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1. Supplementary Methods

1.1 Construction of the Quartet junction reference datasets

Long-read sequencing data. Seven high-quality batches of long-read RNA-seq
(IrRNA-seq) data from the Quartet samples were used to construct junction reference
datasets. These included two batches of multiplexed arrays sequencing (MAS-seq) data
generated using the PacBio platform, as well as two batches of direct RNA (dRNA)
sequencing and three batches of PCR-cDNA sequencing generated using the Oxford
Nanopore Technologies (ONT). Detailed descriptions of these data are available in our
companion study’.

IrRNA-seq data processing and mapping. For PCR-cDNA ONT sequencing data,
primer  sequences were first removed using  Pychopper (v2.7.10)
(https://github.com/epi2me-labs/pychopper), followed by Poly(A) tail trimming using
the trim_isoseq_polyA script from the official PacBio GitHub repository. MAS-seq data
were preprocessed using the standard Iso-Seq toolkit (v4.3.0) workflow
(https://isoseq.how/), which includes primer removal with lima and Poly(A) tail
trimming with isoseq refine. dRNA ONT sequencing data were used without
preprocessing. All seven batches of long-read data were aligned to the GRCh38 genome
assembly using Minimap2 (v2.28)?, with gene annotations from Ensembl release-109.
The ONT data was aligned with Minimap2 using the parameters -ax splice, -uf, and -
k14. For the PacBio data, the alignment was performed using the parameters -ax
splicechq and -uf. Junctions were extracted from BAM files using the
sjFromSAMcollapseUandM _inclOverlaps.awk script provided by STAR (v2.7.10b)’.
Construction of the junction reference datasets. Building the reference datasets
mainly involved three main steps: identifying high-confidence junctions, selecting
candidate gene sets with sufficient coverage, and generating the final reference datasets
(Figure S4).

(1) First, junctions were defined as high-confidence positives if, in each sample, at least
two out of three replicates had >3 supporting reads, and this criterion was met in at least

5 out of the 7 IrRNA-seq batches. Conversely, junctions with no supporting reads in
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any of the 3 replicates across all 7 batches were defined as high-confidence negative
junctions. For novel junctions, only high-confidence positive junctions were retained.
(i1) Next, genes were selected as candidates for inclusion in the reference datasets if, in
each sample, at least 2 out of 3 replicates had >3 supporting reads, and this criterion
was met in at least 5 out of the 7 batches. Genes that did not meet this threshold and
genes containing any low-confidence junctions were excluded.

(ii1) Finally, junctions from the candidate gene sets were retained for inclusion in the
final junction reference dataset. For annotated junctions, we ensured that all junctions
within each gene were known. For novel junctions, only a reliable set of high-

confidence positive junctions was included.

1.2 Annotation of features for junctions, isoforms, and alternative splicing (AS)

events

Features of junctions. The length and exon number of isoforms containing each
junction were directly extracted from the gene annotation (GTF). Read coverage for
each junction was obtained from STAR-derived junction files (SJ.out.tab). Isoform
coverage uniformity was calculated using the geneBody coverage.py script from
RSeQC (v5.0.4)*. For each isoform, 100 positions were uniformly sampled, and the
coverage at each position was divided by the maximum sequencing depth. The
proportion of positions with relative coverage greater than 0.75 was used as the final
measure of isoform coverage uniformity. GC content was calculated by extracting the
50 bp upstream of the junction start and 50 bp downstream of the junction end, and
computing the proportion of guanine and cytosine bases within this sequence.
Mappability was assessed using GenMap (v1.3.0)° to compute genome-wide
mappability scores for each base, and the mean mappability of the 50 bp flanking
sequence was used as the junction’s mappability measure.

Features of isoforms. [soform length, the number of isoforms per gene, the number of
exons per isoform, and exon length were directly extracted from the gene annotation

(GTF). Isoform GC content was calculated by concatenating all exon sequences of the
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isoform and computing the proportion of guanine and cytosine bases. Isoform
expression levels were obtained directly as FPKM values from the respective
quantification pipelines. The K value, which measures the complexity of exon-isoform
structures for each gene, was defined in previous studies®. The calculation procedure
was conducted as follows:

First, for a given gene harboring I distinct transcript isoforms and E exons, we
constructed a binary matrix A€ {0,1}"®. Each element aje of this matrix was assigned a
value of 1 if the i-th isoform included the e-th exon, and 0 otherwise. This matrix A thus
provides a complete and precise representation of the exon composition of all annotated
transcript isoforms for the gene.

Subsequently, the singular value decomposition (SVD) of the matrix A was performed.
From this decomposition, we obtained the singular values of A, denoted 61,52,...,0rt,
where 1 is the rank of A. The maximum singular value, 6max(A), and the minimum non-
zero singular value, omin(A), were identified.

