

SUPPORTING INFORMATION

Spectroscopic Determination of Site-Selective Ligand Binding on Single Anisotropic Nanocrystals

4 Dong Le^{1,2†}, Wade Shipley^{1,3†}, Alexandria Do^{1,3†}, Liya Bi^{1,4}, Yufei Wang^{1,3}, Krista Balto⁴, Rourav
5 Basak² Hans A. Bechtel⁵, Stephanie N. Gilbert Corder⁵, Ilya Mazalov³, Tesa Manto², Reno
6 Sammons², Yutong She³, Fiona Liang³, Ganesh Raghavendran³, Joshua S. Figueroa⁴, Shaowei
7 Li^{1,4}, Tod A. Pascal^{1,3}, Andrea R. Tao^{1,3}, Alex Frano^{1,2}

⁹ ¹Material Science and Engineering Program, University of California San Diego, 9500 Gilman
¹⁰ Drive, La Jolla, 92093, CA, USA.

11 ²Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, 92093,
12 CA, USA.

13 ³Aiiso and Yufeng Li Family Department of Chemical and NanoEngineering, University of
14 California San Diego, 9500 Gilman Drive, La Jolla, 92093, CA, USA.

15 ⁴Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman
16 Drive, La Jolla, 92093, CA, USA.

17 ⁵Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,
18 94720, CA, USA.

[†]These authors contributed equally to this work.

E-mail: afrano@ucsd.edu

This PDF file includes:

23	Materials and Methods.....	S2 – S4
24	Computational Details.....	S4 – S5
25	Supporting Figures.....	S5 – S16
26	Supporting Tables.....	S17
27	References	S18 – S19

29 **1. Materials and Methods**

30 **1.1. Chemicals and Materials.** Silver nitrate ($\geq 99\%$), 1,5-pentanediol (PD, $\geq 97\%$), copper (II) chloride ($\geq 98\%$), poly(vinylpyrrolidone) (PVP, average MW = 55 000 g/mol), Xylyl isocyanide (CNXylyl; Xylyl = 2,6-Me₂C₆H₃; 98%) were purchased from Sigma-Aldrich and used as received. Water used in experiments was obtained from a Millipore water purification system with a resistivity of 18.2 M Ω cm. The *m*-terphenyl isocyanide ligands CNAr^{Mes²} (Ar^{Mes²} = 2,6-(2,4,6-Me₃C₆H₂)₂C₆H₃) were prepared as previously described. [1]

36 **1.2. Synthesis and purification of PVP-grafted Silver Nanocubes (PVP-AgNCs).** Silver nanocubes were synthesized through a polyol reaction as previously described. [2] In order to prepare the AgNO₃ precursor solution, 40 μ L of 0.043 M CuCl₂ solution was combined with 0.20 g of AgNO₃ in 5 mL of 1,5-pentanediol. The mixture was then sonicated until the salt crystals were fully dissolved. Simultaneously, 0.20 g of PVP was dissolved in 10 mL of pentanediol. For the reaction solution, 10 mL of pentanediol was heated in a 50 mL glass round bottom flask and continuously stirred in an oil bath at 195°C. The AgNO₃ and PVP solutions were injected alternately into the flask at 500 μ L/min rates and 320 μ L/30 s, respectively, for five cycles. After injection, heating was ceased, and the solution was allowed to cool to room temperature. The resulting dispersion was filtered through membranes with 650, 450, and 220 nm pore sizes to remove nanowires and larger NPs. Finally, the filtered dispersion was centrifuged and redispersed to an optical density of 60 in chloroform, with a small amount of ethanol added for stabilization.

49 **1.3. Synthesis of CNAr^{Mes²}-AgNCs and CNXylyl-AgNCs.** To perform the ligand exchange (LE) process, CNAr^{Mes²} or CNXylyl isocyanide was added to 1 mL of AgNC dispersion to achieve a final concentration of 50 μ M. The mixture was reactivated for 4 hours to complete the ligand exchange. After the reaction, the dispersion was washed twice to remove excess ligands. The resulting sediment was then redispersed in chloroform for use in further experiments.

55 **1.4. Nanocrystal Characterizations.** Scanning electron microscopy (SEM) was conducted using an FEI Apreo SEM at an accelerating voltage of 5 kV. UV-visible absorption measurements were performed on Cary 50/60 UV-Vis spectrophotometer. Dynamic Light Scattering (DLS) was performed using the Malvern Instruments Zetasizer Nano. Raman measurements were performed with a Renishaw micro-Raman spectrometer (Renishaw Invia) coupled with a Leica microscope, utilizing a 50 \times objective (Leica N-plan) and covering the range of 800 –2400cm⁻¹. The excitation source was a 532 nm wavelength generated by a 50 mW Arlon laser. Far-field ATR-FTIR measurements were employed to detect the properties of both bound and unbound isocyanide groups on silver. Atomic Force Microscopy (AFM) topography and phase images were taken with a Park Systems NX20 atomic force microscope with a 4XC-NN tip produced by MikroMasch. Due to contrasts in surface topography with sharp vertical nanocube sidewalls and flat nanocube surfaces, some ringing artifacts were observed on the nanocube sidewalls. This was rectified with adaptive scanning and some limited ASF closing filters applied to the sidewalls in Gwyddion 2.62. The tip oscillation amplitude was kept between 45 and 55 nm to balance, optimize tracking and maintain sensitive phase contrast. All AFM image analysis was performed in Gwyddion. Small-angle X-ray Scattering (SAXS) experiments was conducted using the Xeuss 3.0 instrument, which consists of the Cu based Genix3D μ -source X-ray beam with an Eiger 2R

73 1M 2D detector from Dectris. Each sample was diluted in ethanol in the standard 1.5-1.8 x 90 mm
74 capillary tubes and were ran for 25 minutes each under standard configuration in ESAXS mode
75 (SDD of 1800 mm). The standard atmospheric caps were installed on the Xeuss. Aliquots were
76 taken from the center of the vials after being shaken to try and get a representative population.
77 Data is processed using the XSACCT software from Xenocs.

78
79 **1.5. Sample preparation for SINS measurement.** Functionalized AgNCs in chloroform were
80 drop-cast onto the water surface in a glass petri dish. Once the chloroform evaporated, the petri
81 dish was covered, allowing the monolayer to assemble over several hours. This assembled
82 monolayer was then transferred onto the surface of a gold substrate – Au(111) – by vertically dip-
83 coating it. After this process, the sample was ready for SINS measurement.

84
85 **1.6. Synchrotron infrared nanospectroscopy (SINS).** SINS measurements were conducted at
86 beamline 5.4 of the Advanced Light Source at Lawrence Berkeley National Laboratory. Infrared
87 light was focused onto the apex of a Pt-coated AFM tip (NCH-Pt by Nanosensors) within a
88 modified AFM system (Innova, Bruker). [3] Due to the nonlinear dependency of the near-field
89 scattered signal on the tip-sample distance, tip oscillation induced higher harmonics ($n\omega$) in the
90 scattered signal. [3] The high harmonics frequency of 2ω was detected using a lock-in amplifier
91 to isolate the near-field signal from the far-field background. [3] A modified commercial FTIR
92 spectrometer (Nicolet 6700, Thermo Scientific) was used to collect the infrared nanospectroscopy
93 measurements. After obtaining AFM topography images of the sample surface, IR
94 nanospectroscopy point measurements were performed at selected locations. The complex-
95 valued near-field spectrum was derived from the Fourier transform of the interferogram, with the
96 real ($\text{Re}(\nu)$) and imaginary ($\text{Im}(\nu)$) components represented as spectral amplitude $A(\nu)$ and phase
97 $\phi(\nu)$, respectively. Near-field spectra were reported in the form of a normalized scattering phase,
98 $\phi(\nu) = \phi_{\text{sample}}(\nu) - \phi_{\text{reference}}(\nu)$, using the bare Au-coated glass substrate as the reference. Spectral
99 processing was performed using custom software developed at the beamline's end station. IR
100 nanospectroscopy measurements were performed at multiple sites across the surfaces of several
101 nanoparticles in each sample. At each location, spectra were collected repeatedly and averaged
102 to improve the signal-to-noise ratio. Prior to acquiring each IR spectrum, the sample was allowed
103 to reach thermal equilibrium, ensuring thermal drift was less than 5 nm/min. The IR signal was
104 continuously monitored during acquisition to maintain precise tip positioning and measurement
105 accuracy.

