus � (��� ​ ) is proportional to the weighted sum of antibody levels multiplied by their352
neutralization rates and cross-neutralization coefficients (See the Appendix for a detailed proof):353

��� ∝ �=1
� �������,����� = ��: ⋅ (���� ∘ ��) (25)354

Here, ��: represents the k-th row of the antibody-pseudovirus cross-neutralization matrix � , and355
���� = ����1 , ����2 , …, �����

�
is the vector of variant-specific neutralization rates, and ∘ denotes356

the Hadamard product.357
Thus, given a parameter set �, DynaVac predicts neutralization titers against 11 pseudoviruses for358
regimen � as:359

���� � = � ���� ∘ ���� �

where ���� � = ��1,�� � , ��2,�� � , …, ��11,�� �
�
.360

For all 29 vaccination regimens, let �� � = ��,�� �
11×29

be the 11 × 29 matrix of model-361

predicted neutralization titers, and let ��� � = ���� � , ���� � , …, ����� � be the362
corresponding matrix of model-predicted antibody levels at the time of measurement.363
Then:364

��� � = � ������� ∘ ��� �
where ��� = �, �, …, � 1×29 is a row vector of ones.365
Let �� = ���,� 11×29 be the matrix of experimentally measured neutralization titers.366
Define the log2 fold change matrices:367

���� � = log2
��� �

��1,1� �
, ��� = log2

��
��1,1

The objective function � for parameter estimation is the squared Frobenius norm of the difference368
between the predicted and measured log2 fold change matrices:369

� � = |��� − ���� � |�2 (26)370
The optimization problem is:371

�∗ = arg min
�

|��� − ���� � |�2 , subject to �� ≤ � ≤ ��
where �� and �� are the lower and upper bounds of the prior intervals for each parameter372
(Supplementary Table 2). The solution �∗ is the optimal parameter set for the model.373



To solve this optimization problem, we employ a genetic algorithm (GA), a heuristic optimization374
method inspired by natural selection processes. GA iteratively explores the parameter space by375
encoding parameters as chromosomes, selecting those with better fitness (lower objective function376
values), and performing genetic operations (mutation, crossover, and selection) to improve377
solutions22. Specifically, the genetic algorithm is implemented using MATLAB's Global378
Optimization Toolbox function ‘ga’. Default settings provided by MATLAB’s function were used.379
The estimated parameter values resulting from optimization based on neutralization titration data380
from 29 vaccination regimens are provided in Supplementary Table 2.381

Appendix for Supplementary Note 2.3: Proof of Theorem382

Theorem:383
Let �� = ��1, ��2, …, ���

� be a mixture of antibodies, and let ��� be the antibody384
neutralization titer of this mixture against pseudovirus �. Then:385

��� ∝
�=1

�

�������,����� = ��: ⋅ (���� ∘ ��)

where ��: represents the � -th row of the matrix � , and ���� = ����1, ����2 , …, �����

�
is the386

vector of variant-specific neutralization rates.387
Proof:388
Let ���,� be the affinity constant of antibody � (���) for antigen � (���). At equilibrium:389

���,� =
���: ���

��� ���

where ���: ��� is the concentration of the antibody-antigen complex.390
The NT50 titer ��� is defined as the serum dilution that produces a 50% reduction in the391
biological effect (pseudovirus infection). For simplicity, we assume that at this dilution, half of the392
pseudovirus is neutralized:393

��� =
�=1

�

���: ����

and the antibody concentrations are 1/��� of their initial values.394
Equilibrium conditions:395

∀� ∈ {1,2, …, �}, K��,� =
���: ��� ���

��� ���

���
�=1

�

���: ���� = ���
�=1

�

���,� ����

Solving for ��:396

��� =
�=1

�

���,� ����

Expressing ���,� in terms of cross-neutralization coefficients and variant-specific neutralization397
rates according to Eq.12:398

���,� = ��,���� =
��,������

��
where �� is a constant.399
Substituting:400

��� =
1
�� �=1

�

��,�� ����� ��� ∝
�=1

�

�������,����� = ��: ⋅ (���� ∘ ��)

This provides a basis for training the model using experimentally measured antibody401
neutralization titers.402
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Supplementary Note 3: Model validation using dataset from an404

independent study405

3.1 Parameterization using dataset from an independent study406

We collected titration data from another study comprising 37 vaccination regimens in mice407
involving 4 SARS-CoV-2 strains (Prototype, BA.5, BQ.1.1, and XBB.1.5)17. Supplementary408
Table 18 summarizes the vaccine variant, vaccination time, vaccine type, vaccine amount, serum409
collection time point, and the geometric mean neutralization titers (GMT) of serum antibodies410
against the 4 pseudoviruses for each vaccination regimen.411
Similarly, we first selected data from the 5 two-dose homologous vaccination regimens412
(Supplementary Table 9) to estimate the relative proportions of variant-specific neutralization413
rates ����� (Supplementary Table 10) and the cross-neutralization matrix ( � ) (Supplementary414
Table 11).415
Using the BA.5-specific neutralization rate ����

��5 as a reference, define the relative ratios ��
��5 =416

��,�

���5,��5
= γ���,�

γ���
��5 . For the protein vaccines (BA.5, BQ.1.1, XBB.1.5) administered at 10 μg， the417

relative ratio can be calculated directly. The ratio for CoronaVac ����������
BA5 and wild type418

mRNA vaccine �����
BA5 cannot be directly inferred because the vaccine types and doses differ.419

Therefore, ����������
BA5 and �����

BA5 are set as unknown parameters in the Yisimayi, et al. dataset.420
The estimated parameter values obtained by training on the titration data of the 37 vaccination421
regimens in Yisimayi, et.al. dataset using genetic algorithm following the same procedure in422
Supplementary Note 2.3 are shown in Supplementary Table 2.423

3.2 Cross-dataset validation424

We used the genetic algorithm to jointly train a complete set of model parameters on both our425
dataset and the Yisimayi, et al. dataset, as shown in Supplementary Table 2. The loss function426
used for training was the sum of the loss functions defined by Equation. 26 for the two datasets.427
When performing cross-dataset predictions, for the primary parameters shared between the two428
datasets, we directly applied the values trained on the parameterization dataset to the validation429
dataset. For parameters unique to either dataset (those marked with superscripts a or b in430
Supplementary Table 2), we utilized the values trained on the combined dataset.431