Finally, the K-value was calculated as the ratio of these two singular values:

(A
K value = Gma—() (D

Omin (A)
Features of AS events. The number of transcript isoforms associated with each AS
event was directly obtained from the .ioe files generated by the generateEvents
command in SUPPA2 (v2.4) 7. The number of neighboring AS events was calculated
by selecting 150 bp upstream and downstream of each event and counting all event
types present within these regions. For sequence-based features, we extracted the 75 bp
upstream and downstream of the relevant junctions for SE, A5, A3, MX, AF, and AL
events, while the entire intronic region was used for RI events. GC content was

computed as the proportion of guanine and cytosine bases in these event-specific

sequences, and mappability was assessed using GenMap as described above.

1.3 Construction of a unified format for different AS event types

Skipping exon (SE). For SE events, four coordinates were used, including the start and

end coordinates of the alternative exon, as well as the end coordinate of the upstream
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exon and the start coordinate of the downstream exon. For the rtMATS output, these
four coordinates correspond to “exonStart Obase”, “exonEnd”, “upstreamEE”, and
“downstreamES”, respectively. For the PSI-Sigma output, the coordinates of the
alternative exon correspond to the “Target Exon,” while the end coordinate of the
upstream exon and the start coordinate of the downstream exon are derived from the
“Event Region” coordinates. In MAJIQ output files, SE events are divided into four
local splicing variations (LSVs). For LSVs with junction names C1_C2 or C2 Cl1, the
“junction_coord” corresponds to the end coordinate of the upstream exon and the start
coordinate of the downstream exon. For LSVs with junction name CI1 A, the
“spliced_with_coord” corresponds to the start and end coordinates of the alternative
exon. PSI represents the mean PSI value across all LSVs that support inclusion of the

alternative exon. For the SUPPA2 output, the four coordinates were directly extracted

from the “event_id” field.

Alternative 5' splice site (ASSS). For A5SS, three coordinates were used: the end
coordinate of the alternative exon, the splice site coordinate on the alternative exon, and
the start coordinate of the downstream exon. These three coordinates correspond to the
junctions supporting inclusion or exclusion of the 5’ splice site. For the rMATS output,
using + strand genes as an example, the three coordinates are “longExonEnd”,
“shortEE”, and “flankingES”. For the PSI-Sigma output, using + strand genes as an
example, the three coordinates correspond to the end coordinate of the “Target Exon”,
and the start and end coordinates of the “Event Region”. For the MAJIQ output, an
ASSS event is represented by two LSVs. The “junction_coord” with junction name
Proximal corresponds to the splice site of the alternative exon and the start coordinate
of the downstream exon, while the “junction coord” with junction name Distal
corresponds to the end coordinate of the alternative exon and the start coordinate of the
downstream exon. The LSV with junction name Proximal represents the isoform that
includes the alternative exon, and its PSI value is used. For the SUPPA2 output, the

three coordinates were directly extracted from the “event id” field.

Alternative 3' splice site (A3SS). For A3SS, similar to A5SS, three coordinates are
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used to define the event, essentially mirroring the strand orientation. The outputs from

the different tools are processed in the same way as described above.

Alternative first exon (AF). For AF, two alternative exons are involved, with the one
at the start of the isoform designated as alternative exon 1 and the other as alternative
exon 2. AF is defined using five coordinates: the start and end coordinates of alternative
exon 1, the start and end coordinates of alternative exon 2, and the start coordinate of
the downstream exon. rMATS and PSI-Sigma do not detect this event type. For the
MAUJIQ output, AF events are also represented as two LSVs. The “spliced with coord”
of the junction with the name Proximal corresponds to the start and end coordinates of
alternative exon 1, while that of the junction with the name Distal corresponds to the
start and end coordinates of alternative exon 2. In addition, the start coordinate of the
downstream exon can be extracted from the “junction_coord”. The LSV with junction
name Distal represents the isoform that includes the alternative exon 1, and its PSI
value is used. For the SUPPA2 output, the five coordinates were directly extracted from

the “event_id” field.

Alternative last exon (AL). For AL, similar to AF, five coordinates are used to define
the event, essentially mirroring the strand orientation. The outputs from the different

tools are processed in the same way as described above.