106
107 **1.7. Scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy**
108 **(STM-IETS).** The STM and STM-IETS experiments were performed using a customized CreaTec
109 low-temperature STM operating at approximately 5 K and a base pressure of less than 1×10^{-10}
110 Torr. The Ag(111) substrate was cleaned by successive cycles of Ar^+ sputtering and thermal
111 annealing. The electrochemically etched W tip was cleaned and sharpened by Ar^+ sputtering and
112 thermal annealing, followed by conditioning through repeated poking on the Ag(111) surface until
113 single-molecule resolution was achieved. The thermal stability of $\text{CNAr}^{\text{Mes}^2}$ has been examined.
114 [4] We dosed the $\text{CNAr}^{\text{Mes}^2}$ ligands onto the clean Ag(111) surface at 5 K via thermal sublimation
115 using a homemade Knudsen cell evaporator within the vacuum chamber. To promote surface
116 diffusion of $\text{CNAr}^{\text{Mes}^2}$ ligands, the sample was gradually warmed from 5 K to room temperature by
117 removing it from the STM cryostat. Subsequently, the sample was cooled back down to 5 K for
118 examination. Topographic images were acquired in constant current mode by recording the z-

119 position with feedback engaged and processed using Gwyddion. [5] The d^2I/dV^2 spectra were
120 obtained by recording the second harmonic output of a lock-in amplifier while sweeping the bias
121 voltage. A modulation of 3 mV (root mean square) at a frequency of 377 Hz was applied to the
122 sample bias, with feedback turned off during bias sweeping.

123

124 **2. Computational Details**

125 **2.1. DFT Calculations.** To calculate the binding energies of $\text{CNAr}^{\text{Mes}^2}$ and CNXylyl to Ag surfaces,
126 Density Functional Theory (DFT) calculations were performed using the Quantum Espresso (QE)
127 package [6], using the PBE exchange correlation functional [7] and the ultrasoft pseudopotentials
128 of Dal Corso *et al.* [8] The wavefunction kinetic energy cutoff was set to 60 (Ry) and a convergence
129 tolerance of 1E-08 Ry, while the cutoff for the charge density was set to 480 (Ry). A 15x15x15 K-
130 point grid was used to efficiently sample the Brillouin zone. To capture the interactions of the
131 isocyanide ligands with Ag, the (100) and (111) surfaces were constructed, with a minimum of four
132 layers of Ag atoms and a vacuum layer of at least 40 Å. Self-Consistent Field (SCF) calculations
133 were performed on the isolated ligand, bulk Ag, and each of the slab geometries. The total
134 energies of the $\text{CNAr}^{\text{Mes}^2}$ and CNXylyl ligands on each of the Ag slabs were obtained, with the
135 distance between the isocyanide C and the slab surface were set to distances ranging between
136 2 - 10 Å in 1 Å increments, followed by a finer scale of 0.1 Å increments about the energy minima.
137 The binding energy was calculated as:

138
$$E_{\text{binding}} = E_{\text{slab|ligand}} - E_{\text{slab}} - E_{\text{ligand}}$$

139 **2.2. MD Simulations.** A 30x30x30 (Å) silver nanocube with exposed (100) faces, consisting of
140 2457 atoms, was placed in the center of a 100x100x100 Å³ box. Ninety-eight $\text{CNAr}^{\text{Mes}^2}$ and
141 CNXylyl ligands were added, then the entire system was solvated with 7,300 chloroform
142 molecules using the Packmol package. [9]

143 Classical molecular dynamics (MD) simulations were performed using the LAMMPS simulation
144 engine [10]. The Ag atoms that constitute the nanocube were described using the Embedded
145 Atom/Finnis-Sinclair Method, with pairwise interactions developed Ackland and coworkers [11].
146 The $\text{CNAr}^{\text{Mes}^2}$ and CNXylyl ligands were primarily described with the GAFF force field [12], while
147 the C≡N bond stretch and ring torsions were described using the QM-corrected parameters
148 obtained in our previous work. [13] The chloroform molecules were described using the
149 parameters developed by Kamanth *et al.* [14] The Ag – ligand van der Waals (vdW) interactions
150 were obtained from Lorentz-Berthelot [15] mixing rules, assuming the Ag van der Waals
151 parameters in UFF. [16]

152 The van der Waals and real space coulomb cutoffs in the MD simulations were 10 Å. A cubic
153 spline was applied to the van der Waals interactions to ensure smooth convergence and vanishing
154 energies and forces at the cutoff (inner cutoff distance of 9 Å). The reciprocal space coulomb
155 interactions were computed with a particle-particle-particle-mesh solver, with an error tolerance
156 of 10^{-6} . [17] Each MD simulation was initiated with 500 conjugated gradient steps, followed by
157 gradual heating to 5K using 0.5 ns (500,000 steps with an integration timestep of 1 fs) dynamics
158 in the canonical ensemble (NVT – constant number of particles N, volume V and temperature T
159 = 298.15 K). A Nose-Hoover thermostat was used with a temperature relaxation window of 100
160 fs. The time-reversible measure-preserving Verlet integrators derived by Tuckerman *et al.* [18]
161 was applied for the time integration. After density equilibration, the system was simulated in the
162 NVT ensemble for at least 5 ns of NVT dynamics.

163 **2.3. Simulated Raman Spectra.** To observe the C≡N stretching mode, simulated Raman
164 spectroscopy was done using a modified form of the 2-Phase Thermodynamics code (2PT). [19]
165 After 5 ns of NVT dynamics, sampling groups were obtained by identifying isocyanide ligands that
166 were either freely floating in solution or bound to a corner, or planar site. Next, the 2PT trajectory
167 was generated by subjecting the simulated systems to an additional 200 ps of NVT dynamics,
168 with sampling occurring every 4 fs.

169 The vibrational power spectrum $\alpha_{\omega}^{V_{vib}}$ was obtained from the generated trajectory file:

170
$$\alpha_{\omega}^{V_{vib}} = \int_{-\infty}^{\infty} dt \langle V_{vib}(t) \cdot V_{vib}(0) \rangle \exp(i\omega t)$$

171 Where t is time, ω is frequency, V_{vib} is the vibrational component of the velocity of the species.

172 The IR spectra of neutral species (α_{ω}^{IR}) was generated from the Fast Fourier Transform (FFT) of
173 the time correlation of molecular dipole moments (D_{mol}) :

174
$$D_{mol} = \sum_1^n q \cdot \vec{r}$$

175 Where 'n' is the number of atoms in a molecule, 'q' and ' \vec{r} ' are charge and position vector of the
176 atom, respectively.

177
$$\alpha_{\omega}^{IR} = \frac{2\pi\omega(1 - \exp(-\beta\hbar\omega))}{3\hbar c V \mu_{\omega}} * \int_{-\infty}^{\infty} dt \langle D_{mol}(t) \cdot D_{mol}(0) \rangle \exp(i\omega t)$$

178 Where \hbar is reduced Planck's constant, c is speed of light, V is the volume of the species under
179 consideration, μ_{ω} is the refractive index of the medium at frequency ω and $\beta = 1/kT$, T being the
180 temperature and k the Boltzmann constant. μ_{ω} is considered constant for simplicity.

