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Supplementary Figure S1: Cell-type-specific transcriptional rewiring in PD. 
Volcano plots depict DEGs across 16 gingival cell populations, with log2 fold change on the x-axis 
and -log10  p-value on the y-axis. Vertical dashed lines mark ±1 log2 FC, and the horizontal dashed 
line marks p = 0.01. Points exceeding these thresholds are highlighted (upregulated in red, 
downregulated in blue), and inset tables list the three most significantly up- and downregulated 
genes (red and blue text, respectively) for each cell type. 



 

Supplementary Figure S2: GSEA GO-BP enrichment ridges across 12 cell populations. 
Each ridge plot displays the distribution of enrichment significance (-log10 p-value from gseGO, 
BP ontology) for the top ten GO terms per cell type; warmer hues denote more substantial 
enrichment. The Y axis displays the top 10 most significantly enriched GO:BP as determined by 
the GSEA analysis. Terms are typically ordered by significance from high to low. The X axis 
represents the distribution density of a gene-level statistic. Positive values on the x-axis indicate 
gene upregulation, while negative values indicate gene downregulation, based on the pre-ranked 
gene list used for GSEA. The position of the peak within each ridge is indicative of the overall 
trend of avg_ log2 FC for the genes in that pathway.  



 
Supplementary Figure S3: Intercellular communication network in healthy gingiva. 
A. Chord diagram showing net changes in outgoing communication strength between all cell-type 
pairs. Sector widths represent total outgoing signal; chord thickness reflects pairwise Δweight. B. 
Gene-level Subnetworks: Five exemplar pathways in healthy gingiva, highlighting the origin and 
target of key ligand-receptor interactions. C. Dot plots of average communication probability for 
each source-target pair. Dot size encodes the -log₁₀ p-value; color scale indicates mean 
interaction strength. D. Signaling-role scatter plots of total outgoing versus incoming interaction 
strength per cell type. Each point represents a cell-type sender; color denotes source identity. 
Deviation above or below the diagonal indicates gain or loss of net signaling influence.  



 
Supplementary Figure S4: Intercellular communication network in PD gingiva. 
A. Chord diagram showing net changes in outgoing communication strength between all cell-type 
pairs. Sector widths represent total outgoing signal; chord thickness reflects pairwise Δweight. B. 
Gene-level Subnetworks: Five exemplar pathways in PD gingiva, highlighting the origin and target 
of key ligand-receptor interactions. C. Dot plots of average communication probability for each 
source-target pair. Dot size encodes the -log₁₀ p-value; color scale indicates mean interaction 
strength. D. Signaling-role scatter plots of total outgoing versus incoming interaction strength per 
cell type. Each point represents a cell-type sender; color denotes source identity. Deviation above 
or below the diagonal indicates gain or loss of net signaling influence.   



 

Supplementary Figure S5: Individual signaling patterns in the healthy and PD gingiva. 
A, B. Riverplots of global signaling patterns in healthy gingiva: Outgoing (A, left) and incoming 
(B, right) pathways clustered into three coherent modules. C, D. Riverplots of global signaling 
patterns PD gingiva: Outgoing (C, left) and incoming (D, right) riverplots recapitulate the same 
three feed-forward loops now amplified in disease. Patterns are colored consistently 
(blue = immune recruitment, green = matrix remodeling, red = vascular niche activation). 



MATERIALS & METHODS 
1. Single-cell data integration, quality control, and harmonization 
1.1 Raw data sources 
All the scRNA-seq datasets of gingival biopsies from chronic PD patients and periodontally 
healthy controls published before Jan 2025 were obtained as feature-barcode count matrices 
(Covid-10 Cell Atlas, GSE164241, GSE152042, GSE207502)11-13,65, yielding 60,972 cells from PD 
samples and 54,209 cells from control samples. 
 
1.2 Initial quality control 
Each library was converted to a Seurat object (Seurat v5.2.1) and subjected to two rounds of 
stringent filtering before and after merging the control and PD cohorts separately. The second 
round filtering was performed using the following thresholds: Features per cell >200 & < 5,000;  
Mitochondrial transcript fraction < 10 %; Ribosomal transcript fraction < 40 %. Violin and jitter 
plots of these metrics before versus after filtering confirmed effective elimination of low-quality 
cells. 
 