Mutually exclusive exon (MX). MX events involve two alternative exons. If the strand
is +, the 5" exon is defined as alternative exon 1; if the strand is -, the 3’ exon is defined
as alternative exon 1. MX is defined using six coordinates: the start and end coordinates
of alternative exon 1, the start and end coordinates of alternative exon 2, the end
coordinate of the upstream exon, and the start coordinate of the downstream exon. For
rMATS output, using the + strand as an example, the six coordinates correspond to
“IstExonStart Obase”, “lstExonEnd”, “2ndExonStart Obase”, ‘“2ndExonEnd”,
“upstreamEE”, and “downstreamES”. For PSI-Sigma output, MX events are split into
two separate events corresponding to the two alternative exons. The coordinates of the
“Target Exon” represent the alternative exons, while the “Event Region” spans the end
coordinate of the upstream exon and the start coordinate of the downstream exon. The

8
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PSI value of the first alternative exon is used for analysis. For MAJIQ output, MX
events are represented by four LSVs with junction names CI A1, C2 A2, C2 Al, and
C2 A2. The “spliced with coord” of LSVs with “spliced with” equal to 47/ and A2
correspond to the coordinates of alternative exon 1 and alternative exon 2, respectively.
Additionally, the “junction_coord” of CI Al and C2 A2 contains the end coordinate
of the upstream exon and the start coordinate of the downstream exon. The PSI value
of the LSV with “spliced with” equal to 4/ is used as the PSI for the MX event. For
the SUPPA2 output, the six coordinates were directly extracted from the “event id”

field.

Retained intron (RI). For RI events, four coordinates are used, including the

start and end of the retained intron, as well as the start coordinate of the upst
ream exon and the end coordinate of the downstream exon. For rtMATS output,
these correspond to “upstreamES”, “upstreamEE”, “downstreamES”, and “down
streamEE”. For PSI-Sigma output, the “Target Exon” corresponds to the coordi
nates of the retained intron, while the “Event Region” includes the end coordin
ate of the upstream exon and the start coordinate of the downstream exon. For
MAIJIQ output, RI events are represented by two LSVs, with “junction name”
as C1_C2 intron/C2_Cl intron and C1_C2 spliced/C2 CI spliced. The “juncti
on_coord” of CI_C2 intron/C2_CI intron corresponds to the coordinates of the
retained intron, while “spliced with _coord” and “reference exon coord” provide

the start coordinate of the upstream exon and the end coordinate of the downst
ream exon. The PSI of the RI event is taken from the LSV with “junction na
me” CI_C2 intron/C2_Cl _intron. For the SUPPA2 output, the four coordinates

were directly extracted from the “event id” field.



251 2. Supplementary Figures

252  Figure S1. Experimental and analytical design of this study.
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254 a, Preparation and mixing scheme of the Quartet RNA reference materials. b, Overview

255  of data analysis strategies and their objectives. A unified isoform and alternative
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splicing (AS) event analysis pipeline was first applied to all RNA-seq data from 42
laboratories to evaluate overall detection performance. Based on signal-to-noise ratio
(SNR) and other quality metrics, high-quality laboratories were selected for further
analysis. Multiple combinations of mapping tools, isoform quantification tools,
differentially expressed isoforms (DEIs) detection methods, and AS event callers were
included to investigate the influence of experimental procedures, analysis pipelines, and
intrinsic features of isoforms and AS events. This allowed identification of best
practices for isoform and AS event analysis. Finally, a standardized benchmarking tool
was developed specifically for evaluating widely used AS event detection tools,
including SUPPA2 (v2.4), MATS (v4.3.0) 8, MAJIQ (v2.5.6)°, and PSI-Sigma (v2.3)'°.
Throughout the study, three types of ground truth were employed, complemented by
both ground-truth based and ground-truth free performance metrics to comprehensively
assess RNA-seq performance in AS profiling. RMSE, root mean square error; PCC,
Pearson correlation coefficient; MCC, Matthews correlation coefficient; RMR,
recovery of mixing ratios; CV, coefficient of variation; SD, standard deviation. Created

in BioRender. Zhang, R. (2025) https://BioRender.com/tgay6bs.
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Figure S2. Overview of bioinformatics design.
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RNA-seq data analysis was performed using four mapping tools, eight isoform
quantification tools, seven DEI detection tools, and four AS event detection tools,
resulting in a total of 159 distinct analysis pipelines. Created in BioRender. Zhang, R.