181 The "unscaled" Raman spectra (α_{ω}^{Raman}) was generated by subtracting the IR spectrum from the
182 vibration power spectrum of the species:

183

184
$$\alpha_{\omega}^{Raman} = \alpha_{\omega}^{V_{vib}} - 1 * \alpha_{\omega}^{IR}$$

185

186

187

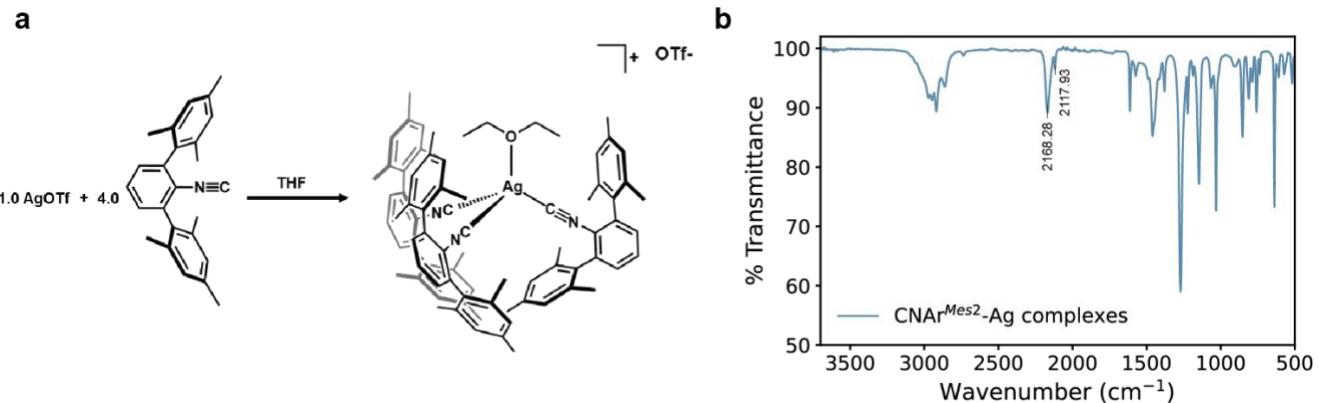
188

189

190

191

192

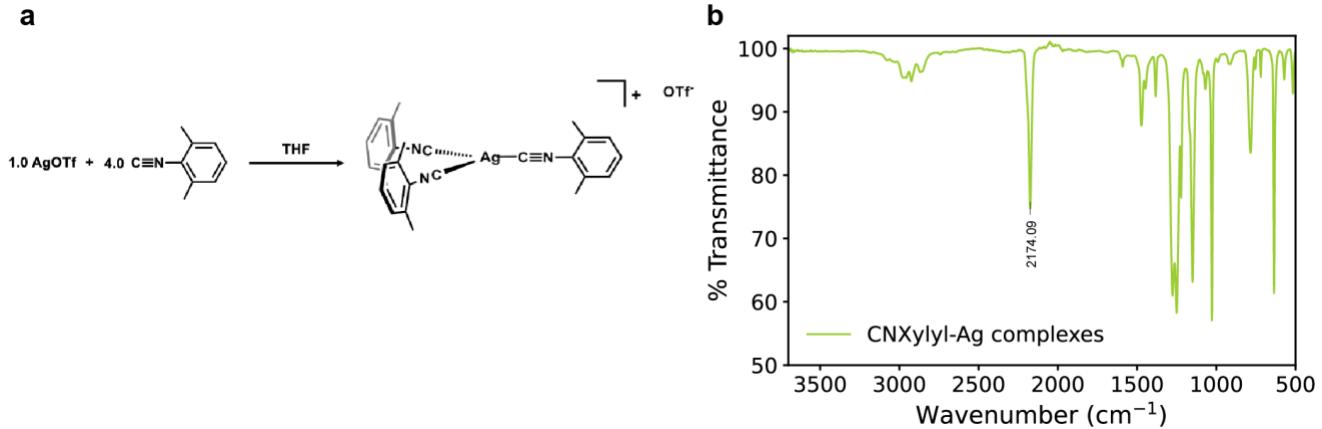

193

194

195

196 **3. Supporting Figures**

197


198
199

200

201 **Figure S1.** (a) Synthetic route to $[\text{Ag}(\text{Et}_2\text{O})(\text{CNAr}^{\text{Mes}2})_3]\text{OTf}$. (b) ATR-IR spectrum of
202 $[\text{Ag}(\text{Et}_2\text{O})(\text{CNAr}^{\text{Mes}2})_3]\text{OTf}$ from (a). Isocyanide stretching frequency of bound dimesityl phenyl
203 isocyanide ($\text{CNAr}^{\text{Mes}2}$) to Ag is $\nu_{\text{CN}} \sim 2168 \text{ cm}^{-1}$. Free $\text{CNAr}^{\text{Mes}2}$ is observed at $\nu_{\text{CN}} \sim 2118 \text{ cm}^{-1}$.

204
205
206

207

208
209

210 **Figure S2.** (a) Synthetic route to $[\text{Ag}(\text{CNXylyl})_3]\text{OTf}$. (b) ATR-IR spectrum of the product of AgOTf
211 and *m*-Xylyl isocyanide (CNXylyl) from (a). Isocyanide stretching frequency of bound CNXylyl
212 isocyanide to Ag is $\nu_{\text{CN}} \sim 2174 \text{ cm}^{-1}$.