1.3 Data Harmonisation and Batch Integration 
To ensure consistency between raw counts and normalized data layers across different libraries, 
the RNA assay layers (counts and data) were merged via JoinLayers in Seurat. Optional 
regression of cell-cycle effects was performed using G₂/M and S phase gene sets. Batch 
correction was then carried out with Harmony (Harmony v1.2.3) on the first 20 principal 
components (PCs), the axes of greatest variance identified via principal component analysis 
(PCA). Thereby, donor identity, library chemistry, and sequencing depth were specified as 
covariates and regressed out. Successful mitigation of batch effects was assessed by plotting 
uniform manifold approximation and projection (UMAP) embeddings colored by original batch, by 
computing silhouette widths. 
 
1.4 Doublet Detection and Removal 
DoubletFinder (v2.0.4) was applied in batches of 5,000 cells to both control and PD objects. Within 
each batch, parameter sweeping (paramSweep) and sweep summarization (summarizeSweep) 
were used to identify the optimal pK (the neighborhood size parameter for artificial doublet 
generation). Homotypic doublet rate correction was applied, and an expected doublet rate of 7.5 % 
was assumed based on cell loading densities. Cells classified as singlets were retained, and final 
singlet counts were recorded for downstream analysis. 
 
2. Dimensionality reduction, Iterative clustering and multi-round annotation 
Singlet-only matrices were normalized by log-transformation (LogNormalize, scale factor = 
10,000), and highly variable genes (HVGs) were selected using the ‘vst’ method (nFeatures = 
2,000). Data were scaled and subjected to PCA (20 PCs retained). Harmony-corrected PCs were 
used to compute UMAP projections.  
Clustering was performed in Seurat at three nested resolutions to capture hierarchical 
organization: (i) global landscape, resolution = 0.2, yielding broad cell-lineage clusters; (ii) 
lineage-specific sub-clustering, resolution = 0.6, yielding transcriptionally coherent subclusters; 
and (iii) resolution = 1.0, resolving fine-grained immunophenotypes within lymphoid and myeloid 
branches. 
 
For each clustering round, a tri-modal annotation strategy was employed: (a) canonical marker 
genes manually curated from CellMarker 2.0, (b) label transfer via Azimuth constrained to an oral 
mucosa reference, and (c) automated classification with SingleR (v2.8.0) against Human Primary 
Cell Atlas Data, Blueprint Encode Data, Monaco Immune Data, and Novershtern Hematopoietic 



Data. Cellular identity labels were finalized by integrating automated classification outputs with 
expert curation of marker gene expression. 
 
3. Global and Lineage-Specific Compositional Profiling 
3.1 Multi-Dimensional Visualization 
UMAP and t-distributed stochastic neighbor emulation (t-SNE) were computed on Harmony-
corrected principal components to visualize the overall cellular landscape. Embeddings were 
colored by tissue source (healthy versus PD), donor, and final cell-type annotation, illustrating 
seamless batch mixing and preservation of biological heterogeneity.  Additionally, for each group, 
the proportion of cells assigned to every high-resolution cell type was computed and summarized 
as stacked bar plots and donut charts. These visualizations provide an intuitive overview of the 
gingival microenvironment in health and disease.  
 
3.2 Statistical Inference of Cellular Shifts 
To identify statistically significant shifts in cell-type composition between PD and control cohorts, 
two complementary approaches were employed: (i) Pearson’s chi-square tests on contingency 
tables of cell counts per type (Bonferroni-corrected p < 0.05), and (ii) individual Fisher’s exact 
tests on each lineage with a false discovery rate (FDR) < 0.05. Effect sizes (odds ratios) were 
computed to quantify the expansion or contraction of specific populations.  
 
4. High-Resolution Cell Type-Specific Differential Gene Expression 
4.1 Differentially expressed genes (DEGs) within Annotated Cell Types 
For each manually annotated cell type, single-cell DEGs between PD and control groups were 
identified using the Wilcoxon rank-sum test (FindMarkers, min.pct = 0.25, log₂folder-changes(FC) > 
0.25). Raw p-values were adjusted by the Benjamini-Hochberg correction, and genes with 
adjusted p-value < 0.05 were considered significant. 
 