(2025) https://BioRender.com/lIststz9.
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Figure S3. Quality control of RNA-seq data.
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a, Signal-to-noise ratio (SNR) values to measure the quality of quantification data at
gene, isoform, and AS event levels for 42 laboratories based on the Quartet and mixed
samples (18 samples). Dots represented SNR values based on any 17 of the 18 samples.
The red dashed line represents the SNR cutoff of 10. b, Multiple quality metrics were
combined to assign quality tags for each laboratory. The basic metrics included the
number of sequencing reads, base quality (Q30), mapping rate, gene body bias (53’

bias), the percentage of mapped reads in the intergenic region, duplicate rates, cross-

contamination, and sample-identity check (Supplementary Data 1). ASNR represents

the difference between the SNR computed from any subset of 17 out of 18 samples and

that computed from all 18 samples, serving to identify low-quality outliers.
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Figure S4. Stepwise workflow for constructing junction reference datasets.
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Seven batches of high-quality long-read sequencing data from our companion study
were used to construct reference datasets (details in Supplementary Methods). First,
positive and negative junctions supported by long-read sequencing data across multiple
batches were selected. Second, a candidate gene set with sufficient read coverage was
identified. Finally, positive and negative junctions located within the candidate gene set
were further screened, resulting in a reference dataset in which all annotated positive
and negative junctions within these genes were known, as well as an additional dataset
containing novel junctions. Created in BioRender. Zhang, R. (2025)

https://BioRender.com/5f2hh7w.
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Figure S5. Evaluation of junction-level detection performance of RNA-seq.
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a, Recall, precision and F1 score of junction detection across 42 laboratories based on
the junction reference datasets. b, Comparison of false positive (FP) and false negative
(FN) rates of annotated and novel junctions across 42 laboratories. Significance testing
among groups was conducted using paired t-tests. ¢, Comparison of FN rates of
annotated and novel junctions between high-quality and low quality laboratories. Data
are presented as median values (center lines) and the upper and lower quartiles (box
limits). Significance testing among groups was conducted using Mann-Whitney U test.
d, Correlation between FN rates of annotated and novel junctions and the sequencing
depth in exonic regions. e, Comparison of several intrinsic features among true positive
(TP), FP, and FN junctions, including read counts, coverage uniformity, isoform length
and exon number of the associated isoforms, as well as GC content and mappability in
the regions flanking the junctions. ** indicates a two-sided p-value < 0.01, and ***

indicates a two-sided p-value < 0.001.
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316  Figure S6. Pairwise consistency in junction detection across short- and long-read

317 RNA-seq.
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318

319  Heatmap showing the Jaccard coefficients for junction detection results between each
320  pair of 19 high-quality short-read RNA-seq batches from this study and 7 high-quality
321  long-read RNA-seq batches from our companion study. Only junctions supported by
322 >3 reads in at least two out of three replicates were included in the Jaccard coefficient
323  calculation. Laboratories employing short-read RNA-seq clustered mainly according to
324  the mRNA enrichment methods and strandedness, suggesting these are key factors

325 influencing detection performance.
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Figure S7. Read counts distribution of isoforms associated with FN, FP, and TP

junctions.
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Violin plots illustrate the distribution of sequencing read counts for isoforms
corresponding to annotated junctions flagged as FN, FP, and TP in 19 high-quality
laboratories. Embedded boxplots indicate the mean (white line), median (black line),

and interquartile range (box limits) of the read count distribution.
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Figure S8. Coverage uniformity distribution of isoforms associated with FN, FP,

and TP junctions.
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Violin plots illustrate the coverage uniformity distribution for isoforms corresponding

FP TP

to annotated junctions flagged as FN, FP, and TP in 19 high-quality laboratories.
Coverage uniformity for each isoform was defined as the proportion of bases with
coverage depth greater than 75% of the maximum. The embedded boxplots depict the
mean (white line), median (black line), and the interquartile range (box limits) of the

coverage uniformity distribution.
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Figure S9. Length distribution of isoforms associated with FN, FP, and TP

junctions.
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Violin plots illustrate the length distribution for isoforms corresponding to annotated

TP

junctions flagged as FN, FP, and TP in 19 high-quality laboratories. The embedded
boxplots depict the mean (white line), median (black line), and the interquartile range

(box limits) of the length distribution.
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349  Figure S10. Exon count distribution of isoforms associated with FN, FP, and TP

350  junctions.
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352  Violin plots illustrate the exon number distribution of annotated junctions flagged as

351

353 FN, FP,and TP in 19 high-quality laboratories. The embedded boxplots depict the mean
354  (white line), median (black line), and the interquartile range (box limits) of the exon

355  number distribution.
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356  Figure S11. GC content distribution of FN, FP, and TP junctions.
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358  Violin plots illustrate the GC content distribution of annotated junctions flagged as FN,
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357

359  FP, and TP in 19 high-quality laboratories. GC content was calculated using a 100 bp
360 window flanking each junction, comprising 50 bp upstream of the start coordinate and
361 50 bp downstream of the end coordinate. The embedded boxplots show the mean (white

