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1. Metal-43 Dataset 

Table 1 presents the detailed computational information of the Metal-43 dataset, including the 

initial structure IDs obtained from the Material Project (MP) database, space group, the PAW 

pseudopotentials used, and the temperatures at which the AIMD simulations were performed. 

Supplementary Table 1: Detailed computational information of the Metal-43 dataset, including the initial structure 

ID from the Material Project database, spatial groups, PAW pseudopotentials used, and AIMD simulations at 300 K, 

0.5 Tc, Tc, and 1.2 Tc temperatures. An empty temperature column indicates that no simulation was conducted at 

the corresponding temperature. 

Element mp-id Space Group 300K 0.5Tc Tc 1.2Tc POTCAR 

Li mp-51 Fm-3m 300  454 548 Li_sv 

Be mp-87 P6_3/mmc 300 780 1560 1872 Be_sv 

Na mp-127 Im-3m 300  370 444 Na_pv 

Mg mp-153 P6_3/mmc 300 462 923 1108 Mg_pv 

Al mp-134 Fm-3m 300 467 933 1120 Al 

K mp-58 Im-3m 300   403 K_pv 

Ca mp-45 Fm-3m 300 558 1115 1338 Ca_sv 

Sc mp-67 P6_3/mmc 300 907 1814 2176 Sc_sv 

Ti mp-72 p6-mmm 300 970 1941 2297 Ti_pv 

V mp-146 Im-3m 300 1092 2183 2620 V_pv 

Cr mp-90 Im-3m 300 1090 2180 2616 Cr_pv 
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Mn mp-35 I4-3m 300 760 1519 1823 Mn_pv 

Fe mp-13 Im-3m 300 906 1811 2173 Fe 

Co mp-54 P6_3/mmc 300 884 1768 2122 Co 

Ni mp-23 Fm-3m 300 864 1728 2138 Ni 

Cu mp-30 Fm-3m 300 678 1358 1630 Cu_pv 

Zn mp-79 P6_3/mmc 300  693 832 Zn 

Ga mp-142 Cmce 300   364 Ga 

Rb  Im-3m 300   374 Rb_pv 

Sr mp-76 Fm-3m 300 525 1050 1260 Sr_sv 

Y mp-112 P6_3/mmc 300 900 1799 2159 Y_sv 

Zr mp-131 P6_3/mmc 300 1065 2128 2554 Zr_sv 

Nb mp-75 Im-3m 300 1375 2750 3300 Nb_sv 

Mo mp-129 Im-3m 300 1448 2896 3475 Mo_pv 

Tc mp-113 P6_3/mmc 300 1215 2430 2916 Tc_pv 

Ru mp-33 P6_3/mmc 300 1304 2607 3218 Ru_pv 

Rh mp-74 Fm-3m 300 1119 2237 2684 Rh_pv 

Pd mp-2 Fm-3m 300 914 1828 2194 Pd 

Ag mp-124 Fm-3m 300 618 1235 1482 Ag 

Cd mp-94 P6_3/mmc 300  594 713 Cd 

In mp-85 Fm-3m 300  430 516 In 

Cs mp-1 Im-3m 300   362 Cs_sv 

Ba mp-122 Im-3m 300 500 1000 1200 Ba_sv 

Hf mp-103 P6_3/mmc 300 1253 2506 3007 Hf_pv 

Ta mp-50 Im-3m 300 1645 3290 3948 Ta_pv 

W MP-91 Im-3m 300 1848 3695 4434 W_sv 

Re mp-8 P6_3/mmc 300 1730 3459 4151 Re 

Os mp-49 P6_3/mmc 300 1653 3306 3967 Os_pv 

Ir mp-101 Fm-3m 300 1370 2739 3287 It 

Pt mp-126 Fm-3m 300 1020 2041 2449 Pt 

Au mp-81 Fm-3m 300 669 1337 1606 Au 

Hg mp-10861 P6/mmm 300    Hg 

Tl mp-82 P6_3/mmc 300  577 692 Tl 

 



2. Hyperparameters of NEP and DeePMD models 

Unless otherwise specified, the MLFF models for the elements in this work adopt a uniform 

hyperparameters setting. Tables 2 and 3 summarize the main hyperparameters of the NEP and 

DeePMD models, including the cutoff radius, neural network architecture, and the number of training 

iterations. 