432



Supplementary Note 4: Variance contributions calculation433

To quantify the relative importance of different antigenic distances (�0,2and �1,2) in determining434
neutralization responses, we employed variance-based sensitivity analysis using the Sobol method.435
For each parameter, the first-order Sobol index (variance contribution rate, ��) was calculated as:436

437

�� =
��� ��−� � ��

� �
438

where � � represents the total variance of the neutralization output across all parameter439
combinations, ��−� � �� denotes the expected value of neutralization when parameter �� is fixed,440
and ��� ⋅ is the variance of this conditional expectation across different values of ��.441

442
Computationally, we calculated the total variance (� � ) of all neutralization values, then for each443
parameter (e.g., �0,2), computed mean neutralization responses along each fixed value while444
varying the other parameter (e.g., �1,2). The variance of these conditional means was then445
normalized by the total variance to obtain the variance contribution rate. The remaining variance446
(1 − �1 − �2) was attributed to the interaction term �12447
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Supplementary Note 5: Simulation Framework for DynaVac-Guided449

Vaccination Strategy Optimization Against Antigenically Evolving450

Pathogens451

5.1 Antigenic Drift Simulation452

To simulate the evolutionary dynamics of a mutable virus (“Pathogen X”), we modeled antigenic453
drift as a stochastic Poisson process in a one-dimensional antigenic space. Drift events occur as454
discrete one-unit shifts in antigenic coordinates at exponentially distributed time intervals:455

Δ�� ∼ Exponential � ,  �� = �=1
� Δ��� (27)456

Where � ∈ {0.1,  0.3,  0.5} (antigenic distance units/month) denotes the average rate of antigenic457
drift, corresponding to slow, moderate, or fast mutational dynamics, respectively. The cumulative458
number of drift events up to time t defines the position in antigenic space:459

� � = max { �∣�� ≤ �} (28)460
which we refer to as the antigenic coordinate of the circulating strain at time �. The antigenic461
distance between circulating strain at any two timepoints �� and �� is then given by the Euclidean462
distance in this space:463

��,� = � �� − � �� (29)464
This setup enables stochastic yet biologically interpretable simulation of pathogen evolution over465
a continuous timeline. For each simulation (100 runs per λ), we tracked monthly antigenic466
positions over a 75-month horizon.467

5.2 Vaccination Strategies Simulation468

For each simulated antigenic drift, we evaluated four empirical strategies (with updates every 6,469
12, 18, or 24 months) and one model-guided strategy (DynaVac), in which vaccine updates were470
triggered upon entry into the immune-imprinting breakthrough zone, defined based on the471
antigenic distance–interval phase-plane (Fig. 7b, main text). Each update consisted of two 30 µg472
mRNA doses spaced one month apart, using the circulating antigenic variant at the time of update473
as the vaccine strain.474
Immune responses were simulated using the DynaVac model (Equations 20–24, Supplementary475
Note 2.2) with the human-data-trained parameter set (Supplementary Table 2), tracking the time476
evolution of antigen levels, naive and memory B cell populations, and antibody levels specific to477
each antigenic variant.478

5.3 Protection Metric479

To evaluate protective immunity, we first defined the neutralization efficacy against the480
circulating strain A(t) at time t as:481

� � = �=1
� ��� �� ⋅ 2−��,� � (30)482

which accounts for both homologous and cross-reactive antibody contributions; ��� � is the483
variant � specific antibody level at time �, and ��,� � is the antigenic distance between that variant484
� and the circulating strain at time �.485
The overall protection (OP) of a given strategy was computed as the time-averaged log10-486
neutralization from month 1 to 75:487

OP = 1
�−�0 �0

� log10 � �  ���  with �0 = 1,  � = 75 (31)488



To enable comparison across strategies with differing update frequencies, we also computed:489

OPper update =
OP

�updates
where �updates is the number of vaccine updates, each consisting of two doses.490
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Extended Data Figures567

568
Extended Data Fig. 1 Pseudovirus assay of mice sera that received two-dose variant569
vaccination570
a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received571
two-dose variant mRNA vaccine. The antigen components of different groups of vaccines are572
directly marked below. All the experimental mice were divided into 8 groups according to the type573
of booster vaccination, each group contains 8 mice. The neutralization titers were expressed as574
50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on top of bars.575
Each dot represents the result of one mouse serum sample, geometric mean ratio (GMR) and P576
values were marked above corresponding bars. Data are presented as the geometric mean titers577
with 95% confidence intervals. Specific details were shown in Supplementary Table 14.578
**P < 0.01; ***P < 0.001 (two-tailed student’s t-test in (a-b))579



580
Extended Data Fig. 2 Pseudovirus assay of mice sera that received one-dose booster based on581
two-dose inactivated vaccines582
a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received583
one-dose variant booster based on two-dose inactivated vaccines. The antigen components of584
vaccines are directly marked below. All the experimental mice were divided into 7 groups585
according to the type of variant booster, each group contains 8 mice. The neutralization titers were586
expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on587
top of bars. Each dot represents the result of one mouse serum sample, geometric mean ratio588
(GMR) and P values were marked above corresponding bars. Data are presented as the geometric589
mean titers with 95% confidence intervals. Specific details were shown in Supplementary Table590
15.591
***P < 0.001 (two-tailed student’s t-test in (a-b))592



593
Extended Data Fig. 3 Pseudovirus assay of mice sera that received two-dose boosters based594
on two-dose inactivated vaccines595
a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received596
two-dose variant boosters based on two-dose inactivated vaccines. The antigen components of597
vaccines are directly marked below. All the experimental mice were divided into 7 groups598
according to the type of variant booster, each group contains 8 mice. The neutralization titers were599
expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT) values were marked on600
top of bars. Each dot represents the result of one mouse serum sample, geometric mean ratio601
(GMR) and P values were marked above corresponding bars. Data are presented as the geometric602
mean titers with 95% confidence intervals. Specific details were shown in Supplementary Table603
16.604
*P < 0.05 (two-tailed student’s t-test in (a-b))605