362 line), median (black line), and interquartile range (box limits) of the GC content.
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Figure S12. Mappability distribution of FN, FP, and TP junctions.
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Violin plots illustrate the mappability distribution of annotated junctions flagged as FN,

mappability

-

s

L

FP, and TP in 19 high-quality laboratories. Mappability was calculated using GenMap
(v1.3.0)° in a 50 bp window flanking each junction, comprising 25 bp upstream of the
start coordinate and 25 bp downstream of the end coordinate. The embedded boxplots
depict the mean (white line), median (black line), and the interquartile range (box limits)

of the mappability distribution.
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Figure S13. Mappability distribution of novel junctions flagged as FN and TP.
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Violin plots illustrate the mappability distribution of novel junctions flagged as FN and
TP in 19 high-quality laboratories. Mappability was calculated using GenMap (v1.3.0)
> in a 50 bp window flanking each junction, comprising 25 bp upstream of the start
coordinate and 25 bp downstream of the end coordinate. The embedded boxplots depict
the mean (white line), median (black line), and the interquartile range (box limits) of

the mappability distribution.
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Figure S14. Pairwise consistency in isoform quantification across laboratories.
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a, Heatmap showing the root mean square error (RMSE) of isoform-level log2FC

values between each pair of the 42 participating laboratories. b, Heatmap showing

RMSE values for 1og2FC comparisons among the 19 high-quality laboratories. Rows

and columns are clustered based on hierarchical clustering of RMSE values.
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385  Figure S15. Impact of data quality on isoform quantification accuracy.
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386

387  Isoform quantification accuracy was assessed using the Pearson correlation coefficient.
388  Statistical significance was evaluated using the Mann—Whitney U test. ** and * indicate

389  p-values <0.001 and < 0.05, respectively; ns, not significant.
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Figure S16. Comparison of three performance metrics.
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ROMR (Recovery of Mixing Ratios) measures how well RNA-seq expression data

reflect the known mixing ratios of mixed samples. Correlation of ROMR with (a)

coefficient of variation (CV), (b) root mean square error (RMSE), and (c) the average

of CV and RMSE. ROMR correlates most strongly with the combined accuracy and

reproducibility metric (average of CV and RMSE), suggesting its utility as an integrated

performance indicator. R represents the Pearson correlation coefficient.
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Figure S17. Number of DEIs detected by laboratories.
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a, Total number of DEIs identified by each laboratory, including up-regulated and
down-regulated isoforms. b—f, A positive correlation was observed between sequencing
depth in exonic regions and the number of detected DEIs for the (b) M8 vs. D6, (c) F7

vs. D6, (d) D5 vs. D6, (e) T1 vs. D6, (f) T2 vs. D6 sample pairs. R represents the Pearson

correlation coefficient.
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Figure S18. PCCs of 18 isoform quantification pipelines.
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Boxplots show the distribution of Pearson correlation coefficients (PCCs) across 19
high-quality datasets for each isoform quantification pipelines based on the (a) Quartet
and (b) RT-qPCR reference datasets. Data are presented as median values (center lines)

and the upper and lower quartiles (box limits).
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411  Figure S19. Comparison of CV across 19 quantification pipelines.
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412 coF
413  Boxplots show the distribution of average coefficient of variation (CV) values of
414  isoform expression levels among replicates in the Quartet samples across 19
415  quantification pipelines. Individual points represent CV values from high-quality
416  laboratories. Data are presented as median values (center lines) and the upper and lower

417  quartiles (box limits).
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418  Figure S20. Comparison of SNR across 18 quantification pipelines.

Pipeline
EH sTAR_Cuffdiff
B HISAT2_Cufidiff
Bl sTAR_StingTie
B8 HISAT2_StringTie
B3 subjunc_StringTie
Bl sTAR_featureCounts
ole B HISAT2 featureCounts
ES subjunc_featureCounts
BB STAR_RSEM
B3 HISAT2_RSEM
B3 Bowtie2_RSEM
BB STAR eXpress
B Bowtie2_eXpress
B3 sTAR_Saimon
1 1 o . E3 Bowtie2_Salmon
" . B3 selmon
B Kalisto
B B saifish

o

30

SNR

20

419 T

420  Boxplots display the distribution of SNR values for isoform expression data from the
421  Quartet and mixed samples across 18 quantification pipelines. Individual points
422  represent SNR values for high-quality laboratories. Data are presented as median values