213

214

215

216

217

218

219

220

221

222

223

224

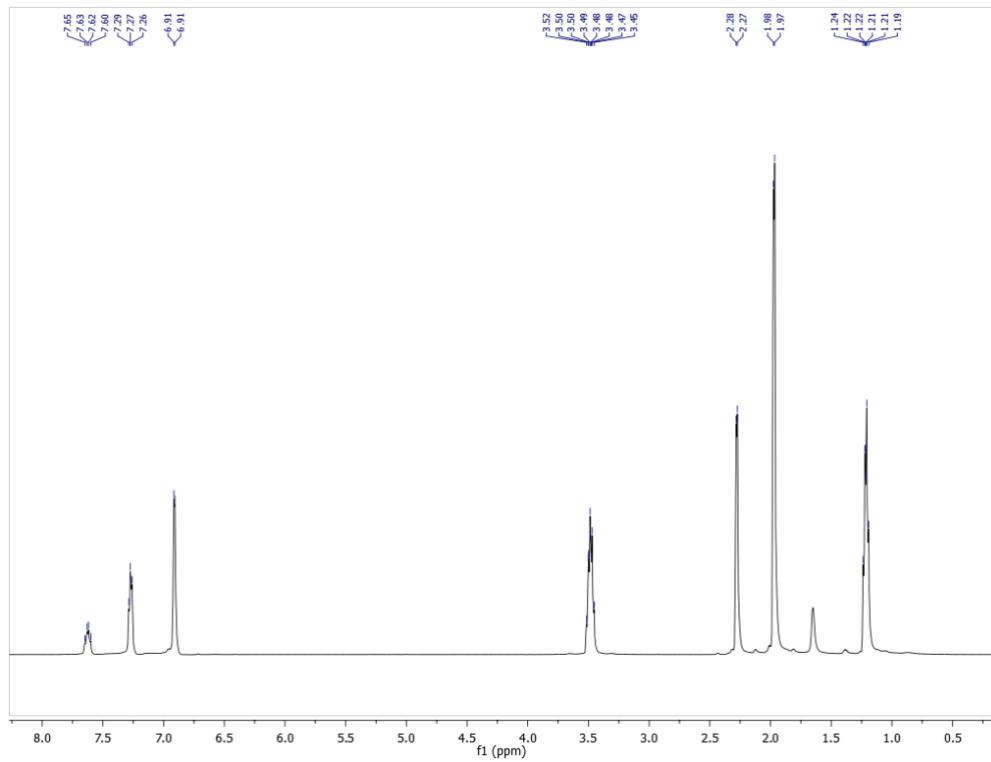
225

226

227

228

229


230

231

232

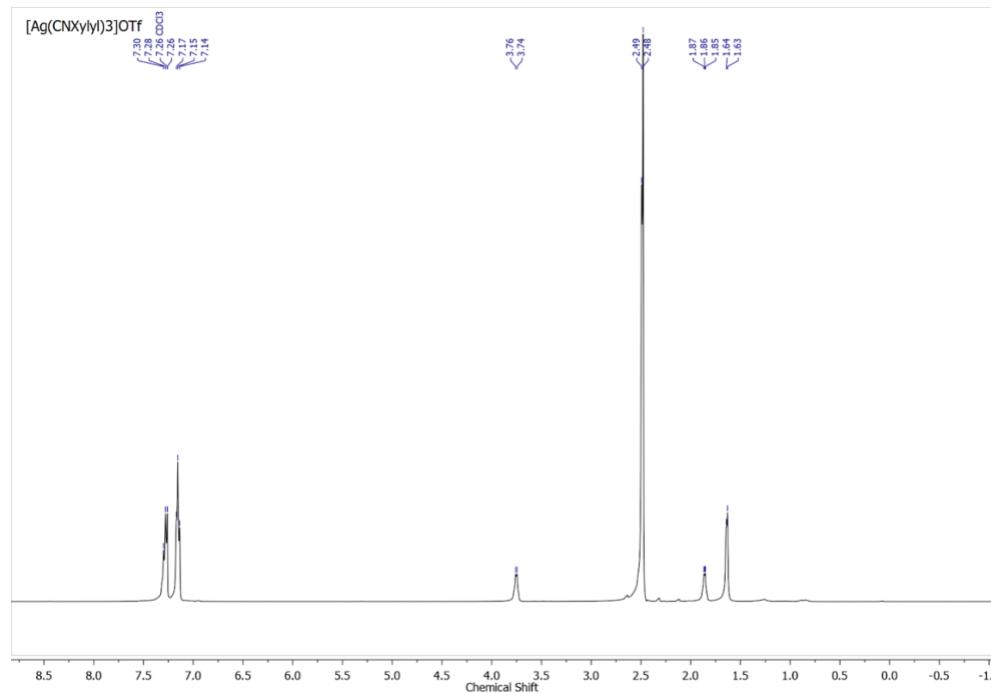


Figure S3. X-ray crystal structure along the crystallographic *b* axis of (a) $[\text{Ag}(\text{Et}_2\text{O})(\text{CNAr}^{\text{Mes}^2})_3]\text{OTf}$ and of (b) $[\text{Ag}(\text{CNXyl})_3]\text{OTf}$. Hydrogens are omitted for clarity.

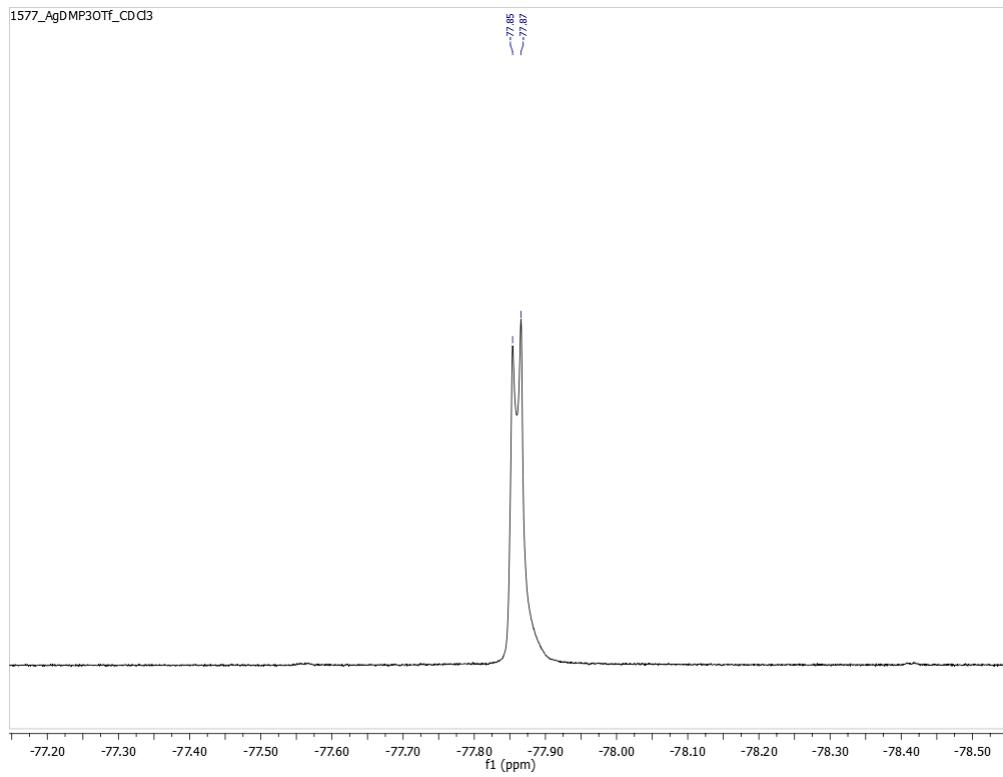
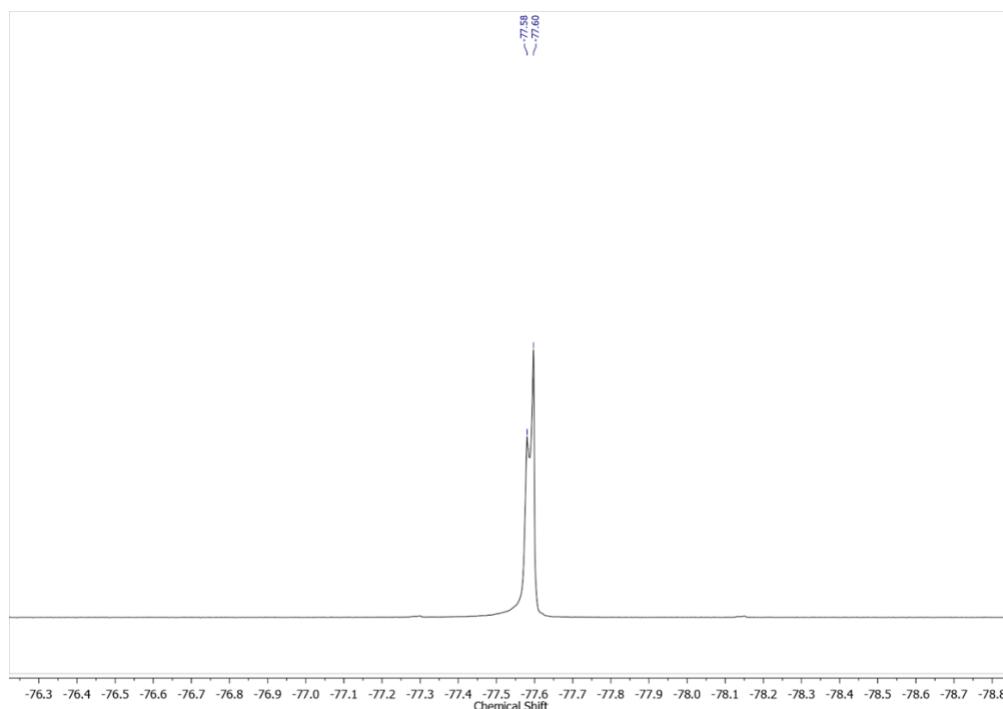

233
234
235
236
237

Figure S4. ^1H -NMR spectrum of $[\text{Ag}(\text{Et}_2\text{O})(\text{CNAr}^{\text{Mes}2})_3]\text{OTf}$ in CDCl_3 . Free $\text{CNAr}^{\text{Mes}2}$ observed in the spectrum.