4.2 Volcano Plot Classification and Heatmap of Top DEGs 
For each manually annotated cell type, DEGs were classified into four categories: Non-significant: 
adjusted p ≥ 0.05; Low-significance: adjusted p < 0.05 and |avg_log₂FC| < 1; Up-regulated: 
adjusted p < 0.05 and avg_log₂FC ≥ 1; Down-regulated: adjusted p < 0.05 and avg_log₂FC ≤ -1. 
Volcano plots were rendered in ggplot2 (v3.5.2) with log₂(fold-change) on the x-axis and -
log₁₀(adjusted p-value) on the y-axis. Dashed vertical lines at ±1 and a horizontal line at -
log₁₀(0.05) denote fold-change and significance thresholds. In each plot, the top 25 up-regulated 
and top 25 down-regulated genes (ranked by adjusted p-value) were highlighted. 
 
4.3 Global Top50 Heatmap 
To provide a global overview, a control vs. PD comparison was performed across all cells using 
Seurat’s FindMarkers. Genes were ranked by the smallest adjusted p-value, and the top 50 were 
selected. The mean normalized expression of these top 50 genes in each cohort was computed 
via AggregateExpression and visualized as a heatmap using ComplexHeatmap. 
 
4.4 Dot-Plot Summary and Data Export 
The 50 most significant DEGs were displayed as dot plots, both by group and by cell type, 
respectively. They encode both average expression and the percentage of cells expressing each 
gene. Complete DEG tables show gene name, avg_log₂FC, p-value, adjusted p, category label, 
and a composite volcano_score (|avg_log₂FC| × -log₁₀(adjusted p)). They were exported as CSV 
files in a dedicated DEG_Lists directory for downstream pathway and machine-learning analyses. 
 
5. Multi-Faceted Functional and Compositional Profiling 
5.1 Immune Microenvironment Composition 



Cell-type proportions were computed from the contingency table of group × cell type and 
converted to percentages. Stacked bar plots and complementary donut charts were drawn in 
ggplot2. 
 
Immune activation markers (IFNG, TNF, IL6, PDCD1) were retrieved via Seurat’s FetchData and 
compared between the control and PD cohorts by two-sided Wilcoxon rank-sum tests. Violin plots 
with overlaid jittered points were generated, and exact p-values were computed for each marker. 
Immune checkpoint genes (PDCD1, CTLA4, LAG3) were visualized on uniform manifold 
approximation and projection (UMAP) embeddings via FeaturePlot. 
 
5.2 Transcription Factor Regulatory Inference (DoRothEA + VIPER)   
Human transcription factor-target interactions were first filtered for confidence levels A and B from 
the DoRothEA database and converted into a regulon object. Per-cell transcription factor activity 
scores were then inferred via the VIPER algorithm on the log-normalized RNA assay. Cohort-
average activity scores were computed for each factor, and the 20 most variable transcription 
factors (ranked by variance) were visualized in a heatmap using ComplexHeatmap. Pairwise 
Pearson correlations among these top factors were thresholded at |r| ≥ 0.5 and displayed as an 
undirected network via igraph (v2.1.4), with node colors encoding the difference in mean activity 
between PD and control. The five transcription factors exhibiting the highest variance were further 
examined by violin and jitter plots, and their activity differences were tested by two-sided Wilcoxon 
rank-sum tests. Finally, the inferred activity scores and network topology metrics were 
incorporated as features in downstream machine-learning models (Random Forest, XGBoost) to 
enhance disease-state prediction.   
 
5.3 Metabolic Pathway Scoring 
Single-gene violin plots were generated for glycolysis markers (HK1, HK2, PFKL, ALDOA, 
GAPDH, PGK1, ENO1, PKM), tricarboxylic acid (TCA) cycle markers (CS, ACLY, IDH3A, OGDH, 
SUCLG1, SDHA), and the top 10 mitochondrial transcripts (genes beginning with MT-), each 
tested by Wilcoxon rank-sum. Module scores for Glycolysis, TCA, and Mitochondrial signatures 
were calculated with AddModuleScore. Violin plots of each module score were drawn, and 
FeaturePlot was used to map module scores onto the UMAP embedding. Cohort-average module 
scores were aggregated via FetchData and visualized as a heatmap with ComplexHeatmap. 
 