606
Extended Data Fig. 4 Pseudovirus assay of mice sera that received different one or two -dose607
variant boosters based on two-dose inactivated vaccines and one-dose Alpha/Beta vaccine608
a, b, Neutralization titers against 11 SARS-CoV-2 variants of C57BL/6J mice sera that received609
two-dose inactivated vaccines followed by progressively sequential variant booster regimens. The610
antigen components of vaccines are directly marked below. All the experimental mice were611
divided into 7 groups according to the type of variant booster, each group contains 8 mice. The612
neutralization titers were expressed as 50% neutralizing titer (NT50). Geometric mean titer (GMT)613
values were marked on top of bars. Each dot represents the result of one mouse serum sample,614
geometric mean ratio (GMR) and P values were marked above corresponding bars. Data are615
presented as the geometric mean titers with 95% confidence intervals. Specific details were shown616
in Supplementary Table 17.617
*P < 0.05; **P < 0.01; ***P < 0.001 (two-tailed student’s t-test in (a-b))618



619
Extended Data Fig. 5 Comparison of experimentally measured and DynaVac-fitted620
neutralization titers in our mouse study621
Scatter plot showing log2 fold changes of neutralization titers for 29 vaccination regimens622
(columns) against 11 SARS-CoV-2 variants (rows), relative to neutralization titer against the623
prototype strain after two doses of inactivated vaccines. Experimental data (orange) were used for624



model parameterization, and model-predicted values are shown in purple. Asterisks indicate data625
points corrected by the model due to experimental assay detection limits. Bottom panel depicts626
detailed vaccination schedules (gray circles: inactivated vaccines; colored squares: monovalent627
mRNA vaccines; mixed-color squares: bivalent vaccines).628



629
Extended Data Fig. 6 Parameterization of the DynaVac model using Yisimayi et al. (2023)630
mouse data and cross-dataset validation631
a, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization632
titers after parameterization using the Yisimayi et al. (2023) dataset. Scatter plot shows log2 fold633
changes of neutralization titers for 37 vaccination regimens (columns) against 4 SARS-CoV-2634
variants (rows), relative to neutralization titer against the D614G strain after two doses of635
inactivated vaccines. Bottom panel shows detailed vaccination schedules (gray circles: inactivated636
vaccines; gray squares: prototype spike mRNA vaccines; colored dots/squares: spike or mRNA637
vaccines; size of dots/squares indicates dose level).638
b, Performance of the DynaVac model parameterized on the Yisimayi et al. (2023) dataset. Scatter639
plot shows predicted versus observed log2 neutralization titer fold changes for the640
parameterization dataset. R² value represents the proportion of variability in the observed data641
accounted for by model predictions.642
c, Cross-dataset validation of the DynaVac model parameterized on the Yisimayi et al. (2023)643
dataset and validated using our mouse study dataset. Scatter plot shows predicted versus observed644
log2 neutralization titer fold changes. R² value represents the proportion of variability in the645
observed data accounted for by model predictions.646
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647
Extended Data Fig. 7 Comparison of experimentally measured and DynaVac-fitted648
neutralization titers after parameterization using the combined mouse dataset649
a, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization650
titers for our mouse study after parameterization using the combined dataset. Scatter plot shows651
log2 fold changes of neutralization titers for 28 vaccination regimens (columns) against 11 SARS-652
CoV-2 variants (rows), relative to neutralization titer against the prototype strain after two doses653
of inactivated vaccines. Bottom panel depicts detailed vaccination schedules (gray circles:654
inactivated vaccines; colored squares: monovalent mRNA vaccines; mixed-color squares: bivalent655
vaccines).656
b, Comparison of experimentally measured (orange) and DynaVac-fitted (purple) neutralization657
titers for the Yisimayi et al. (2023) dataset after parameterization using the combined dataset.658
Scatter plot shows log2 fold changes of neutralization titers for 37 vaccination regimens (columns)659
against 4 SARS-CoV-2 variants (rows), relative to neutralization titer against the D614G strain660
after two doses of inactivated vaccines. Bottom panel shows detailed vaccination schedules (gray661
circles: inactivated vaccines; gray squares: prototype spike mRNA vaccines; colored dots/squares:662
Omicron sub-variant spike or mRNA vaccines; size of dots/squares indicates dose level).663
c, Error distribution of the DynaVac model parameterized on the combined mouse dataset.664
Histogram shows the distribution of absolute errors in log2 neutralization titer fold change665
predictions. Red line represents a half-normal distribution with σ = 1.3 fitted to the error666
distribution.667
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668
Extended Data Fig. 8 Schematic representation of the human clinical trial669
Pseudovirus neutralization assay of human sera from 3 vaccination regimens (376 volunteers).670
Volunteers who accepted three-dose inactivated vaccines and one-dose BA.2/BA.5+Alpha/Beta671
vaccine (or infected with BA.5.2/BF.7 variant) were randomly divided into three groups. Each672
group accepted one of mRNA variant boosters (Alpha/Beta vaccine, BA.2/BA.5+Alpha/Beta673
vaccine, or XBB.1.5+Alpha/Beta vaccine). Pseudovirus neutralization titers of volunteer serum674
samples were tested against 7 SARS-CoV-2 variants.675
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676
Extended Data Fig. 9 Log-transformed immunodynamic parameter comparisons across677
datasets and species.678
a, Comparison of log-transformed parameter values inferred from our mouse dataset (x-axis) and679
those from Yisimayi et al. dataset (y-axis). Each dot represents a fitted immunological parameter680
with symbol definitions detailed in Supplementary Table 2. The dashed line denotes the identity681
line (x = y).682
b, Comparison of parameter values inferred from the combined mouse dataset (x-axis) and the683
human dataset (y-axis). Each dot corresponds to a model parameter with symbol definitions684
detailed in Supplementary Table 2. The dashed line denotes the identity line. Spearman correlation685
coefficients (ρ) and associated P values are shown in each panel.686
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687
Extended Data Fig. 10 Dynamics of prototype-specific and variant-specific B cell responses688
over time following booster vaccinations689
a-c, Comparison of prototype-specific memory B cells (�0, gray) and variant-specific naive B690
cells maturity (�1, purple) after the first vaccination administered at day 390 for prime-boost691
antigenic distance of 1.6 (a, immune-imprinting-protection zone), 5.0 (b, immune-imprinting-692
pitfall zone), and 5.6 (c, immune-imprinting-breakthrough zone).693
d-f, Comparison of prototype-specific memory B cells (�0, gray) and variant-specific memory B694
cells (�1, purple) after the second booster vaccination administered at day 420 for prime-boost695
antigenic distance of 1.6 (d, immune-imprinting-protection zone), 5.0 (e, immune-imprinting-696
pitfall zone), and 5.6 (f, immune-imprinting-breakthrough zone).697