238
239
240
241

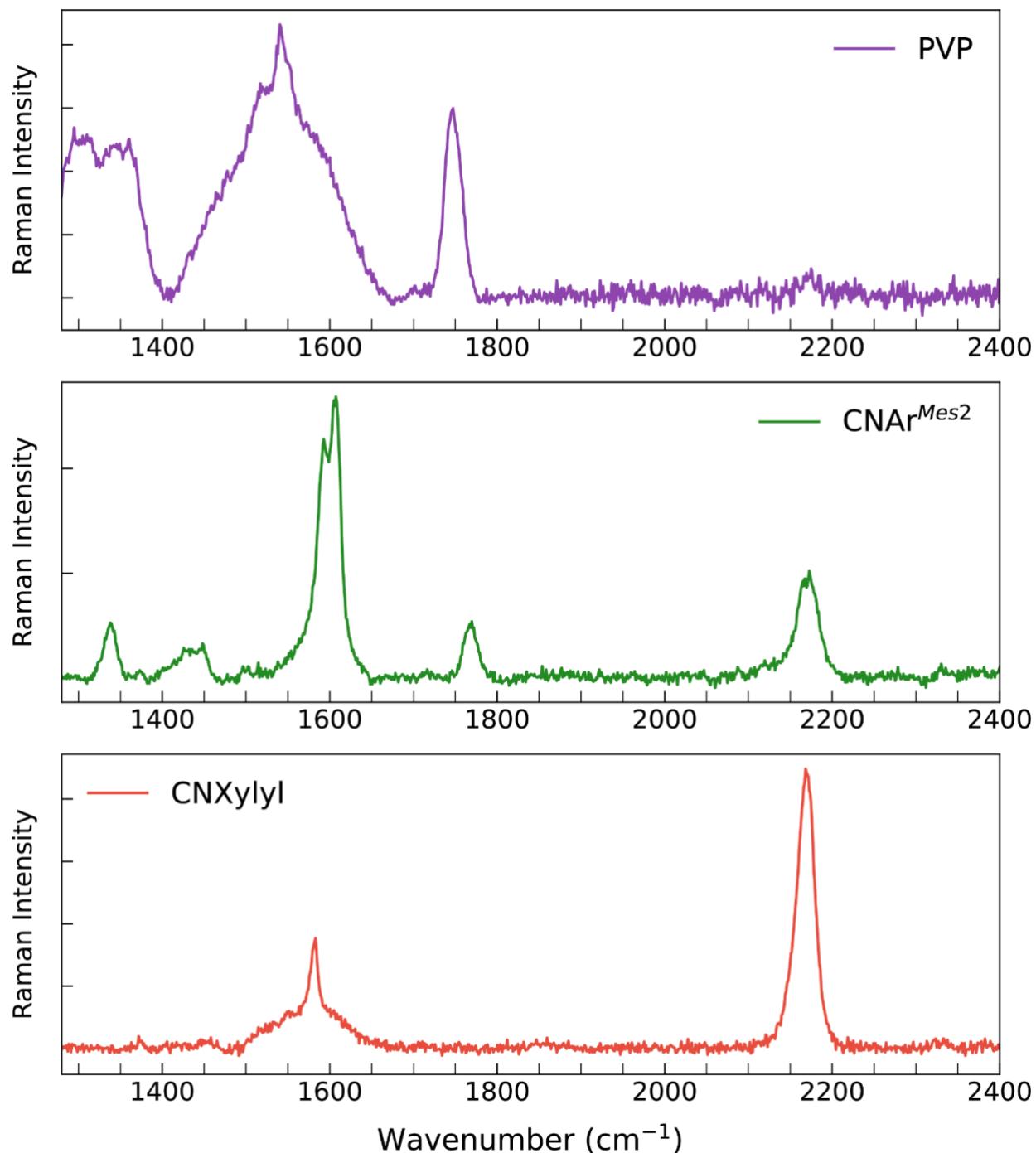
Figure S5. ^1H -NMR spectrum of $[\text{Ag}(\text{CNXYlyl})_3]\text{OTf}$ in CDCl_3 .

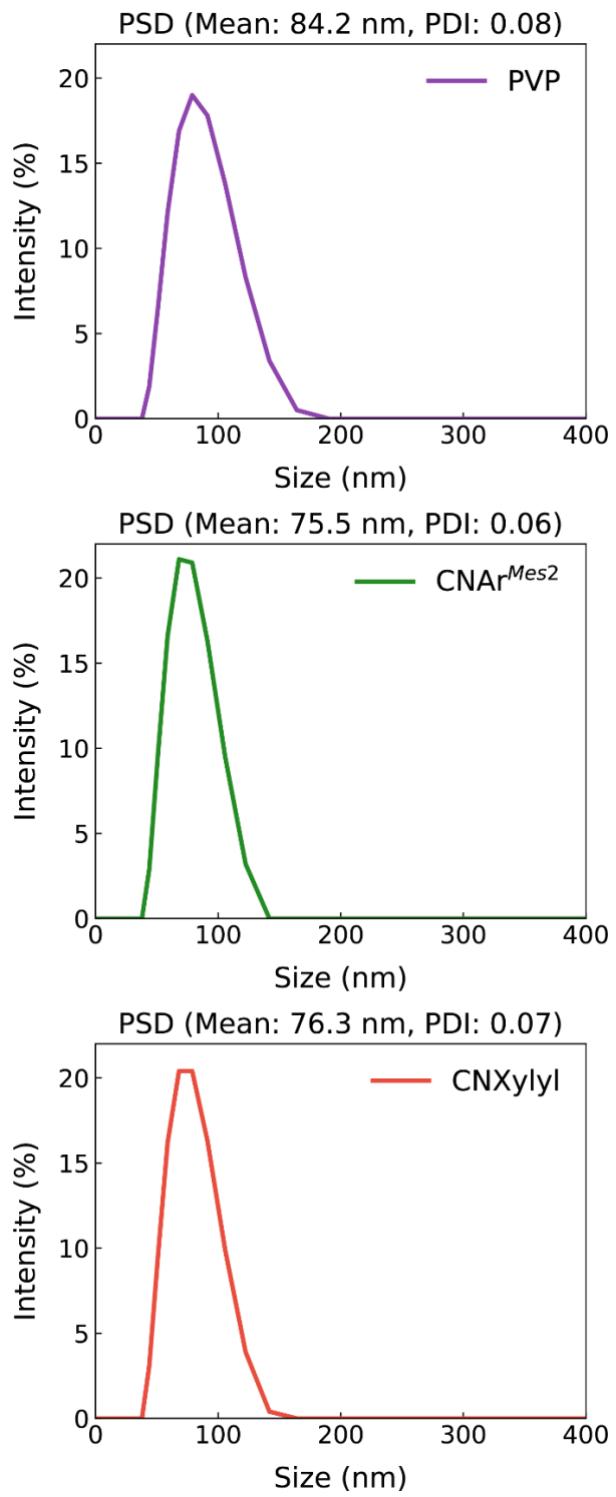

242

243

244 **Figure S6.** ¹⁹F-NMR spectrum of [Ag(Et₂O)(CNAr^{Mes²})₃]OTf in CDCl₃.

