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1. Metal-43 Dataset

Table 1 presents the detailed computational information of the Metal-43 dataset, including the
initial structure IDs obtained from the Material Project (MP) database, space group, the PAW
pseudopotentials used, and the temperatures at which the AIMD simulations were performed.

Supplementary Table 1: Detailed computational information of the Metal-43 dataset, including the initial structure
ID from the Material Project database, spatial groups, PAW pseudopotentials used, and AIMD simulations at 300 K,
0.5 Tc, Tc, and 1.2 Tc temperatures. An empty temperature column indicates that no simulation was conducted at

the corresponding temperature.

Element mp-id Space Group | 300K | 0.5Tc Tc 1.2Tc | POTCAR
Li mp-51 Fm-3m 300 454 548 Li sv
Be mp-87 P6_3/mmc 300 780 1560 1872 Be sv
Na mp-127 Im-3m 300 370 444 Na pv
Mg mp-153 P6_3/mmc 300 462 923 1108 Mg pv
Al mp-134 Fm-3m 300 467 933 1120 Al
K mp-58 Im-3m 300 403 K pv
Ca mp-45 Fm-3m 300 558 1115 1338 Ca sv
Sc mp-67 P6_3/mmc 300 907 1814 2176 Sc_sv
Ti mp-72 p6-mmm 300 970 1941 2297 Ti pv

v mp-146 Im-3m 300 1092 2183 2620 V_ pv
Cr mp-90 Im-3m 300 1090 2180 2616 Cr pv
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Mn mp-35 I4-3m 300 760 1519 1823 Mn_pv
Fe mp-13 Im-3m 300 906 1811 2173 Fe
Co mp-54 P6_3/mmc 300 884 1768 2122 Co
Ni mp-23 Fm-3m 300 864 1728 2138 Ni
Cu mp-30 Fm-3m 300 678 1358 1630 Cu_pv
Zn mp-79 P6_3/mmc 300 693 832 Zn
Ga mp-142 Cmce 300 364 Ga
Rb Im-3m 300 374 Rb_pv
Sr mp-76 Fm-3m 300 525 1050 1260 Sr sv
Y mp-112 P6_3/mmc 300 900 1799 2159 Y sv
Zr mp-131 P6 3/mmc 300 1065 2128 2554 Zr sv
Nb mp-75 Im-3m 300 1375 2750 3300 Nb_sv
Mo mp-129 Im-3m 300 1448 2896 3475 Mo pv
Tc mp-113 P6 3/mmc 300 1215 2430 2916 Tc pv
Ru mp-33 P6_3/mmc 300 1304 2607 3218 Ru_pv
Rh mp-74 Fm-3m 300 1119 2237 2684 Rh pv
Pd mp-2 Fm-3m 300 914 1828 2194 Pd
Ag mp-124 Fm-3m 300 618 1235 1482 Ag
Cd mp-94 P6_3/mmc 300 594 713 Cd
In mp-85 Fm-3m 300 430 516 In
Cs mp-1 Im-3m 300 362 Cs_sv
Ba mp-122 Im-3m 300 500 1000 1200 Ba sv
Hf mp-103 P6_3/mmc 300 1253 2506 3007 Hf pv
Ta mp-50 Im-3m 300 1645 3290 3948 Ta pv
Y MP-91 Im-3m 300 1848 3695 4434 W_sv
Re mp-8 P6_3/mmc 300 1730 3459 4151 Re
Os mp-49 P6_3/mmc 300 1653 3306 3967 Os_pv
Ir mp-101 Fm-3m 300 1370 2739 3287 It
Pt mp-126 Fm-3m 300 1020 2041 2449 Pt
Au mp-81 Fm-3m 300 669 1337 1606 Au
Hg mp-10861 P6/mmm 300 Hg
Tl mp-82 P6 3/mmc 300 577 692 Tl




2. Hyperparameters of NEP and DeePMD models

Unless otherwise specified, the MLFF models for the elements in this work adopt a uniform
hyperparameters setting. Tables2 and 3 summarize the main hyperparameters of the NEP and
DeePMD models, including the cutoff radius, neural network architecture, and the number of training
iterations.

Supplementary Table 2: DeePMD model hyperparameters

Parameter Value
neighbor 100
cutoff 6.0

dtype float64

R _max 6.0
R_min 0.5
smooth_fun poly2 r
embedding network size 25,50,100
fitting network size 200,200,200
activate function tanh
optimizer Adam
start_energy weight 100.0
limit energy weight 10.0
start_force weight 100.0
limit force weight 10.0
epoch 50

start_Ir 0.01
limit_Ir 1077

Supplementary Table 3: NEP model hyperparameters

Parameter Value

cutoff 6,4

n_max 4,4




basis_size 8,8

1 max 42,0
neuron 50
lambda e 1.0
lambda_f 1.0
population 50
generation 100000

3. Errors of different MLFF models

To further demonstrate that these errors originate from the intrinsic properties of elements rather
than specific models or architectures, we also conducted tests on two General-Purpose large models.
These models designed to cover a broader range of elements, featuring enhanced generalization
capability and model size with parameter counts reaching the million scale. Representative examples
of this category include the Higher Order Equivariant Message Passing Neural Networks (MACE)
2and ORB’.

Unlike the smaller models primarily used in this study (NEP and DeePMD), both MACE and ORB
are pre-trained general-purpose models. Therefore, we directly employed the publicly released models
for testing. Specifically, the MACE model used in this study is the large model trained on the Materials
Project Relaxation Trajectory (MPTrj) dataset!, while ORB used its latest version V3 model.
Meanwhile, it is worth noting that due to differences in the DFT parameter settings between the
datasets used for training the General-Purpose models and the dataset constructed in this study, there
is an energy reference offset. Therefore, a constant energy shift was applied to the predicted energies
during testing. Specifically, for each element, the shift was defined as the average difference between
the mode-predicted energies and the reference DFT energies for the corresponding test system. Given
that practical applications typically focus on relative differences rather than absolute energy, such a

correction is both reasonable and commonly adopted in model evaluation.
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Supplementary Figure 1: Energy and force errors of four machine learning force fields (NEP, DeePMD, MACE,

and Orb) across 43 metallic elements, presented in the form of the periodic table.