423  (center lines) and the upper and lower quartiles (box limits).
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Figure S21. Impact of isoform quantification tools on DEI detection.
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Boxplots show the distribution of Matthews correlation coefficients (MCC) across 19
high-quality datasets for each differential expression analysis software, stratified by
different isoform quantification tools. Data are presented as median values (center lines)

and the upper and lower quartiles (box limits).
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Figure S22. Recall and precision of differential expression analysis pipelines.
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The scatter plot illustrates the recall and precision of 138 differential expression
analysis pipelines based on the (a) Quartet and (b) RT-qPCR reference datasets. Each
point represents the mean values calculated from the analysis results of 19 high-quality
RNA-seq data. Different colors indicate distinct quantification pipelines, whereas

different shapes denote different differential expression analysis tools.
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Figure S23. Performance of DEI detection tools combined with isoform

quantification pipelines.
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Bubble plots show the mean Matthews correlation coefficient (MCC) across 19 high-

quality datasets for each combination. Both the size and the color intensity of the

bubbles indicate the magnitude of MCC.
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443  Figure S24. Impact of isoform complexity (K-value) on isoform quantification

444  pipelines.
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445

446  Boxplots display the performance of 18 isoform quantification pipelines across 19 high-
447  quality datasets in relation to K-value of isoforms based on the (a) Quartet reference
448  datasets and (b) the recovery of mixing ratios against the built-in truth. Data are

449  presented as median values (center lines) and the upper and lower quartiles (box limits).
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Figure S25. Impact of isoform length on isoform quantification pipelines.

RMSE

RMSE
o o = =

S * e i** - “ y TRl TSR ey
+***é**+—¢, -**é *é **:p” < o=k *&
ey | [ eara psen | [ Bowsez_pseM STAR_spress soncez skpess | [ Tan senen Sautez sanon __somen
! * B TR R * il . *

W ey B iRy, e
mﬁé° "'M:ﬁ:dl o SLaP Bl L S

HISAT2_StringTie

Subjunc_StringTie
B 04
10
03
o8 ¢
o8 02
o7 01

UL -l““#w o Mgt g

A D

i3t

THHEE B §
g

B
€

THEHHHE §
EEET

-
g%

Boxplots display the performance of 18 isoform quantification pipelines across 19 high-

quality datasets in relation to length of isoforms based on the (a) Quartet reference

datasets and (b) the recovery of mixing ratios against the built-in truth. Data are

presented as median values (center lines) and the upper and lower quartiles (box limits).
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Figure S26. Impact of isoform number per

gene on isoform quantification

. .
pipelines.
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Boxplots display the performance of 18 isoform quantification pipelines across 19 high-

quality datasets in relation to isoform number per gene based on the (a) Quartet

reference datasets and (b) the recovery of mixing ratios against the built-in truth. Data

are presented as median values (center lines) and the upper and lower quartiles (box

limits).

36



464

465

466
467

468

469

470

471

Figure S27. Impact of exon number per isoform on isoform quantification

pipelines.
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Boxplots display the performance of 18 isoform quantification pipelines across 19 high-
quality datasets in relation to exon number per isoform based on the (a) Quartet
reference datasets and (b) the recovery of mixing ratios against the built-in truth. Data
are presented as median values (center lines) and the upper and lower quartiles (box

limits).
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Figure S28. Impact of exon length on isoform quantification pipelines.
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Boxplots display the performance of 18 isoform quantification pipelines across 19 high-

quality datasets in relation to mean exon length of each isoform based on the (a) Quartet
reference datasets and (b) the recovery of mixing ratios against the built-in truth. Data
are presented as median values (center lines) and the upper and lower quartiles (box

limits).
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Figure S29. Impact of GC content on isoform quantification pipelines.
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Boxplots display the performance of 18 isoform quantification pipelines across 19 high-

quality datasets in relation to GC content based on the (a) Quartet reference datasets

and (b) the recovery of mixing ratios against the built-in truth. Data are presented as

median values (center lines) and the upper and lower quartiles (box limits).
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485  Figure S30. Impact of isoform expression on isoform quantification pipelines.
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486

487  Boxplots display the performance of 18 isoform quantification pipelines across 19 high-
488  quality datasets in relation to isoform expression level based on the (a) Quartet
489  reference datasets and (b) the recovery of mixing ratios against the built-in truth. Data
490  are presented as median values (center lines) and the upper and lower quartiles (box

491 limits).
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Figure S31. Impact of isoform features based on the built-in truth.
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Evaluation of quantification pipelines with respect to multiple isoform features based
on the built-in truth, including the isoform length, the number of isoforms per gene, the
average length of exons per isoform, the number of exons per isoform, GC content, K-

value (exon-isoform structural complexity), and expression level (FPKM).
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Figure S32. Pairwise consistency in AS event quantification across laboratories.
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a, Heatmap showing the root mean square error (RMSE) of alternative splicing (AS)
event-level delta percent spliced-in (dPSI) values between each pair of the 42
participating laboratories. b, Heatmap showing RMSE values for dPSI comparisons
among the 19 high-quality laboratories. Rows and columns are clustered based on

hierarchical clustering of RMSE values.
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Figure S33. Consistency of ASE detection across 42 laboratories.
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507  The density plot illustrates the distribution of alternative splicing events (ASEs) with

508  respect to the number of laboratories that commonly detected them.