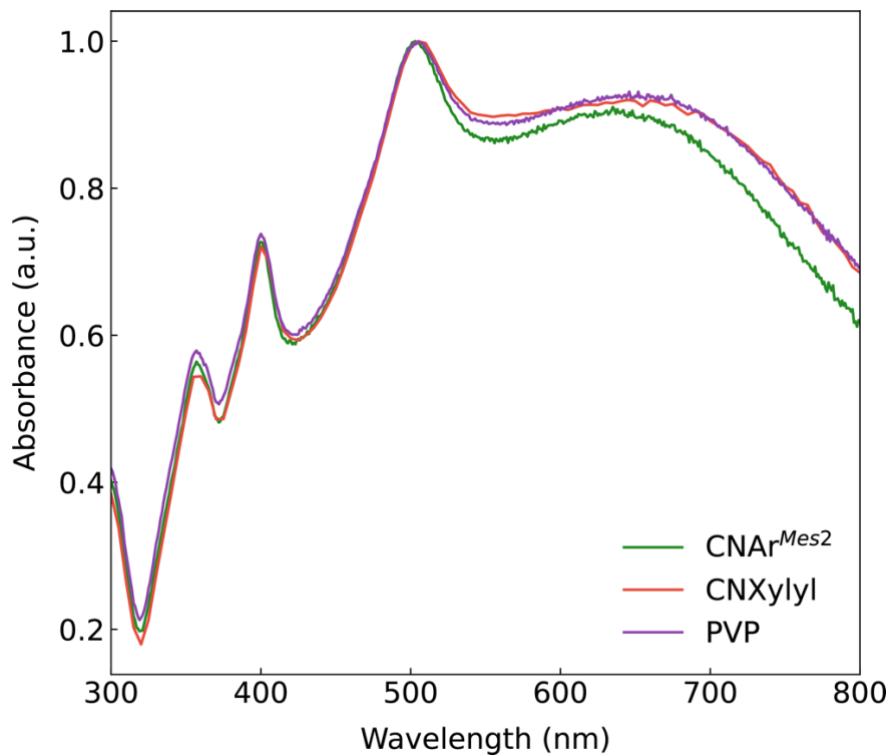
245


246


247

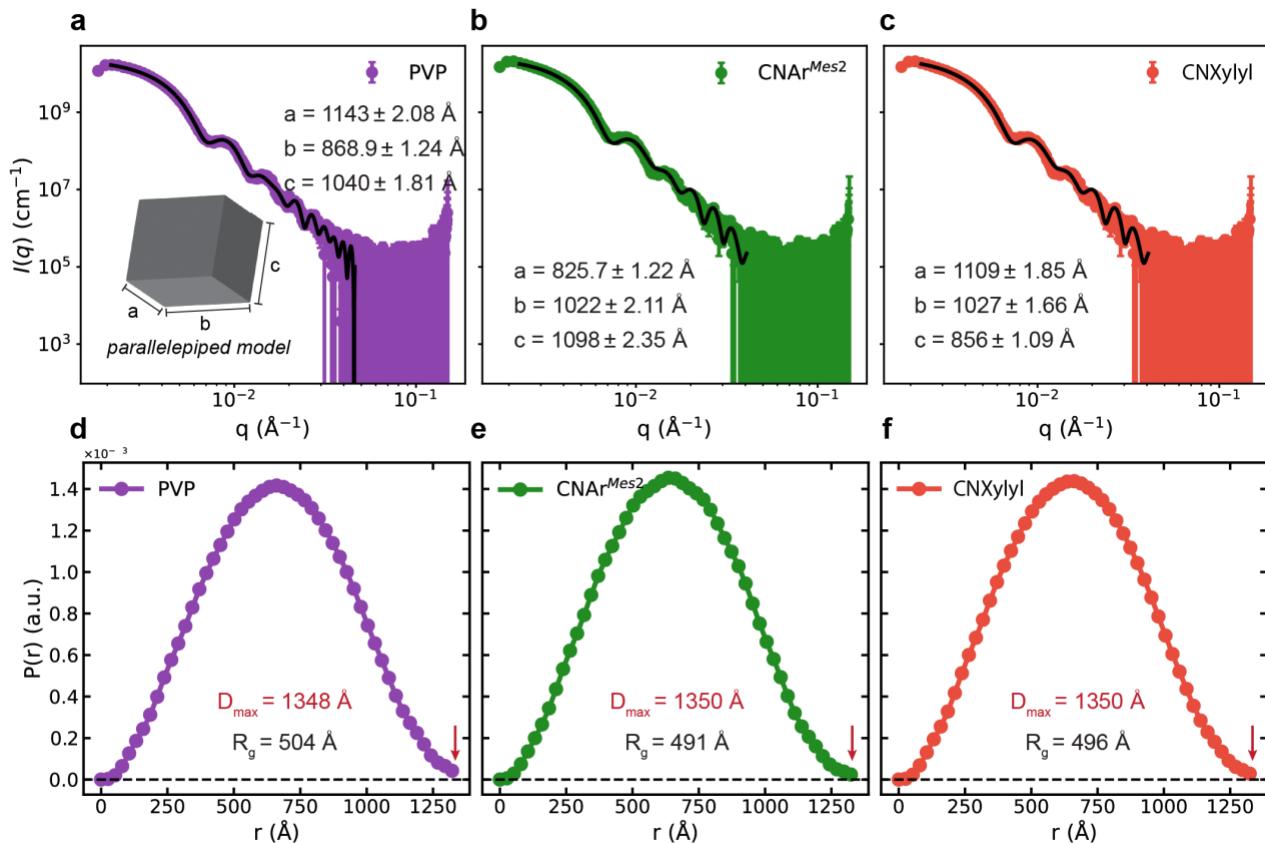
248

249 **Figure S7.** ¹⁹F-NMR spectrum of [Ag(CNXyl)₃]OTf in CDCl₃.


253
254
255 **Figure S8.** SERS spectra of 80 nm AgNCs before (PVP-AgNCs) and after (CNAr^{¹⁶²}-AgNCs and
256 CNXylyl-AgNCs) the LE process. Binding of isocyanide ligands CNAr^{¹⁶²} and CNXylyl to AgNCs
257 is indicated by the $\nu(C \equiv N)$ stretching at $\sim 2177 \text{ cm}^{-1}$. Peaks around 1600 cm^{-1} and 1760 cm^{-1}
258 are assigned for $C = O$ stretching.

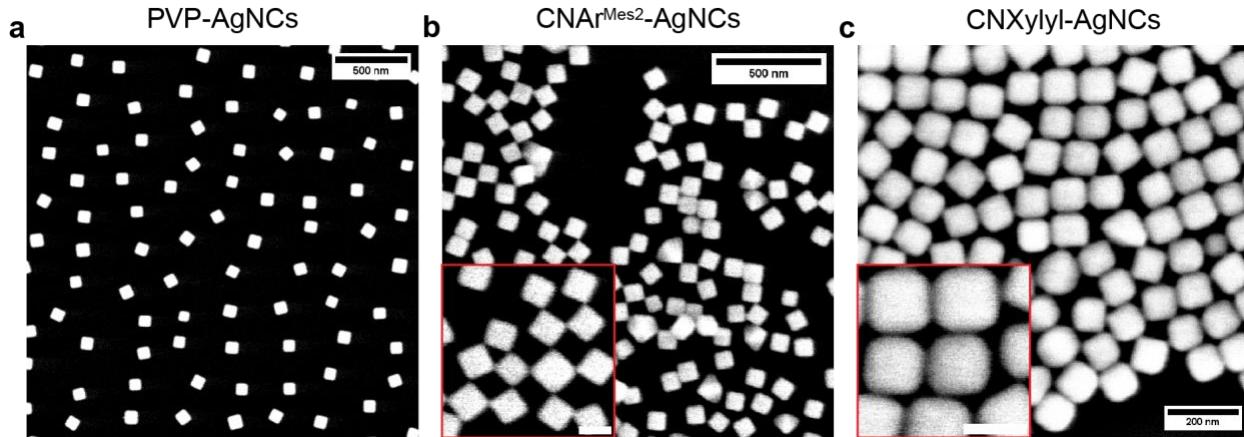
259
260

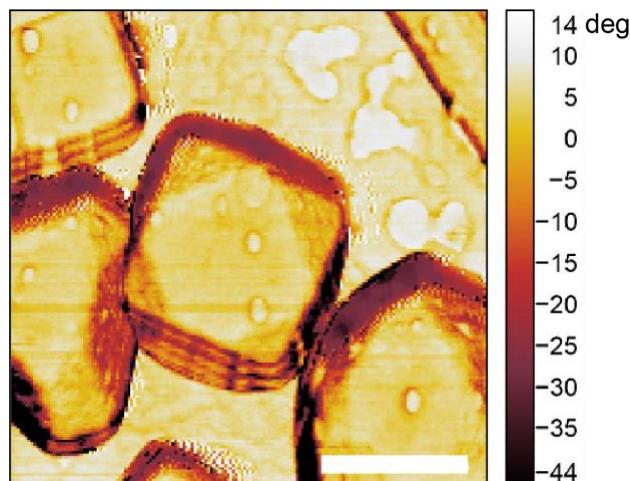
261 **Figure S9.** Dynamic Light Scattering (DLS) plot of AgNCs before (PVP-AgNCs) and after
262 (CNAr^{Mes2}-AgNCs and CNXylyl-AgNCs) the ligand exchange (LE) process. The plots show the
263 hydrodynamic diameter and polydispersity index (PDI) for nanoparticles diluted in chloroform,
264 indicating monodisperse systems.