Figure 1 presents the energy and force errors of the four machine learning force fields, NEP,
DeePMD, mace, and ORB, in the form of a periodic table of elements respectively. Figure. 2 (c) and
(b) further compares the energy and force errors of the four MLFF models across different metallic
systems. Among them, the MACE model exhibits slightly weaker overall performance, whereas the
ORB model has approached the accuracy of small models (NEP and DeePMD) that undergo separate
fitting optimization. Nevertheless, it can be seen that, regardless of the model, the error distribution
trends across different metals are highly consistent, indicating that the distribution patteren of errors
on the periodic table of elements has a certain universality and reflects the influence of the intrinsic

properties of elements on fitting difficulty.
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Supplementary Figure 2: (a, b) Average energy and force errors of NEP, DeePMD, MACE, and ORB models across
43 metallic elements, presented in the form of the periodic table. (¢, d) Histogram of energy and force error

distributions for four models across different elemental systems, with mean values and standard deviations

indicated.
4. Variation of the Sum of Eigenvalues below the Fermi level under Different

Condition
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Supplementary Figure 3: Variation of the sum of eigenvalues below the Fermi level under atomic displacement

perturbations for elements Li, Be, Na, Mg, Al, and K. Different curves represent various smearing methods applied.
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Supplementary Figure 4: Variation of the sum of eigenvalues below the Fermi level under atomic displacement

perturbations for elements Ca, Sc, Ti, V, Cr, and Mn. Different curves represent various smearing methods applied.
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Supplementary Figure 8: Variation of the sum of eigenvalues below the Fermi level under atomic displacement

perturbations for elements In, Cs, Ba, Hf, Ta, and W. Different curves represent various smearing methods applied.
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Supplementary Figure 9: Variation of the sum of eigenvalues below the Fermi level under atomic displacement

perturbations for elements Re, Os, Ir, Pt, Au, and Hg. Different curves represent various smearing methods applied.
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Supplementary Figure 10: Variation of the sum of eigenvalues below the Fermi level under atomic displacement

perturbations for elements T1. Different curves represent various smearing methods applied.
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Supplementary Figure 11: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Li, Be, Na, Mg, Al, and K. Different curves represent various smearing methods applied.
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Supplementary Figure 12: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Ca, Sc, Ti, V, Cr, and Mn. Different curves represent various smearing methods applied.
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Supplementary Figure 13: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Fe, Co, Ni, Cu, Zn, and Ga. Different curves represent various smearing methods applied.
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Supplementary Figure 14: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Rb, Sr, Y, Zr, Nb, and Mo. Different curves represent various smearing methods applied.
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Supplementary Figure 15: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Tc, Ru, Rh, Pd, Ag, and Cd. Different curves represent various smearing methods applied.

Element: In * Element: Cs 20 Elament: Ba -
18] —e- Smear None ¥ =®- Smoar: None peessed
= Srmear Fes D, 0=0.01 ; B [ ol =
3 | -+ Smesr FemiDiac, =005 B pg| ~#+ Smeor: Femi-Dirac, 0v0.05 o rid 3
i |- S e Drar. 002 "% 4~ smas Fam v 0w02 R o
Tra 3 presrrrrreessieaedl 3
’ & s
i w [ ek I
H H = el Z
3 Fom o - I
gos ] P 5"
T / 3 o T
3 o 3. gt it 8
Zoa pod :1’. =z el EBos
5 FangV 5 & 5
E | ag £ Ji' E
a ssaas. » *" L] »
@ . @ @ ! .".t
i /!
-
oo of* 000| e#liess on{ #*
0100 -0075 -0050 -0025 0000 0025 0050 007 0100 0100 -0075 -0050 0025 0O0D 0025 0050 0075 0100 -0100 -0075 -0050 -0025 0000 0025 000 0075  0.100
AE (oV) AE oV) AF (aV)
20 Elemant Ta A Elament: W -
&~ Smear. None ¥, 20| -#+ Smaar Nona ol
- <321 m- Smear, Fermi-Dirac, 5=0.01 ,‘::t’“#‘-/ =Y -»- smear Femi-Diac, =001 o
% 2| -#- Smear Femni-Drac. x5 e e 3| -+- Swes: Femi-Dirac as0.05 +
b & | -*- Smear. Femi-Deac, c=02 - & | -#- smeer Femi-oiac. 0=02 e
<15 < <
* p Ls
i I u
H H H
P 2 2
1
H 816 10
H 2 rix 2
g g ¥ g
& 5 - g
Zos ] P s 7L 5
5% 508 o 505
£ ¢ - £
3 3 e 3
0.0 an{ #* 00
<0100 -0075 -0050 -D025 0000 0025 0050 0675 0100 -0700  -0075 -0050 -0025 0000 0025 0050 0076 0400 -0100  -0075 -0050 -0025 0000 0026 0080 0075 0400
BE (aV) AE (eV) BE (aV)

Supplementary Figure 16: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements In, Cs, Ba, Hf, Ta, and W. Different curves represent various smearing methods applied.
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Supplementary Figure 17: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for

elements Re, Os, Ir, Pt, Au, and Hg. Different curves represent various smearing methods applied.
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Supplementary Figure 18: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for
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elements TI. Different curves represent various smearing methods applied.
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