5.4 Cell Death Pathway Profiling 
Violin and jitter plots were produced for apoptosis markers (CASP3, CASP8, BAX, BCL2), 
pyroptosis markers (GSDMD, CASP1, IL1B), and ferroptosis markers (GPX4, ACSL4, SLC7A11), 
with Wilcoxon p-values computed for each. A heatmap of average expression for all cell-death-
related genes was generated via AverageExpression and ComplexHeatmap to survey cohort 
differences in cell-death programs. 
 
5.5 Extracellular Matrix Remodeling Analysis 
Single-gene violin plots were generated for ECM remodeling markers (MMP2, MMP9, COL1A1, 
FN1, ITGB1) and tested by Wilcoxon rank-sum. An ECM remodeling module score was computed 
via AddModuleScore, visualized both on UMAP embeddings (FeaturePlot) and as violin plots. 
Mean ECM scores per cohort were summarized in a heatmap to quantify matrix remodeling in 
PD. 
 
6. Cell-Cell Communication Network Analysis   
To dissect the intercellular signaling architecture underpinning gingival homeostasis and PD, we 
leveraged the CellChat framework (CellChat v1.6.1; CellChatDB.human) for comprehensive 
ligand-receptor inference and network topology analysis.   



 
6.1 Construction of Group-Specific CellChat Objects   
The final integrated Seurat object was stratified by cohort and subsetted into control (n = 54,209 
cells) and PD (n = 60,972 cells) metadata and normalized RNA assays. The human ligand-
receptor database was assigned, and low-abundance cell types and interactions involving fewer 
than five cells were removed by ‘filterCommunication’ to ensure robust inference.   
 
6.2 Inference of Overexpressed Genes and Interactions   
Within each CellChat object, overexpressed ligands and receptors were identified, and putative 
interactions were enumerated. Communication probabilities were computed and aggregated at 
the pathway level, yielding quantitative matrices of interaction strength (probability) and statistical 
significance (p-value). Only interactions with p < 0.05 were retained for downstream analysis.   
 
6.3 Network Aggregation and Topological Characterization   
Aggregated signaling networks were constructed, summarizing inter-cluster communication by 
pathway. Global network topology was interrogated through centrality metrics, quantifying each 
cell type’s incoming and outgoing signaling importance. Signaling-role bar charts, scatter plots, 
and heatmaps of outgoing/incoming roles were generated to compare cohort-specific shifts in 
intercellular crosstalk.   
 
6.4 Multi-Scale Visualization of Signaling Patterns   
• Chord Diagrams: Aggregate chord plots illustrated the overall connectivity among cell types for 

the top 20 most active pathways, with layout optimized to minimize overlap and node/edge 
labels suppressed for clarity. Ligand-receptor-level chord diagrams highlighted the top 15 
receptor-ligand pairs per cohort, emphasizing pathway composition and relative interaction 
strength.   

• Alluvial River Plots: Communication patterns (outgoing vs. incoming) were classified into k = 3 
modules, and alluvial diagrams traced how cell types distribute their signaling outputs and 
inputs across these modules, revealing conserved versus disease-specific communication 
modes.   

• Bubble Plots: The top 30 pathway-specific cell-type interactions were visualized as bubble 
charts, encoding mean communication probability by dot size and merging large families to 
simplify interpretation.   

• Cell-Cell Scatter Plots: Pairwise communication between every source-target cell-type pair 
was summarized in ggplot2 scatter plots: dot color scaled to mean probability and dot size 
binned by p-value range, enabling simultaneous appraisal of strength and statistical support.   

• Sankey Diagrams: Alluvial flows were further distilled into three-axis Sankey plots (Group-
Source-Target) using ggalluvial, with node fills drawn from our custom color palette to 
emphasize shifts in dominant signaling routes between cohorts.   

• Word Clouds: To capture pathway and cell-pair prominence at a glance, word clouds of 
pathway names and of Source-Target pairs were generated from summed communication 
probabilities, highlighting the most active signaling axes in Control and PD.   

 
All visualizations were exported at 300 dpi with transparent backgrounds to facilitate seamless 
integration into multi-panel figures. This multi-angled interrogation of intercellular signaling 
delineates both conserved homeostatic circuits and their reconfiguration in PD, yielding a 
systems-level blueprint of gingival immunobiology. 
 