509  Figure S34. Characteristics of ASEs with different detection consistency.
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511  a, Percent spliced-in (PSI) levels, b, PSI reproducibility (standard deviation), ¢, and
512  expression levels of isoforms associated with ASEs, respectively, stratified by their

513  detection consistency across 42 laboratories from low to high.
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Figure S35. Number of DSEs detected by laboratories.
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a, Total number of differential splicing events (DSEs) identified by each laboratory,
including up-regulated and down-regulated events. b—f, A positive correlation was
observed between sequencing depth in exonic regions and the number of detected DSEs
for the (b) M8 vs. D6, (¢) F7 vs. D6, (d) D5 vs. D6, (e) T1 vs. D6, and (f) T2 vs. D6

sample pairs. R represents the Pearson correlation coefficient.
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Figure S36. Distribution of dPSI values detected by SUPPA2 combined with 18

isoform quantification pipelines.
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Ridgeline Plot show the delta percent spliced-in (dPSI) distributions analyzed by
SUPPA2 using TPM data from 18 different isoform quantification pipelines for all
detected alternative splicing (AS) events. The dPSI distribution of AS events included

in the Quartet reference datasets are showed in Fig.5d.
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Figure S37. SNR for SUPPA2 combined with 18 isoform quantification pipelines.
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Violin plots show the SNR distributions of quantification data (PSI) analyzed by

SUPPA2 using TPM data from 18 different isoform quantification pipelines.
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Figure S38. Impact of the number of adjacent AS events on AS detection pipelines.
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Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with
18 isoform quantification pipelines as a function of the number of AS events in adjacent
regions. Reproducibility was assessed using the standard deviation (SD). Data are

shown as median values (center lines) with upper and lower quartiles (box boundaries).

48



538

539

540
541

542

543

544

Figure S39. Impact of AS event-associated isoform number on AS detection

pipelines.
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Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with
18 isoform quantification pipelines as a function of the isoform number associated with
AS events. Reproducibility was assessed using the standard deviation (SD). Data are

shown as median values (center lines) with upper and lower quartiles (box boundaries).
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545  Figure S40. Impact of the GC content on AS detection pipelines.
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546
547  Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with

548 18 isoform quantification pipelines as a function of the GC content. The GC content of
549  each AS event was calculated from two 75 bp regions flanking its splice junctions.
550  Reproducibility was assessed using the standard deviation (SD). Data are shown as

551  median values (center lines) with upper and lower quartiles (box boundaries).
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Figure S41. Impact of the mappability on AS detection pipelines.
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Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with

18 isoform quantification pipelines as a function of the mappability. The mappability

of each AS event was calculated from two 75 bp regions flanking its splice junctions.

Reproducibility was assessed using the standard deviation (SD). Data are shown as

median values (center lines) with upper and lower quartiles (box boundaries).
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Figure S42. Impact of PSI levels on AS detection pipelines.
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Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with
18 isoform quantification pipelines as a function of AS event PSI levels in 19 high-
quality RNA-seq datasets. Reproducibility was assessed using the standard deviation
(SD). Data are shown as median values (center lines) with upper and lower quartiles

(box boundaries).
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Figure S43. Impact of AS event-associated isoform expression levels on AS

detection pipelines.
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Boxplots showing the (a) accuracy and (b) reproducibility of SUPPA2 combined with

18 isoform quantification pipelines as a function of AS-related isoform expression

levels in 19 high-quality RNA-seq datasets. Isoform expression levels were defined as

the average FPKM of all isoforms related to each AS event. Reproducibility was

assessed using the standard deviation (SD). Data are presented as median values (center

lines) with upper and lower quartiles (box boundaries).
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575  Figure S44. A unified format for different AS event types.
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576

577  The coordinates of seven AS events defined in the unified format output are shown as
578 red lines in the corresponding splice graph. Created in BioRender. Zhang, R. (2025)
579  https://BioRender.com/uvu00yo.
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Figure S45. The intersections of annotated and novel AS events by four AS event

detection tools.
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The standardized benchmarking tool generates the Upset plots indicating intersections

of alternative splicing (AS) event across MAJIQ, PSI-Sigma, rtMATS, and SUPPA2,

including both annotated and novel events. AS events with percent spliced-in (PSI)

values between 0.05 and 0.95 were included. Data from the M8 sample of labl are

shown as an example.
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588  Figure S46. The intersections of annotated AS events by four AS event detection