30

698
Extended Data Fig. 11 The effect of booster dose on the dynamics of humoral immune699
response and immune imprinting at different antigenic distances700
a, c, e, Continuous relationship between immune imprinting effect and booster dose for prime-701
boost antigenic distance of 1.0 (a, immune-imprinting-protection zone), 7.0 (c, immune-702
imprinting-breakthrough zone), and 4.5 (e, immune-imprinting-pitfall zone). The top panel shows703
the antibody levels specific to prototype (gray line) and variant (purple line) on day 434 (2 weeks704
after the second booster dose) as a function of booster dose. The middle panel shows the705
corresponding memory B cell levels as a function of booster dose. The bottom panel displays the706
combined neutralization against the variant, which is composed of cross-neutralization attributed707
to prototype-specific antibodies and direct-neutralization from variant-specific antibodies.708
b, d, f, Dynamics of key humoral immunity components during the evolution of immunogenicity709
in varying booster dose scenarios for prime-boost antigenic distance of 1.0 (b, immune-710
imprinting-protection zone), 7.0 (d, immune-imprinting-breakthrough zone), and 4.5 (f, immune-711
imprinting-pitfall zone). Each row shows the dynamics of antigen level, naive B cell gross affinity712
(maturity), memory B cell level, and antibody level over time. The gray areas represent prototype-713
specific quantities while the purple areas represent variant-specific quantities. The left column714
represents scenarios with a booster dose of 10 μg, while the right column represents scenarios with715
a booster dose of 40 μg.716
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717
Extended Data Fig. 12 Continuous relationship between immune imprinting effect and718
antigenic distance under weak primary immunization (3 μg)719
The top panel shows the antibody levels specific to the prototype (gray line) and the variant720
(purple line) on day 434 (2 weeks after the second booster dose). The middle panel shows the721
corresponding memory B cell levels. The bottom panel displays the relative combined722
neutralization against the variant, which combines cross-neutralization from prototype-specific723
antibodies and direct-neutralization from variant-specific antibodies, relative to the neutralization724
at an antigenic distance of 0 (i.e., no antigenic drift). The cyan dashed line indicates the 50%725
threshold, which divides the antigenic distance into three zones: the immune-imprinting-protection726
zone (green background, relative neutralization ≥50% on the left side of the nadir ); the immune-727
imprinting-pitfall zone (red background, relative neutralization <50%); and the immune-728
imprinting-breakthrough zone (blue background, relative neutralization ≥50% on the right side of729
the nadir).730
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731
Extended Data Fig. 13 Impact of primary immunization strength on the depth of immune-732
imprinting-pitfall zone733
a, The relationship between primary dose and the lowest combined neutralization against variant734
(relative) within the immune-imprinting-pitfall zone.735
b, The 3D surface showing the interplay between primary dose, prime-boost antigenic distance736
and their synthetic effect on the combined neutralization against variant. The surface is divided737
into three immune-imprinting zones defined by the antigenic distance. The red curve represents738
the projection of the lowest combined neutralization against variant (relative) within the immune-739
imprinting-pitfall zone for each primary dose onto the primary dose-combined neutralization plane.740
This projection corresponds to the same scenario illustrated in (a).741
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742
Extended Data Fig. 14 Continuous relationship between immune imprinting effect and743
antigenic distance under shortened and lengthened prime-boost intervals744
a, b, The prime-booster intervals were set as 3 months (a) and 24 months (b), respectively. The745
top panel shows the antibody levels specific to the prototype (gray line) and the variant (purple746
line) on day 434 (2 weeks after the second booster dose). The middle panel shows the747
corresponding memory B cell levels. The bottom panel displays the relative combined748
neutralization against the variant, which combines cross-neutralization from prototype-specific749
antibodies and direct-neutralization from variant-specific antibodies, relative to the neutralization750
at an antigenic distance of 0 (i.e., no antigenic drift). The cyan dashed line indicates the 50%751
threshold, which divides the antigenic distance into three zones: the immune-imprinting-protection752
zone (green background, relative neutralization ≥50% on the left side of the nadir ); the immune-753
imprinting-pitfall zone (red background, relative neutralization <50%); and the immune-754
imprinting-breakthrough zone (blue background, relative neutralization ≥50% on the right side of755
the nadir).756
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757
Extended Data Fig. 15 Impact of prime-boost interval on the depth of immune-imprinting-758
pitfall zone759
a, The relationship between prime-boost interval and the minimum combined neutralization760
against variant (relative) within the immune-imprinting-pitfall zone.761
b, The 3D surface showing the interplay between prime-booster interval, prime-boost antigenic762
distance and their synthetic effect on the combined neutralization against variant. The surface is763
divided into three immune-imprinting zones defined by the antigenic distance. The red curve764
represents the projection of the lowest combined neutralization against variant (relative) within the765
immune-imprinting-pitfall zone for each prime-boost interval onto the prime-boost interval -766
combined neutralization plane. This projection corresponds to the same scenario illustrated in (a).767
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768
Extended Data Fig. 16 Neutralization profiles and immune dynamics in sequential variant769
boosting.770
a, d, Two-dimensional projections of normalized neutralization against variant 2 (day 824) at771
different antigenic distances, representing cross-sections of the 3D surfaces in Fig. 6b, c. Panel a772
shows projections when �1,0 = 4.5 (pitfall zone, Fig. 6b), while panel d shows projections when773
�1,0 = 7 (breakthrough zone, Fig. 6c). In both panels, the first column displays neutralization774
profiles at fixed �2,0 values (2 and 7) while varying �2,1; the second column displays775
neutralization profiles at fixed �2,1 values (2 and 7) while varying �2,0.776
b, c, e, f, DynaVac simulation of immune dynamics for different combinations of antigenic777
distances over the extended vaccination sequence. Each panel contains four rows showing: antigen778
levels (top), naive B cell gross affinity (second row), memory B cell levels (third row), and779
antibody levels (bottom). Color coding indicates strain specificity: gray (prototype), purple780
(variant 1), and blue (variant 2). Arrows at the top mark vaccination timepoints. Panel b shows781
dynamics for �1,0 = 4.5, �2,1 = 2, �2,0 = 4.5; panel c for �1,0 = 4.5, �2,1 = 2, �2,0 = 7; panel e for782
�1,0 = 7, �2,1 = 4.5, �2,0 = 7; and panel f for �1,0 = 7, �2,1 = 7, �2,0 = 7.783
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784
Extended Data Fig. 17 Immune dynamics and neutralization efficacy of model-guided versus785
empirical vaccination strategies.786
a, b, DynaVac simulation of immune dynamics under different vaccination strategies. Time787
course of key immune components simulated by DynaVac under the model-guided (a) and equal-788
interval (b) vaccination strategies shown in Fig. 7c. Top row shows gross affinity of naive B cells,789
middle row shows memory B cell levels, and bottom row shows antibody levels over time.790
Colored regions represent variant-specific immune components, with colors matching the791
corresponding vaccine variants. Arrows marked "×2" at the top of each panel indicate vaccination792
timepoints with two consecutive boosts administered one month apart.793
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c, Neutralization against contemporary variants. Time course of neutralization against794
contemporary circulating variants for model-guided strategy (red line) and equal-interval strategy795
(purple line). Neutralization was calculated by projecting the variant-specific antibody profiles796
(shown in bottom panels of a,b) onto the dominant circulating variant at each timepoint using797
cross-neutralization coefficients (Eq.30, Supplementary notes 4). These coefficients were derived798
from the antigenic distances between variants in the one-dimensional antigenic space, as799
illustrated in Fig. 7a.800