7. Single-Cell Trajectory Inference and Dynamic Gene Regulation 



To delineate continuous cell-state transitions and uncover lineage-specific transcriptional 
dynamics in health and disease, we applied Monocle 3 (v1.2.9) pseudotime trajectory analysis to 
four key lineages: B cells, epithelial cells, myeloid cells, and T cells. 
 
7.1 Lineage Subsetting and CDS Construction 
For each lineage, cells  with relevant annotations were subsetted. The raw UMI count matrix, per-
cell metadata (including cohort and final cell-type labels), and gene annotations were 
encapsulated in a Monocle 3 cell data set (CDS), ensuring consistency across all four analyses. 
 
7.2 Dimensionality Reduction and Principal Graph Learning 
Each CDS underwent preprocessing with 20 principal components, followed by UMAP embedding 
to capture major axes of transcriptional variance. Cells were clustered using default Leiden 
parameters, and principal graphs were learned via reversed graph embedding, yielding a 
continuous manifold of cell states. 
 
7.3 Root-Cell Specification and Pseudotime Ordering 
To anchor developmental trajectories, root populations were defined for each lineage as 
previously described: Memory B cell for B cells66, Basal epithelial cell for epithelial cells67, 
Monocyte for myeloid cells68, and Naive T cell for T cells69. Designating these well-characterized 
progenitor or naive states ensured that pseudotime ordering reflected bona fide developmental 
hierarchies.    
 
7.4 Trajectory Visualization 
Trajectories were overlaid on UMAP embeddings colored by (i) manual cell-type annotation, (ii) 
pseudotime value, and (iii) experimental cohort (control vs. PD), providing an intuitive depiction 
of both branching structure and disease-associated shifts. 
 
7.5 Dynamic Gene Expression along Pseudotime 
To capture transcriptional programs varying along each trajectory: 
• Binning: Cells were partitioned into 200 equal-sized bins according to pseudotime. 
• Aggregation: Within each bin and cohort, mean log₂-normalized expression was calculated for 

all genes. 
• Standardization: The combined bin gen matrix was row-scaled (z-score), and values were 

clipped at ±3 to enhance visualization. 
• Heatmap Rendering: ComplexHeatmap was used to display cohort-specific and difference 

heatmaps, with genes ordered by variance or maximal fold-change. 
 
7.6 Identification of Trajectory-Associated Genes 
We applied Moran’s spatial autocorrelation to pinpoint genes whose expression exhibits 
significant dependence on trajectory position (adjusted p-value < 0.05). Top candidates were 
visualized in smoothed trend plots, highlighting both lineage-restricted and shared regulatory 
programs. 
 
7.7 Branchpoint Analysis 
Key branchpoints, where trajectories diverge into alternative fates, were detected with Monocle 
3’s topology metrics. Differential expression between branches was assessed via generalized 
additive models (GAMs), revealing genes driving fate bifurcation. GO-term enrichment of branch-
specific genes elucidated functional modules underlying lineage decisions. 
 



Together, this comprehensive trajectory framework revealed continuous differentiation hierarchies, 
identified dynamic gene modules sculpting cell-state transitions, and highlighted perturbations in 
PD at unprecedented resolution. 
 
8. Multi-Scale Functional and Pathway Enrichment (GO, KEGG & GSEA) 
To interrogate the biological programs underpinning cell-type specialization and dynamic lineage 
progression, complementary over-representation and gene-set enrichment analyses on two 
orthogonal gene collections were performed: (i) cell-type-specific DEGs and (ii) pseudotime-
associated genes along each inferred trajectory. All analyses employed the clusterProfiler 
framework (v4.14.6) with the Org.Hs.eg.db human reference (v3.20.0) and DOSE (v4.0.1). 
 
8.1 Over-Representation Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) 
For each cell type and for each pseudotime lineage, up-regulated and down-regulated gene lists 
(|log₂FC| > 0.2, adjusted p < 0.05) were compiled against the background of all expressed genes. 
Gene identifiers were mapped to Entrez IDs, and separate enrichGO and enrichKEGG tests were 
run with Benjamini-Hochberg adjustment (p-adjust cutoff = 0.05). To maintain consistency and 
depth of interpretation, results from all cell types were aggregated, combining up-gene GO/KEGG 
tables into unified heatmap or network representations, instead of reporting each cell type 
separately. Likewise, pathway enrichments from all four pseudotime trajectories were pooled to 
reveal common versus lineage-specific functional modules. 
 