589  tools.
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590

591  The standardized benchmarking tool generates the Upset plots indicating intersections
592  of annotated alternative splicing (AS) event across MAJIQ, PSI-Sigma, rMATS, and
593  SUPPA2. AS events with percent spliced-in (PSI) values between 0.05 and 0.95 were

594  included. Data from the M8 sample of lab1 are shown as an example.
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595  Figure S47. The intersections of annotated and novel AS events by four AS event

596  detection tools.
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597
598  The standardized benchmarking tool generates the Venn plots indicating intersections

599  of alternative splicing (AS) event across MAJIQ, PSI-Sigma, rMATS, and SUPPA2,
600 including both annotated and novel events. AS events with percent spliced-in (PSI)
601  values between 0.05 and 0.95 were included. Data from the M8 sample of labl are

602  shown as an example.
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603  Figure S48. The intersections of annotated AS events by four AS event detection

604  tools.
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606  The standardized benchmarking tool generates the Venn plots indicating intersections
607  of annotated alternative splicing (AS) event across MAJIQ, PSI-Sigma, rMATS, and
608  SUPPA2. AS events with percent spliced-in (PSI) values between 0.05 and 0.95 were

609  included. Data from the M8 sample of lab1 are shown as an example.
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610  Figure S49. The number of annotated and novel DSEs by four AS event detection

611  tools.
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613  The standardized benchmarking tool generates the histogram indicating number of
614  differential splicing events (DSEs) detected by MAIJIQ, PSI-Sigma, rMATS, and
615 SUPPA2, including both annotated and novel alternative splicing (AS) events. Data

616  from the M8/D6 sample pair of labl are shown as an example.
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Figure S50. The number of annotated DSEs by four AS event detection tools.
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annotated differential splicing events (DSEs) detected by MAJIQ, PSI-Sigma, rMATS,

and SUPPA2. Data from the M8/D6 sample pair of labl are shown as an example.
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622  Figure S51. The intersections of annotated and novel DSEs by four AS event

623  detection tools.
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624

625  The standardized benchmarking tool generates the Upset plots indicating intersections
626  of differential splicing events (DSEs) across MAJIQ, PSI-Sigma, rMATS, and SUPPA2,
627  including both annotated and novel alternative splicing (AS) events. Data from the

628  MS8/D6 sample pair of labl are shown as an example.
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629  Figure S52. The intersections of annotated DSEs by four AS event detection tools.
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631  The standardized benchmarking tool generates the Upset plots indicating intersections
632  of annotated differential splicing events (DSEs) across MAJIQ, PSI-Sigma, rMATS,
633  and SUPPA2. Data from the M8/D6 sample pair of labl are shown as an example.
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634  Figure S53. The intersections of annotated and novel DSEs by four AS event

635 detection tools.
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636

637  The standardized benchmarking tool generates the Venn plots indicating intersections
638  of differential splicing events (DSEs) across MAJIQ, PSI-Sigma, rMATS, and SUPPA2,
639 including both annotated and novel alternative splicing (AS) events. Data from the

640  MS8/D6 sample pair of labl are shown as an example.
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641  Figure S54. The intersections of annotated DSEs by four AS event detection tools.
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643  The standardized benchmarking tool generates the Venn plots indicating intersections
644  of annotated differential splicing events (DSEs) across MAJIQ, PSI-Sigma, rMATS,
645 and SUPPA2. Data from the M8/D6 sample pair of labl are shown as an example.
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Figure S55. The dPSI consistency of annotated and novel AS events by four AS

event detection tools.
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The standardized benchmarking tool generates the Scatter plots indicating the

consistency of delta percent spliced-in (dPSI) results across MAJIQ, PSI-Sigma,

rMATS, and SUPPA2, including both annotated and novel alternative splicing (AS)

events. Data from the M8/D6 sample pair of labl are shown as an example.
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Figure S56. The dPSI consistency of annotated AS events by four AS event

detection tools.
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The standardized benchmarking tool generates the Scatter plots indicating the
consistency of delta percent spliced-in (dPSI) results for annotated alternative splicing
(AS) events across MAJIQ, PSI-Sigma, rMATS, and SUPPA2. Data from the M8/D6

sample pair of lab1 are shown as an example.
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Figure S57. The MCC of four AS event detection tools for DSE detection.
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The Matthews correlation coefficient (MCC) of 19 high-quality laboratories in
differential splicing event (DSE) detection against the (a) Quartet and (b) RT-qPCR
reference datasets by four AS event detection tools. Data are presented as median values

(center lines) with upper and lower quartiles (box boundaries).
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