801
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Supplementary Tables802

Supplementary Table 1 Original model parameters and estimation of their priori intervals803
Symbo

l Definition Units Priori
interval

Referenc
e

�� Effective antibody amount per ug spike vaccine M/ug [5,30]*10-12

��
Effective antibody amount per ug inactive

vaccine M/ug [5,30]*10-12

�0 mRNA amount per ug mRNA vaccine M/ug [0.5,2]*10-12

� mRNA translation rate
protein/
mRNA/da

y
[50,500] 24

�� mRNA degradation rate day-1 [5,10] 25,26

��� Antigen degradation rate day-1 [0.001,0.1] 27

��� Antibody degradation rate day-1 [0.0001,0.1] 27,28

� Antigen amount required to occupy half of the
maximum load of antigen-presenting cells M [1.5, 10]*10-

9
29

�� Maximum rate of naive B cell affinity maturation day-1 [5,100]

�� Maximum naive antibody production rate day-1 [5,400]

�� Naive B cell decay rate day-1 [0.02,2] 1,21

��2�
Maximum rate of differentiation of naive B cells

into memory B cells day-1 [0.001,1]

�� Maximum rate of memory B cell proliferation day-1 [0.05,15]

�� Maximum memory antibody production rate day-1 [30,1000]

�� memory B cell decay rate day-1 [0.001,0.01] 1

�� Antibody-antigen affinity constant M-1 [108,1010] 30,31

�� Antibody-antigen complex degradation rate day-1 [10,1000] 30

�0

Affinity thresholds for cross-reactive
differentiation of memory B cells into antibody-

secreting plasma cells
[0,0.05]

�0
Affinity thresholds for cross-reactive memory B

cell proliferation [0,0.05]

����
Affinity maturation rate during progenitor naive

B cells seed the germinal centers day-1 [0.0005,0.1]

����
Interval between vaccination and onset of

antibody production day [0.5,2] 1,21

���� Minimum humoral immune response duration day [5,20] 1,21,32

���� Maximum humoral immune response duration day [20,60] 1,21,32

804
805
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Supplementary Table 2 Reduced model parameters and estimates after parameterized on different datasets806

Symbol Definition Units Priori
interval

Trained by
dataset from
this study
(mice)

Trained by
Yisimayi, et.al.

dataset
(mice)

Trained by
combined
dataset
(mice)

Trained
by clinical

trial
(human)

��
b Effective antigen amount per ug spike vaccine 10-12M/ug [5,30] 7.436 14.52

��
Effective antigen amount per ug inactive vaccine

(CoronaVac) 10-12M/ug [5,30] 9.203 5.671 7.395 22.75

��
a Equivalent antigen amount per ug mRNA vaccine in this

study 10-12M/ug [50,300] 75.21 150.0 52.94

��
' b Equivalent antigen amount per ug mRNA vaccine in

Yisimayi, et.al. dataset 10-12M/ug [50,300] 290.1 277.4

��� Antigen degradation rate day-1 [0.001,0.1] 0.01152 0.01404 0.01939 0.03543

��� Antibody degradation rate day-1 [0.0001,0.1] 0.001033 0.0004281 0.0007187 0.013417

� Antigen amount required to occupy half of the maximum
load of antigen-presenting cells 10-12M [100,1000] 525.6 750.8 527.7 547.1

�� Maximum rate of naive B cell affinity maturation day-1 [5,100] 32.88 67.90 38.93 6.351

�� Maximum naive antibody production rate day-1 [100,500] 211.2 177.5 154.3 352.9

�� Naive B cell decay rate day-1 [0.02,2] 2.071 2.462 1.724 0.8879

��2�
Maximum rate of differentiation of naive B cells into

memory B cells day-1 [0.001,1] 0.0793 0.1491 0.1116 0.8188

�� Maximum rate of memory B cell proliferation day-1 [1,20] 15.93 6.869 11.92 7.148