265

266
267

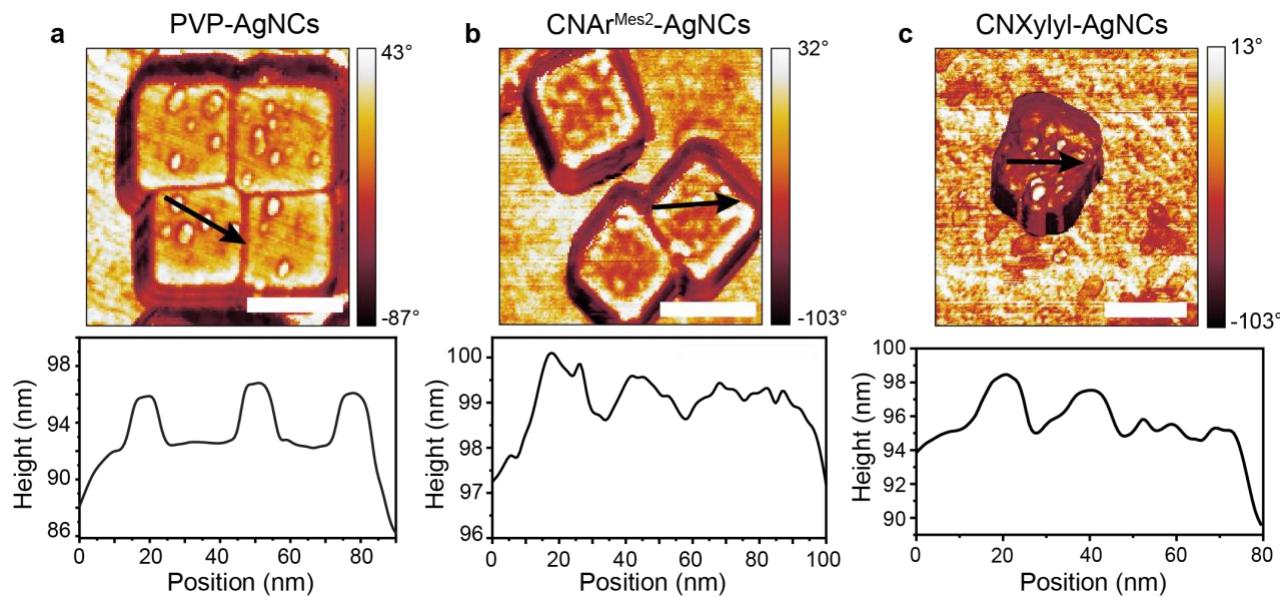
268 **Figure S10.** Ultraviolet-visible (UV-Vis) absorbance spectra of samples *before* (PVP-AgNCs) and
269 *after* (CNAr^{Mes2}-AgNCs and CNXylyl-AgNCs) the ligand exchange (LE) process.


270
271
272
273
274
275
276
277


278
279

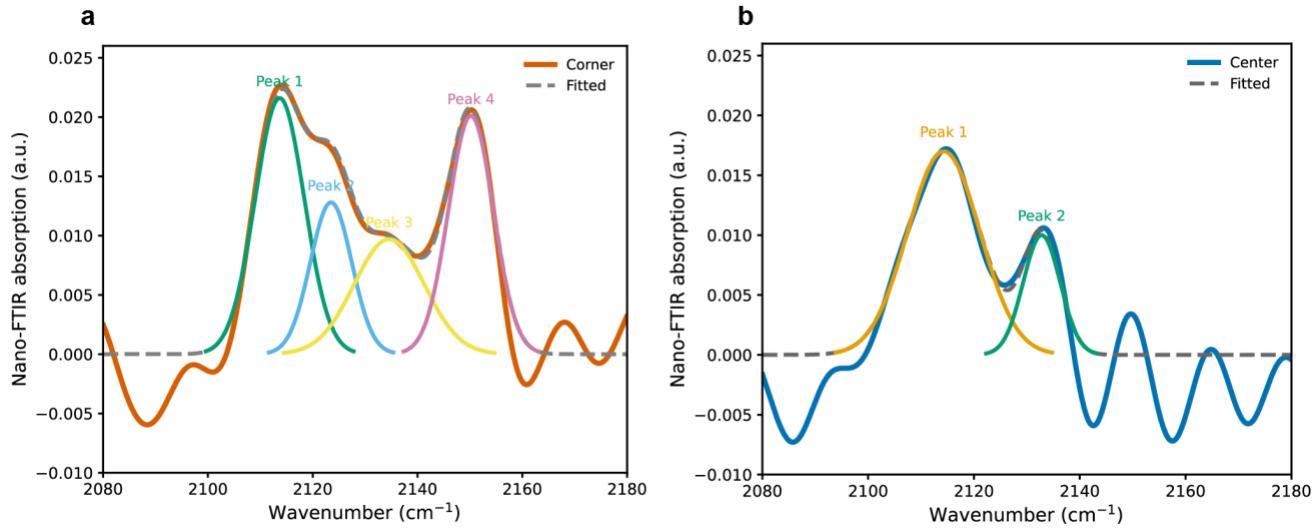
280 **Figure S11.** SAXS characterization of AgNCs before and after ligand exchange. (a) SAXS profile
281 of PVP-AgNCs diluted in ethanol prior to ligand exchange process. (b-c) SAXS profiles of Ag
282 nanocubes after exchange with CNAr Mes2 and CNXylyl ligands, respectively, also measured in
283 ethanol. Each dataset (colored symbols) is fitted with a parallelepiped model (black lines), which
284 captures the overall particle shape and dimensions (a-c). The fits show good agreement with the
285 experimental data, indicating well-defined nanocube geometry across all samples. The inset in
286 (a) illustrates the parallelepiped model used for fitting. (d-f) Corresponding pair-distance
287 distribution functions, $P(r)$, show comparable maximum particle dimensions ($D_{\max} \approx 1350 \text{ \AA}$)
288 across all three samples. Slight differences in the radius of gyration, R_g , reflect subtle variations
289 in overall shape and surface structure following ligand exchange. Compared to the PVP-grafted
290 sample, CNAr Mes2 -AgNCs and CNXylyl-AgNCs exhibit slightly reduced R_g , possibly due to
291 differences in ligand shell organization or packing density.

292
293
294
295
296
297
298
299



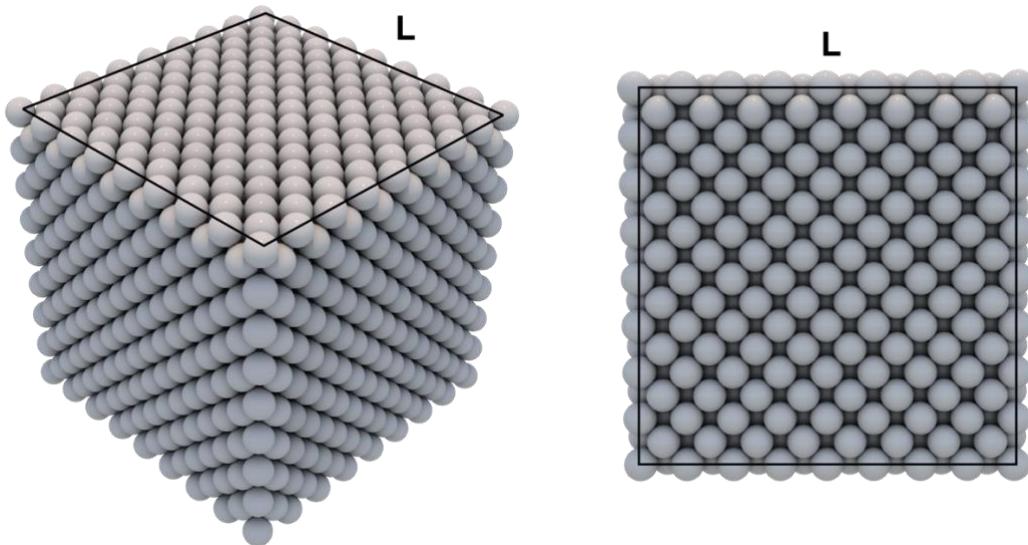
302 **Figure S12.** SEM images of samples *before* (a) PVP-AgNCs and *after* (b) CNAr^{Mes2}-AgNCs, (c)
 303 CNXylyl-AgNCs the LE process. Different ligands result in different final assembled structural
 304 outcome. Inset scale bar 100 nm.