8.2 Gene-Set Enrichment Analysis (GSEA) 
Beyond discrete DEG sets, we leveraged full ranked gene lists ordered by log₂FC for each cell 
type, and by pseudotime correlation scores for each trajectory to perform preranked GSEA. Using 
gseGO (Biological Process, BP ontology) and gseKEGG, we identified pathways whose 
component genes exhibit gradual up- or down-regulation across cell-state axes. For cell types, 
one unified GSEA was run per cell-type ranking, then collectively summarized to highlight shared 
regulatory circuits across the gingival ecosystem. For trajectories, one GSEA per lineage captured 
the temporal activation of developmental or inflammatory programs as cells progress from 
progenitor to terminal states. 
 
8.3 Visualization and Comparative Interpretation 
Top enriched GO terms and KEGG pathways (up to 15 per category) were visualized with barplots, 
dotplots, and category-gene network diagrams (cnetplot) using a transparent, publication-ready 
ggplot2 theme. GSEA results were displayed as ridgeplots of -log₁₀(p.adjust) and individual 
enrichment curves (gseaplot2), with color scales encoding statistical significance. By juxtaposing 
cell-type and pseudotime GSEA landscapes, we distilled both static (cell-type identity) and 
dynamic (state transition) functional architectures, uncovering pathway modules, such as cytokine 
signaling, extracellular matrix remodeling, and metabolic reprogramming, consistently altered in 
PD and mobilized during cell-state evolution. 
 
9. Integrated Predictive Modeling, Pathway Activity Scoring & Causal Inference 
Building on our differential-expression and trajectory analyses, we implemented a unified R 
pipeline to select high-confidence biomarkers, assess their functional context, predict disease 
status, and probe causal links at the patient level. Key packages included randomForest (v4.7.1.2), 
caret (v7.0.1), pROC (v1.18.5), enrichplot (v1.26.1), and mediation (v4.5.0). 
 
9.1 Data Cleaning & Feature Filtering 
After loading the integrated Seurat object, all mitochondrial genes (identified via ^MT[-\\.]) were 
removed to avoid confounding by cellular respiration artifacts. A curated list of 34 housekeeping 



and ribosomal/heat-shock genes was excluded, and the top 20 DEGs (ranked by adjusted p-value) 
were retained as candidate markers. 
 
9.2 Predictive Modeling with Random Forest 
Expression of these 20 genes (normalized RNA counts) formed the feature matrix for a Random 
Forest classifier (ntree = 1000). Cells were split 80 %/20 % into training and test sets via 
caret::createDataPartition, respectively. Performance was quantified by confusion matrices 
(sensitivity/specificity per group) and ROC AUC (pROC), demonstrating robust discrimination 
between PD and control. 
 
9.3 Functional Annotation of Candidate Markers 
The top 50 DEGs were mapped to Entrez IDs (org.Hs.eg.db::mapIds) and subjected to KEGG 
(clusterProfiler::enrichKEGG) and GO-BP (clusterProfiler::enrichGO) over-representation tests 
(BH-adjusted p < 0.05). Results were visualized with enrichplot::dotplot (top 10 categories), 
ensuring gene sets were rendered without list-column issues. 
 
9.4 Single-Cell Pathway Activity Profiling (GSEA) 
To capture pathway-level variation across all cells, enriched KEGG modules (gene sets ≥ 5 
members) were extracted and used as input to GSEA. The resulting per-cell activity matrix was 
saved for downstream clustering or differential activity testing. 
 
9.5 Patient-Level Mediation Analysis 
Where patient identifiers were available in the meta.data, we aggregated the average expression 
of a key mediator gene per patient. Linking clinical intake to PD status via this mediator, we fit a 
linear model (lm) for the mediator and a logistic model for the PD flag.  We then conducted causal 
mediation analysis (mediation::mediate, sims = 1,000) to estimate direct and indirect effects. 
 
This end-to-end pipeline not only pinpoints top candidate biomarkers and their functional 
pathways but also integrates machine learning, pathway-activity scoring and causal inference, 
providing a comprehensive framework for the generation of translational hypotheses in PD. 
 