�� Maximum memory antibody production rate day-1 [100,2000] 1646 1076 1167 540.5

�� memory B cell decay rate day-1 [0.001,0.01] 0.002611 0.001428 0.001762 0.007101

����
�����a Delta specific Antibody-antigen neutralization rate 1012M-

1day-1 [0.001,1] 0.05503 0.05144 0.07493

γ���
��5b BA.5 specific Antibody-antigen neutralization rate 1012M-

1day-1 [0.001,1] 0.03370 0.05144
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Symbol Definition Units Priori
interval

Trained by
dataset from
this study

Trained by
Yisimayi, et.al.

dataset

Trained by
combined
dataset

Trained
by human
clinical
trial

�0
Affinity threshold for cross-reactive differentiation of
memory B cells into antibody-secreting plasma cells [0,0.05] 1.353*10-5 1.553*10-5 1.046*10-5 3.421*10-5

�0
Affinity threshold for cross-reactive memory B cell

proliferation [0,0.05] 6.422*10-4 5.285*10-4 8.451*10-4 7.144*10-3

����
Affinity maturation rate during progenitor naive B cells

seed the germinal centers day-1 [0.0005,0.1] 0.08157 0.06778 0.05527 0.01924

����
Interval between vaccination and onset of antibody

production day [0.5,2] 0.7955 1.001 1.05 1.062

���� Minimum humoral immune response duration day [5,20] 14.02 13.42 16.10 9.769

���� Maximum humoral immune response duration day [20,60] 51.64 46.04 35.97 21.15
�7,1

a Corrected titer of CoronaVac against BA.5 [0,15] 11.93 11.93 11.93

�8,1
a Corrected titer of CoronaVac against BF.7 [0,15] 14.49 14.49 14.49

�9,1
a Corrected titer of CoronaVac against BQ.1.1 [0,15] 14.68 14.68 14.68

�10,1
a Corrected titer of CoronaVac against XBB.1.5 [0,15] 15.00 15.00 15.00

�11,1
a Corrected titer of CoronaVac against JN.1 [0,15] 1.585 1.585 1.585

�10,2
a Corrected titer of Alpha/beta against XBB.1.5 [0,15] 5.631 5.631 5.631

�10,3
a Corrected titer of Delta against XBB.1.5 [0,15] 2.963 2.963 2.963

�10,4
a Corrected titer of BA.1 against XBB.1.5 [0,15] 0.2758 0.2758 0.2758

����������
����� a Relative self-neutralization ratio between Prototype and

Delta in this study [0.1,2] 0.1962 0.2816 0.3235

����������
��5 b Relative self-neutralization ratio between wild type inactive

vaccine and Delta spike vaccine in Yisimayi, et.al. dataset. [0.1,2] 0.6526 0.9976

�����
��5 b Relative self-neutralization ratio between wild type mRNA

vaccine and Delta spike vaccine in Yisimayi, et.al. dataset. [0.1,2] 0.1073 0.2131
a Parameters exclusive to the dataset from this study807
b Parameters exclusive to the Yisimayi, et al. dataset808
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Supplementary Table 3 Raw pseudovirus titers for homologous vaccinations regimens809

Vaccine (antibody)

CoronaVac alpha/beta delta BA.1 BA.2/5 XBB.1.5 JN.1

Ps
eu
do
vi
ru
s（

an
tig
en

）

Prototype 1713.0 260.3 1620.3 58.6 145.6 912.9 910.2

alpha 1102.0 1780.1 1953.1 71.9 87.6 771.2 558.3

beta 570.0 1163.8 1545.8 140 187.7 300.5 274.5

delta 94.3 141.3 6210.7 107.2 358.8 136.6 23.6

BA.1 33.6 115.5 281.5 1807.8 527.9 34.5 242.3

BA.2 18.6 58.2 212.4 185.9 2598.4 2795.7 1028.7

BA.5 �7,1(15.0) 23.4 153 67.7 1775.9 6848.5 1811.7

XBB.1.5 �10,1(15.0) �10,2(15.0) �10,3(17.6) �10,4(17.4) 209.6 33068.8 298.1

JN.1 �11,1(15.0) 19.5 86.6 23.4 25.8 370.5 29148.9

Note: Due to technical limitations, the lowest measurable titer is 15. For those data with a titer close to810
15, the titers are set as unknown parameters greater than 0 and less than 15.811

812
Supplementary Table 4 Antigen-antibody titer matrix813

Antibody

CoronaVac alpha/beta delta BA.1 BA.2/5 XBB.1.5 JN.1

A
nt
ig
en

Prototype 1713.0 260.3 1620.3 58.6 145.6 912.9 910.2

alpha/beta 792.6 1439.3 1737.6 100.3 128.2 481.4 391.5

delta 94.3 141.3 6210.7 107.2 358.8 136.6 23.6

BA.1 33.6 115.5 281.5 1807.8 527.9 34.5 242.4

BA.2/5 18.6 ∗ �7,1 23.4 153 67.7 1775.9 6848.5 1365.2

XBB.1.5 �10,1 �10,2 �10,3 �10,4 209.6 33068.8 298.1

JN.1 �11,1(15.0) 19.5 86.6 23.4 25.8 370.5 29148.9

814
Supplementary Table 5 Self-neutralization titers and relative self-neutralization ratio815

Antigen CoronaVac alpha/beta delta BA.1 BA.2/5 XBB.1.5 JN.1
Self-

neutralization
titers

1713.0 1439.3 6210.7 1807.8 2148.1 33068.8 29148.9

relative self-
neutralization

ratio
����������

Delta 0.231 1 0.291 0.346 5.32 4.70

816
817
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Supplementary Table 6 Cross-neutralization matrix818