318 **Figure S13.** AFM image showing the cuboid shape with a steep edge near the corner of the cube.
 319 Scale bar, 100 nm.


323
324

325
326

327 **Figure S14.** AFM images comparing changes in surface morphology of samples before and after
328 the LE exchange process. PVP grafted AgNCs shown in (a) were expected to have even surface
329 coverage, with each molecule bound to the AgNC surface at several points. Some bumps on the
330 surface are visible, with a topographic line profile shown from the region marked with an arrow.
331 These could correspond to a drying artifact of the PVP graft layer with single chains adopting a
332 more clustered configuration. In comparison, the phase images for the CNAr^{Mes2}-AgNCs and
333 CNXylyl-AgNCs were shown in (b) and (c), respectively. The surfaces of CNAr^{Mes2}-AgNCs were
334 rougher but with fewer large clusters. This change suggests the presence of free and bound
335 ligands covering the surface of the cube. For CNXylyl-AgNCs, the surface of the nanocube has
336 many clusters of various sizes with few smooth surface regions. This surface likely consists of
337 both PVP and CNXylyl clusters, with the PVP potentially corresponding to the larger clusters. This
338 is consistent with CNXylyl modifications on the faces and corners of the AgNCs. Scale bar, 100
339 nm.


340
341
342
343
344
345
346
347

348
349

350 **Figure S15.** Gaussian peak deconvolution of the $\text{C}\equiv\text{N}$ stretching region from SINS spectra for
 351 $\text{CNAr}^{\text{Mes}2}\text{-AgNC}$ sample. (a) Corner and (b) center spectra were fitted using Gaussian functions
 352 to resolve overlapping vibrational features. The dominant peaks at $\nu_s(\text{C}\equiv\text{N}) = 2114 \text{ cm}^{-1}$, (Peak
 353 1) observed in both spectra, are attributed to physisorbed $\text{CNAr}^{\text{Mes}2}$ ligands. A distinct additional
 354 peak at $\nu_s(\text{Ag-C}\equiv\text{N}) = 2150 \text{ cm}^{-1}$ (peak 4) is present only in the corner spectrum, consistent with
 355 predicted chemisorbed $\text{CNAr}^{\text{Mes}2}$ at low-coordinate sites. Peaks of lower intensity could arise from
 356 intermolecular interactions or orientation-induced coupling with the near-field, but further
 357 theoretical analysis is required to confirm their origin. These results support the conclusion that
 358 ligand binding preferentially occurs at corner sites on the nanocube surface after ligand exchange.

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376
377

378 **Figure S16.** Initial structure of AgNCs used in MD simulation. The edge length, L, is 32.68 Å
379 bounded by Ag(100) and Ag(111) facets.

380
381
382

383 **4. Supporting Tables**

384

Simulated ν	CNAr ^{Mes2}	CNXylyl
Corner Site	2170 cm ⁻¹	2172 cm ⁻¹
Planar Site	2165 cm ⁻¹	2171 cm ⁻¹
In Solution	2148 cm ⁻¹	2148 cm ⁻¹

385
386 **Table S1.** Simulated C≡N stretching frequencies for Ag-bound and free-floating isocyanide
387 ligands.

388
389
390
391
392
393
394
395
396
397
398

399 **5. References**

400 1. Brian J. Fox et al. "Solution Behavior and Structural Properties of Cu(I) Complexes
401 Featuring m-Terphenyl Isocyanides". In: *Inorganic Chemistry* 47.19 (Oct. 2008). Publisher:
402 American Chemical Society, pp. 9010–9020. issn: 0020-1669.

403 2. Andrea Tao, Prasert Sinsermsuksakul, and Peidong Yang. "Polyhedral Silver Nanocrystals
404 with Distinct Scattering Signatures". In: *Angewandte Chemie International Edition* 45.28
405 (2006). eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200601277>, pp. 4597–
406 4601. issn: 1521-3773.

407 3. Liya Bi et al. "Molecular-Scale Visualization of Steric Effects of Ligand Binding to
408 Reconstructed Au(111) Surfaces". In: *Journal of the American Chemical Society* 146.17
409 (May 2024). Publisher: American Chemical Society, pp. 11764– 11772. issn: 0002-7863.

410 4. David Nečas and Petr Klapetek. "Gwyddion: an open-source software for SPM data
411 analysis". en. In: *Open Physics* 10.1 (Feb. 2012). Publisher: De Gruyter Open Access
412 Section: Open Physics, pp. 181–188. issn: 2391-5471.

413 5. Hans A. Bechtel et al. "Synchrotron infrared nano-spectroscopy and -imaging". en. In:
414 *Surface Science Reports* 75.3 (Aug. 2020), p. 100493. issn: 01675729.

415 6. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra,
416 M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal
417 Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A.; Ferretti, A.; Floris, A.; Fratesi, G.;
418 Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.;
419 Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.;
420 Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.;
421 Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.;
422 Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S. Advanced Capabilities for Materials
423 Modelling with Quantum Espresso. *Journal of Physics: Condensed Matter* **2017**, 29 (46),
424 465901.

425 7. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.
426 *Physical Review Letters* **1996**, 77 (18), 3865–3868.

427 8. Dal Corso, A. Pseudopotentials Periodic Table: From H to Pu. *Computational Materials
428 Science* **2014**, 95, 337–350.

429 9. L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez. Packmol: A package for building
430 initial configurations for molecular dynamics simulations. *Journal of Computational
431 Chemistry*, 30(13):2157-2164, 2009.

432 10. Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P.
433 S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.;
434 Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS - a Flexible Simulation Tool for Particle-
435 Based Materials Modeling at the Atomic, Meso, and Continuum Scales. *Computer Physics
436 Communications* **2022**, 271, 108171.

437 11. Ackland, G. J.; Tichy, G.; Vitek, V.; Finnis, M. W. Simple n -Body Potentials for the Noble
438 Metals and Nickel. *Philosophical Magazine A* **1987**, 56 (6), 735–756.

439 12. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and
440 Testing of a General Amber Force Field. *Journal of Computational Chemistry* **2004**, 25 (9),
441 1157–1174.

442 13. Wang, Y.; Chen, A. A.; Balto, K. P.; Xie, Y.; Figueroa, J. S.; Pascal, T. A.; Tao, A. R.
443 Curvature-Selective Nanocrystal Surface Ligation Using Sterically-Encumbered Metal-
444 Coordinating Ligands. *ACS Nano* **2022**, 16 (8), 12747–12754.

445 14. Kamath, G.; Georgiev, G.; Potoff, J. J. Molecular Modeling of Phase Behavior and
446 Microstructure of Acetone–chloroform–methanol Binary Mixtures. *The Journal of Physical*
447 *Chemistry B* **2005**, *109* (41), 19463–19473.

448 15. Lorentz, H. A. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der
449 Gase. *Annalen der Physik* **248**, 127-136.

450 16. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., III & Skiff, W. M. UFF, a full
451 periodic table force field for molecular mechanics and molecular dynamics simulations.
452 *Journal of the American Chemical Society* **114**, 10024-10035, (1992).

453 17. Hockney, R. W. & Eastwood, J. W. *Computer simulation using particles*. (Adam Hilger,
454 1989).

455 18. Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L. & Martyna, G. J. A
456 Liouville-operator derived measure-preserving integrator for molecular dynamics
457 simulations in the isothermal–isobaric ensemble. *Journal of Physics A: Mathematical and*
458 *General* **39**, 5629, (2006).

459 19. Lin, S.-T.; Blanco, M.; Goddard, W. A. The Two-Phase Model for Calculating
460 Thermodynamic Properties of Liquids from Molecular Dynamics: Validation for the Phase
461 Diagram of Lennard-Jones Fluids. *The Journal of Chemical Physics* **2003**, *119* (22),
462 11792–11805.