10. Extended Population-Based Analysis Using NHANES 2011-2012 
10.1 Data Source Selection 
The NHANES 2011-2012 cycle was deliberately chosen because it represents one of the most 
recent survey waves containing a complete periodontal examination (full-mouth measurements 
of probing pocket depth and clinical attachment loss), which is essential for defining PD status. 
Later cycles either omitted or only partially assessed periodontal probing, precluding rigorous 
case ascertainment. 
 
10.2 Data Harmonisation and Variable Recoding 
All available XPT modules (demographics, oral health, biochemistry, complete blood counts, diet 
recalls, etc.) were imported and merged by participant SEQN. Within each module, numeric 
variables were aggregated by mean and categorical variables by first non-missing entry, yielding 
a single, de-duplicated row per subject. A comprehensive annotation dictionary was built from 
each variable’s label attribute. Dichotomous survey items were recoded to 0/1 (no / yes) with a 
uniform missing-value scheme, and new bin indicators were generated to support binary-feature 
models. Continuous covariates were retained only if they met prespecified thresholds for sample 
size, variance, and unique values. 
 
10.3 Definition of PD 



PD status was defined in a fully reproducible manner: subjects exhibiting ≥2 sites with both 
probing pocket depth ≥5 mm and clinical attachment loss ≥4 mm were coded as cases. This dual 
criterion ensures specificity for moderate-to-severe disease and aligns with contemporary 
consensus definitions. 
 
10.4 Univariate and Covariate-Adjusted Comparisons 
Each candidate variable was first summarized by PD: counts and proportions for binary items; 
means, medians, interquartile ranges, and ranges for continuous measures. Covariate-adjusted 
differences were then estimated via linear regression models including age and sex. When 
residuals deviated from normality (Shapiro-Wilk p < 0.05), rank-based models on pseudo-ranks 
were employed. Categorical exposures were compared by chi-square or Fisher’s exact tests, with 
all results reported with two-sided p-values and 95 % confidence intervals for PD effects. 
 
10.5 LASSO for Feature Extraction 
To distill the most informative subset of hundreds of potential predictors, an L₁-penalized logistic 
regression (LASSO) was applied to standardized continuous variables. Five-fold cross-validation 
identified the penalty parameter minimizing out-of-sample deviance, and features with nonzero 
coefficients at this optimum were retained. This approach leverages sparsity to guard against 
overfitting while highlighting the strongest biomarkers of PD. 
 
10.6 Random Forest and XGBoost for Predictive Ranking 
Ensemble tree-based methods were used to capture complex, potentially nonlinear interactions 
among predictors: 
• Random Forest models provided variable importance rankings via mean decrease in Gini 

impurity, offering robustness to noise and missing data. 
• XGBoost (gradient-boosted decision trees) further refined these rankings by optimizing a 

regularized log-loss objective and allowing fine-grained control over tree complexity and 
shrinkage. 

Together, these machine-learning algorithms furnish complementary views of predictor relevance, 
emphasizing artificial-intelligence-driven discovery, and ensure that both global and local feature 
effects are captured. 
 
10.7 Causal Forest for Heterogeneous Treatment Effects 
To probe potential causal drivers (from exposures to PD) and consequences (from PD to 
downstream outcomes) within the observational data, causal forests from the generalized random 
forest framework were employed. This nonparametric, tree-based method estimates subject-level 
treatment effects under unconfoundedness assumptions, automatically adjusting for all covariates 
and detecting effect heterogeneity. Only variables whose 95 % confidence intervals for the 
estimated average treatment effect excluded zero were reported as putative causal factors or 
outcomes, highlighting novel mechanistic insights beyond mere prediction. 
 
10.8 Visualization and Reporting 
Top-ranked variables from each method were visualized using high-resolution gradient bar plots 
in ggplot2, with custom color ramps to underscore rank order. Volcano-style scatterplots and 
boxplots of key biomarkers were generated to contextualize statistical and practical significance. 
All intermediate and final results, including annotated master datasets, univariate tables, lists of 
LASSO-selected features, random-forest and XGBoost importance tables, and causal-forest 
effect estimates, were exported in CSV and RDS formats to ensure full reproducibility and 
transparency. 