Antibody

CoronaVac alpha/
beta delta BA.1 BA.2/5 XBB.1.5 JN.1

A
nt
ig
en

Prototype 1.0000 0.1808 0.2609 0.0324 0.0678 0.0112 0.0312

alpha/beta 0.4627 1.0000 0.2798 0.0555 0.0597 0.0146 0.0134

delta 0.0551 0.0982 1.0000 0.0593 0.1670 0.0041 0.0008

BA.1 0.0196 0.0802 0.0453 1.0000 0.2457 0.0010 0.0083

BA.2/5 18.6 ∗ �7,1

1713
0.0256 0.0290 0.0621 1.0000 0.1323 0.0468

XBB.1.5
�10,1

1713
�10,2

1440
�10,3

6211
�10,4

1808
0.0084 1.0000 0.0102

JN.1
�11,1

1713
0.0135 0.0139 0.0129 0.0120 0.0112 1.0000

819
820
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821
Supplementary Table 7 Raw titration data from the homologous vaccination regimens against the 11822
pseudoviruses823

Vaccine (antibody)

CoronaVac alpha/beta delta BA.1 BA.2/5 XBB.1.5 JN.1

Ps
eu
do
vi
ru
s

Prototype 1713.0 260.3 1620.3 58.6 145.6 912.9 910.2

alpha 1102.0 1780.1 1953.1 71.9 87.6 771.2 558.3

beta 570.0 1163.8 1545.8 140 187.7 300.5 274.5

delta 94.3 141.3 6210.7 107.2 358.8 136.6 23.6

BA.1 33.6 115.5 281.5 1807.8 527.9 34.5 242.4

BA.2 18.6 58.2 212.4 185.9 2598.4 2795.7 1028.7

BA.5 �7,1(15.0) 23.4 153 67.7 1775.9 6848.5 1811.7

BF.7 �8,1(15.0) 26.2 98.7 34.5 1801.6 4685.9 2854.6

BQ.1.1 �9,1(15.0) 32.7 29.0 30.9 329.9 662.1 667.6

XBB.1.5 �10,1(15.0) �10,2(15.0) �10,3(17.6) �10,4(17.4) 209.6 33068.8 298.1

JN.1 �11,1(15.0) 19.5 86.6 23.4 25.8 370.5 29148.9
Note: Due to detection limitations, titers around the detection limit (15) were considered as unknown824
parameters bounded between 0 and 15.825

826
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Supplementary Table 8 Antibody-pseudovirus cross-neutralization matrix827
Vaccine (antibody)

CoronaVac alpha/beta delta BA.1 BA.2/5 XBB.1.5 JN.1

Ps
eu
do
vi
ru
s

Prototype 1.0000 0.1808 0.2609 0.0324 0.0678 0.0276 0.0312

alpha 0.6433 1.2368 0.3145 0.0398 0.0408 0.0233 0.0192

beta 0.3328 0.8086 0.2489 0.0774 0.0874 0.0091 0.0094

delta 0.0551 0.0982 1.0000 0.0593 0.1670 0.0041 0.0008

BA.1 0.0196 0.0802 0.0453 1.0000 0.2457 0.0010 0.0083

BA.2 0.0108 0.0404 0.0342 0.1028 1.2096 0.0845 0.0353

BA.5 �7,1/1713 0.0163 0.0246 0.0374 0.8267 0.2071 0.0622

BF.7 �8,1/1713 0.0182 0.0159 0.0191 0.8387 0.1417 0.0979

BQ.1.1 �9,1/1713 0.0227 0.0047 0.0171 0.1536 0.0200 0.0229

XBB.1.5 �10,1/1713 �10,2/1440 �10,3/6211 �10,4/1808 0.0976 1.0000 0.0102

JN.1 �11,1/1713 0.0135 0.0139 0.0129 0.0120 0.0112 1.0000

Note: Due to detection limitations, titers around the detection limit (15) were considered as unknown828
parameters bounded between 0 and 15.829

830
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Supplementary Table 9 Raw pseudovirus titer data for homologous vaccination regimens in Yisimayi,831
et.al. dataset832

Vaccines （antibody）

Prototype
(CoronaVac)

Prototype
(mRNA)

BA.5
(spike)

BQ.1.1
(spike)

XBB.1.5
(spike)

ps
eu
do
vi
ru
s

（
an
tig
en

）
Prototype 3236 27330 43 31 31

BA.5 97 648 21949 5213 383

BQ.1.1 31 257 4100 14357 795

XBB.1.5 30 83 73 139 5561

833
Supplementary Table 10 Self-neutralization titers and relative self-neutralization ratios in Yisimayi,834
et.al. dataset835

Antigen Prototype
(CoronaVac)

Prototype
(mRNA)

BA.5
(spike)

BQ.1.1
(spike)

XBB.1.5
(spike)

Self-
neutralization

titers
3236 27330 21949 14357 5561

relative self-
neutralization

ratio
����������

��5 �����
��5 1.0000 0.6541 0.2534

836
Supplementary Table 11 Cross-neutralization matrix in Yisimayi, et.al. dataset837

Vaccines （antibody）
Prototype

(CoronaVac)
Prototype
(mRNA)

BA.5
(spike)

BQ.1.1
(spike)

XBB.1.5
(spike)

ps
eu
do
vi
ru
s

（
an
tig
en

） Prototype 1.0000 1.0000 0.0020 0.0022 0.0056
BA.5 0.0300 0.0237 1.0000 0.3631 0.0689
BQ.1.1 0.0096 0.0094 0.1868 1.0000 0.1430

XBB.1.5 0.0030a 0.0030 0.0033 0.0097 1.0000
a Due to technical limitations, the neutralization titer of CoronaVac against XBB.1.5 reached the lower838
detection limit. Therefore, when calculating the cross-neutralization coefficient of CoronaVac against839
XBB.1.5, the cross-neutralization coefficient of the prototype mRNA vaccine against XBB.1.5 was840
used as a substitute.841

842
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Supplementary Table 12 The mutation sites of the SARS-Cov-2 variant mRNA vaccines campare to propotype Spike protein843
844 Vaccine Company Information Cat# Mutation sites Number of mutations

CoronaVac Sinovac BIotech Prototype - /
RQ3013 Walvax

Biotechnology Co
Alpha/Beta RQ3013 DelH69-V70、DelY144、K417N、E484K、N501Y、A570D、D614G、