Supplementary Table 2: DeePMD model hyperparameters 

Parameter Value 

neighbor 100 

cutoff 6.0 

dtype float64 

R_max 6.0 

R_min 0.5 

smooth_fun poly2_r 

embedding network size 25,50,100 

fitting_network size 200,200,200 

activate_function tanh 

optimizer Adam 

start_energy_weight 100.0 

limit_energy_weight 10.0 

start_force_weight 100.0 

limit_force_weight 10.0 

epoch 50 

start_lr 0.01 

limit_lr 10−7 

 

Supplementary Table 3: NEP model hyperparameters 

Parameter Value 

cutoff 6,4 

n_max 4, 4 



basis_size 8,8 

l_max 4,2,0 

neuron 50 

lambda_e 1.0 

lambda_f 1.0 

population 50 

generation 100000 

 

3. Errors of different MLFF models 

To further demonstrate that these errors originate from the intrinsic properties of elements rather 

than specific models or architectures, we also conducted tests on two General-Purpose large models. 

These models designed to cover a broader range of elements, featuring enhanced generalization 

capability and model size with parameter counts reaching the million scale. Representative examples 

of this category include the Higher Order Equivariant Message Passing Neural Networks (MACE) 

1,2and ORB3.  

Unlike the smaller models primarily used in this study (NEP and DeePMD), both MACE and ORB 

are pre-trained general-purpose models. Therefore, we directly employed the publicly released models 

for testing. Specifically, the MACE model used in this study is the large model trained on the Materials 

Project Relaxation Trajectory (MPTrj) dataset4, while ORB used its latest version V3 model. 

Meanwhile, it is worth noting that due to differences in the DFT parameter settings between the 

datasets used for training the General-Purpose models and the dataset constructed in this study, there 

is an energy reference offset. Therefore, a constant energy shift was applied to the predicted energies 

during testing. Specifically, for each element, the shift was defined as the average difference between 

the mode-predicted energies and the reference DFT energies for the corresponding test system. Given 

that practical applications typically focus on relative differences rather than absolute energy, such a 

correction is both reasonable and commonly adopted in model evaluation. 



 

Supplementary Figure 1: Energy and force errors of four machine learning force fields (NEP, DeePMD, MACE, 

and Orb) across 43 metallic elements, presented in the form of the periodic table. 

Figure 1 presents the energy and force errors of the four machine learning force fields, NEP, 

DeePMD, mace, and ORB, in the form of a periodic table of elements respectively. Figure. 2 (c) and 

(b) further compares the energy and force errors of the four MLFF models across different metallic 

systems. Among them, the MACE model exhibits slightly weaker overall performance, whereas the 

ORB model has approached the accuracy of small models (NEP and DeePMD) that undergo separate 

fitting optimization. Nevertheless, it can be seen that, regardless of the model, the error distribution 

trends across different metals are highly consistent, indicating that the distribution patteren of errors 

on the periodic table of elements has a certain universality and reflects the influence of the intrinsic 

properties of elements on fitting difficulty. 

 

 

 



 

Supplementary Figure 2: (a, b) Average energy and force errors of NEP, DeePMD, MACE, and ORB models across 

43 metallic elements, presented in the form of the periodic table. (c, d) Histogram of energy and force error 

distributions for four models across different elemental systems, with mean values and standard deviations 

indicated. 

4. Variation of the Sum of Eigenvalues below the Fermi level under Different 

Condition 



 

Supplementary Figure 3: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Li, Be, Na, Mg, Al, and K. Different curves represent various smearing methods applied. 

 

Supplementary Figure 4: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Ca, Sc, Ti, V, Cr, and Mn. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 5: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Fe, Co, Ni, Cu, Zn and Ga. Different curves represent various smearing methods 

applied. 

 

 

Supplementary Figure 6: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Rb, Sr, Y, Zr, Nb, and Mo. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 7: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Tc, Ru, Rh, Pd, Ag, and Cd. Different curves represent various smearing methods 

applied. 

 

Supplementary Figure 8: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements In, Cs, Ba, Hf, Ta, and W. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 9: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Re, Os, Ir, Pt, Au, and Hg. Different curves represent various smearing methods applied. 

 

 

 

Supplementary Figure 10: Variation of the sum of eigenvalues below the Fermi level under atomic displacement 

perturbations for elements Tl. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 11: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Li, Be, Na, Mg, Al, and K. Different curves represent various smearing methods applied. 

 

Supplementary Figure 12: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Ca, Sc, Ti, V, Cr, and Mn. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 13: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Fe, Co, Ni, Cu, Zn, and Ga. Different curves represent various smearing methods applied. 

 

 

 

Supplementary Figure 14: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Rb, Sr, Y, Zr, Nb, and Mo. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 15: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Tc, Ru, Rh, Pd, Ag, and Cd. Different curves represent various smearing methods applied. 

 

 

 

Supplementary Figure 16: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements In, Cs, Ba, Hf, Ta, and W. Different curves represent various smearing methods applied. 

 



 

Supplementary Figure 17: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Re, Os, Ir, Pt, Au, and Hg. Different curves represent various smearing methods applied. 

 

Supplementary Figure 18: Variation of the sum of eigenvalues below the Fermi level under Fermi level shifts for 

elements Tl. Different curves represent various smearing methods applied. 
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