P681H、R682G、R683S、R685S、A701V、T716I、S982A、D1118H 16

RQ3014 Walvax
Biotechnology Co

Delta RQ3014 T19R、G142D、DelF157-R158、L452R、T478K、D614G、P681R、R682G、
R683S、R685S、D950N、K986P、V987P 14

RQ3021 Walvax
Biotechnology Co

Omicron BA.1 RQ3021 A67V、DelH69-V70、T95I、G142D、DelVYY143/145、N211I、DelL212、
ins214EPE、G339D、S371L、S373P、S375F、K417N、N440K、G446S、
S477N、T478K、E484A、Q493R、G496S、Q498R、N501Y、Y505H、
T547K、D614G、H655Y、N679K、P681H、R682G、R683S、R685S、
N764K、D796Y、N856K、Q954H、N969K、L981F、K986P、V987P

44

RQ3019 Walvax
Biotechnology Co

Omicron BA.2/4/5 RQ3019 T19I、LPPA24S、G142D、V213G、G339D、S371F、S373P、S375F、
T376A、D405N、R408S、K417N、N440K、L452R、S477N、T478K、
E484A、F486V、Q493R、Q498R、N501Y、Y505H、D614G、H655Y、
N679K、P681H、R682G、R683S、R685S、N764K、D796Y、Q954H、
N969K

36

RQ3033 Walvax
Biotechnology Co

XBB.1.5 RQ3033 T19I、LPPA24S、V83A、G142D、DelY144、H146Q、Q183E、
V213E、G252V、G339H、R346T、L368I、S371F、S373P、S375F、
T376A、D405N、R408S、K417N、N440K、V445P、G446S、
N460K、S477N、T478K、E484A、F486P、F490S、Q498R、
N501Y、Y505H、D614G、H655Y、N679K、P681H、R682G、
R683S、R685S、N764K、D796Y、Q954H、N969K

45

RQ3064 Walvax
Biotechnology Co

JN.1 RQ3064 T19I、L21R, LPPA24S、S50L、DelH69、DelV70、V127F、
G124D、DelY144、DelN211、L212I、V213G、L216F、H245N、
A264D、G339H、K356T、S371F、S373P、S375F、T376A、
R403K， D405N、R408S、K417N、N440K、V445H、G446S、
N450D、L452W、L455S、N460K、S477N、T478K、N481K、
DelV483、E484K、F486P、Q498R、N501Y、Y505H、E554K、
A570V、D614G、P621S、H655Y、P681R、P682G、R683S、
R685S、N764K、D796Y、S939F、Q954H、N969K

58

RQ3025 Walvax
Biotechnology Co

Alpha/Beta+Omicron
BA.2/4/5

RQ3025 T19I、LPPA24S、DelH69、DelV70、G142D、DelY144、V213G、G339D、
S371F、S373P、S375F、T376A、D405N、R408S、K417N、N440K、
L452R、S477N、T478K、E484K、E484A、F486V、Q493R、Q498R、
N501Y、Y505H、A570D、D614G、H655Y、N679K、P681H、R682G、
R683S、R685S、A701V、T716I、N764K、D796Y、Q954H、N969K、
S982A、D1118H

45

RQ3027 Walvax
Biotechnology Co

Alpha/Beta+XBB.1.5 RQ3027 T19I、 LPPA24S、 DelH69-V70、 V83A、 G142D、 DelY144、 H146Q、

Q183E、 V213E、 G252V、 G339H、 R346T、 L368I、 S371F、 S373P、

S375F、 T376A、D405N、R408S、K417N、N440K、V445P、G446S、
N460K、 S477N、 T478K、 E484A、 E484K、 F486P、 F490S、Q498R、

N501Y、Y505H、A570D、D614G、H655Y、N679K、P681H、R682G、

R683S、R685S、A701V、 T716I、N764K、D796Y、Q954H、N969K、

S982A、D1118H

53
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Supplementary Table 13 The mutantions of SARS-CoV-2 pseudovirus on Spike protein845
SARS-CoV-2
sublineages

Mutations Number of mutations

Prototype / /
Alpha (B.1.1.7) DEL69/70, DEL144/144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H 10
Beta (B.1.351) D80A, D215G, DEL241/243, K417N, E484K, N501Y, D614G, A701V 10
Delta (B.1.617.2) T19R, E156G, DEL157/158, L452R, T478K, D614G, P681R, D950N 9
BA.1 A67V, DEL69-70, T95I, G142D, DEL143-145, N211I, DEL212/212, INS214EPE,G339D, S371L,

S373P, S375F, K417N, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K,
D614G, H655Y, N679K,P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

37

BA.2 T19I, L24S, DEL25-27, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S,
K417N, N440K, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K,
P681H, N764K, D796Y, Q954H, N969K

31

BA.4/5 T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G,
H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

34

BF.7 T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A,
D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H,
D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

35

BQ.1.1 T19I, L24S, DEL25-27, DEL69-70, G142D, V213G, G339D, R346T, S371F, S373P, S375F, T376A,
D405N, R408S, K417N, N440K, K444T, L452R, N460K, S477N, T478K, E484A, F486V, Q498R,
N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

37

XBB.1.5 T19I, L24S, DEL25-27, V83A, G142D, DEL144 H146Q, Q183E, V213E, G252V, G339H, R346T,
L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, N460K,
S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H,
N764K, D796Y, Q954H, N969K

42

JN.1 T19I, L24S, DEL25-27, S50L, DEL69-70, V127F, G142D, DEL144, F153S, R158G, N211I,
DEL212, V213G, L216F, H245N, A264D, I332V, G339H, K356T, S371F, S373P, S375F, T376A,
R403K, D405N, R408S, K417N, N440K, V445H, G446S, N450D, L452W, L455S, N460K, S477N,
T478K, N481K, E484K, F486P, Q498R, N501Y, Y505H, E554K, A570V, D614G, P621S, H655Y,
N679K, P681R, N764K, D796Y, S939F, Q954H, N969K, P1143L

58
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Supplementary Tables 14 to 18 are provided as an Excel file, available in the supplementary materials.846
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